AccScience Publishing / TD / Online First / DOI: 10.36922/TD025430111
REVIEW ARTICLE

Self-assembled peptide delivery systems: Applications in tumor therapy

Hao Wu1,2* Huawei Lv1 Xingnuo Li1*
Show Less
1 Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
2 NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
Tumor Discovery, 025430111 https://doi.org/10.36922/TD025430111
Received: 21 October 2025 | Revised: 1 January 2026 | Accepted: 21 January 2026 | Published online: 6 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Self-assembled peptides are emerging as versatile nanocarriers for cancer therapy, benefiting from programmable sequences, biocompatibility, and dynamic supramolecular assembly. This review summarizes recent advances in the molecular design and assembly mechanisms of peptide-based nanostructures (nanospheres, nanofibers, and nanogels) formed through non-covalent interactions, such as hydrogen bonding, electrostatics, van der Waals forces, and π-π stacking. We discuss how peptide composition, secondary structure, and environmental cues (pH, enzymes, redox state, temperature, and ionic strength) govern assembly, stability, and biological performance, enabling efficient loading and targeted delivery of small-molecule drugs, nucleic acids (DNA/small interfering RNA), and peptide or protein therapeutics. Particular emphasis is placed on stimuli-responsive strategies and in situ assembly approaches that enable controlled drug release and, where applicable, provide imaging readouts (fluorescence, photoacoustic, and nuclear imaging) for tumor visualization, image-guided delivery, and treatment-response monitoring. Key translational challenges are also addressed, including serum stability and pharmacokinetics, immunogenicity and off-target effects, endosomal escape and delivery efficiency, scalable manufacturing and cost, controllability of release, and standardized characterization and safety evaluation. Finally, we outline future directions, including multifunctional and smart responsive peptide architectures, hybrid systems combining peptides with liposomes, polymers, or viral vectors, and rational design rules linking assembly state to in vivo fate. Collectively, these advances are expected to accelerate the clinical translation of self-assembled peptide delivery systems for precision cancer therapy.

Keywords
Self-assembled peptides
Tumor therapy
Drug delivery
Nanocarriers
Combined application
Funding
This work was funded by the Traditional Chinese Medicine Science and Technology Project of Jiangsu Province (YB2020103).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev. 2023;52(23):8126-8164. doi: 10.1039/d2cs00999d

 

  1. Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact Mater. 2022;11:268-282. doi: 10.1016/j.bioactmat.2021.09.029

 

  1. Gao J, Zhan J, Yang Z. Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv Mater. 2020;32(3):e1805798. doi: 10.1002/adma.201805798

 

  1. Sinha NJ, Langenstein MG, Pochan DJ, Kloxin J, Saven JG. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem Rev. 2021;121(22):13915-13935. doi: 10.1021/acs.chemrev.1c00712

 

  1. Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today. 2021;39:101229. doi: 10.1016/j.nantod.2021.101229

 

  1. Wang W, Sessler CD, Wang X, Liu J. In situ synthesis and assembly of functional materials and devices in living systems. Acc Chem Res. 2024;57(15):2013-2026. doi: 10.1021/acs.accounts.4c00049

 

  1. Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev. 2021;172:275-295. doi: 10.1016/j.addr.2021.01.006

 

  1. Xiao Q, Huang J, Wang X, et al. Supramolecular peptide amphiphile nanospheres reprogram tumor-associated macrophage to reshape the immune microenvironment for enhanced breast cancer immunotherapy. Small. 2024;20(21):e2307390. doi: 10.1002/smll.202307390

 

  1. Ledford BT, Akerman AW, Sun K, et al. Peptide amphiphile supramolecular nanofibers designed to target abdominal aortic aneurysms. ACS Nano. 2022;16(5):7309-7322. doi: 10.1021/acsnano.1c06258

 

  1. Guan T, Li J, Chen C, Liu Y. Self-assembling peptide-based hydrogels for wound tissue repair. Adv Sci (Weinh). 2022;9(10):e2104165. doi: 10.1002/advs.202104165

 

  1. Sheehan F, Sementa D, Jain A, et al. Peptide-based supramolecular systems chemistry. Chem Rev. 2021; 121(22):13869-13914. doi: 10.1021/acs.chemrev.1c00089

 

  1. Gupta D, Gupta V, Nath D, Miglani C, Mandal D, Pal A. Stimuli-responsive self-assembly disassembly in peptide amphiphiles to endow block-co-fibers and tunable piezoelectric response. ACS Appl Mater Interfaces. 2023;15(21):25110-25121. doi: 10.1021/acsami.2c05469

 

  1. Ghosh G, Barman R, Mukherjee A, Ghosh U, Ghosh S, Fernandez G. Control over multiple nano- and secondary structures in peptide self-assembly. Angew Chem Int Ed. 2022;61(5):e202113403. doi: 10.1002/anie.202113403

 

  1. Zou R, Wang Q, Wu J, Wu J, Schmuck C, Tian Q. Peptide self-assembly triggered by metal ions. Chem Soc Rev. 2015;44(15):5200-5219. doi: 10.1039/c5cs00234f

 

  1. Chen Y, Yang Y, Orr AA, et al. Self-assembled peptide nano-superstructure towards enzyme mimicking hydrolysis. Angew Chem Int Ed. 2021;60(31):17164-17170. doi: 10.1002/anie.202105830

 

  1. Wu J, Zhou L, Peng H, et al. A general and convenient peptide self-assembling mechanism for developing supramolecular versatile nanomaterials based on the biosynthetic hybrid amyloid-resilin protein. Adv Mater. 2024;36(4):e2304364. doi: 10.1002/adma.202304364

 

  1. Qiao Y, Zia A, Wu G, et al. Context-dependent heterotypic assemblies of intrinsically disordered peptides. J Am Chem Soc. 2025;147(4):2978-2983. doi: 10.1021/jacs.4c12150

 

  1. Biswas S, Umesh, Das B, Koley P, Acharya S, Bhattacharya S. Molecular propeller tethering on a dipeptide induces a one-step conversion of its secondary structure on water surface promoted by chiral supramolecular assembly. Small. 2025;21(3):e2408634. doi: 10.1002/smll.202408634

 

  1. Ilawe NV, Schweitzer-Stenner R, DiGuiseppi D, Wong BM. Is a cross-beta-sheet structure of low molecular weight peptides necessary for the formation of fibrils and peptide hydrogels? Phys Chem Chem Phys. 2018; 20(27):18158-18168. doi: 10.1039/c8cp00691a

 

  1. Zhou Y, Li Q, Wu Y, et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano. 2023;17(9):8004-8025. doi: 10.1021/acsnano.3c01452

 

  1. Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: Thermodynamics and kinetics. Chem Soc Rev. 2016;45(20):5589-5604. doi: 10.1039/c6cs00176a

 

  1. Li Y, Liao J, Xiong L, et al. Stepwise targeted strategies for improving neurological function by inhibiting oxidative stress levels and inflammation following ischemic stroke. J Control Release. 2024;368:607-622. doi: 10.1016/j.jconrel.2024.02.039

 

  1. Eskandari S, Guerin T, Toth I, Stephenson RJ. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev. 2017;110-111:169-187. doi: 10.1016/j.addr.2016.06.013

 

  1. Lynn GM, Sedlik C, Baharom F, et al. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320-332. doi: 10.1038/s41587-019-0390-x

 

  1. Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics. 2019;9(11):3249-3261. doi: 10.7150/thno.31814

 

  1. Qin SY, Feng JQ, Cheng YJ, et al. A comprehensive review on peptide-bearing biomaterials: From ex situ to in situ self-assembly. Coordin Chem Rev. 2024;502:215600. doi: 10.1016/j.ccr.2023.215600

 

  1. Konig N, Szostak SM, Nielsen JE, et al. Stability of nanopeptides: Structure and molecular exchange of self-assembled peptide fibers. ACS Nano. 2023;1 7(13):12394-12408. doi: 10.1021/acsnano.3c01811

 

  1. Wang Y, Xia K, Wang L, et al. Peptide-engineered fluorescent nanomaterials: Structure design, function tailoring, and biomedical applications. Small. 2021;17(5):e2005578. doi: 10.1002/smll.202005578

 

  1. Xing R, Yuan C, Li S, Song J, Li J, Yan X. Charge-induced secondary structure transformation of amyloid-derived dipeptide assemblies from beta-sheet to alpha-helix. Angew Chem Int Ed. 2018;57(6):1537-1542. doi: 10.1002/anie.201710642

 

  1. Dubey N, Ferreira JA, Malda J, Bhaduri SB, Bottino MC. Extracellular matrix/amorphous magnesium phosphate bioink for 3D bioprinting of craniomaxillofacial bone tissue. ACS Appl Mater Interfaces. 2020;12(21):23752-23763. doi: 10.1021/acsami.0c05311

 

  1. Chang R, Yuan C, Zhou P, Xing R, Yan X. Peptide self-assembly: From ordered to disordered. Acc Chem Res. 2024;57(3):289-301. doi: 10.1021/acs.accounts.3c00592

 

  1. Ren H, Zeng XZ, Zhao XX, et al. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat Commun. 2022;13(1):418. doi: 10.1038/s41467-021-27932-y

 

  1. Liu H, Xu X, Tu Y, et al. Engineering microenvironment for endogenous neural regeneration after spinal cord injury by reassembling extracellular matrix. ACS Appl Mater Interfaces. 2020;12(15):17207-17219. doi: 10.1021/acsami.9b19638

 

  1. Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci. 2022;10(17):4694-4723. doi: 10.1039/d2bm00775d

 

  1. Fu M, Zhang C, Dai Y, et al. Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery. Biomater Sci. 2018;6(6):1480-1491. doi: 10.1039/c8bm00006a

 

  1. Cai Y, Xu T, Zhu B, et al. Conformation influences biological fates of peptide-based nanofilaments by modulating protein adsorption and interfilament entanglement. Adv Mater. 2024;37(3):e2409130. doi: 10.1002/adma.202409130

 

  1. Zhao W, Li Y, Zhou A, et al. Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration. R Soc Open Sci. 2020;7(4):191830. doi: 10.1098/rsos.191830

 

  1. Moore AN, Hartgerink JD. Self-assembling multidomain peptide nanofibers for delivery of bioactive molecules and tissue regeneration. Acc Chem Res. 2017;50(4):714-722. doi: 10.1021/acs.accounts.6b00553

 

  1. Li K, Li R, Zou P, et al. Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization. Biomaterials. 2022;281:121361. doi: 10.1016/j.biomaterials.2021.121361

 

  1. Chen Y, Lei K, Li Y, et al. Synergistic effects of NO/H2S gases on antibacterial, anti-inflammatory, and analgesic properties in oral ulcers using a gas-releasing nanoplatform. Acta Biomater. 2025;194:288-304. doi: 10.1016/j.actbio.2025.01.013

 

  1. Li Z, Jiang S, Wang J, et al. Peptide-drug conjugates repolarize glioblastoma-associated macrophages to resensitize chemo-immunotherapy of glioblastoma. Sci Adv. 2025;11(3):eadr8841. doi: 10.1126/sciadv.adr8841

 

  1. Wen X, Zhang R, Hu Y, et al. Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat Commun. 2023;14(1):800. doi: 10.1038/s41467-023-36469-1

 

  1. Li CY, Liang Z, Liu L, Kuang Y. Intracellular molecules induced extracellular peptide self-assembly for efficient and effective in situ cell purification. Angew Chem Int Ed. 2023;62(37):e202306533. doi: 10.1002/anie.202306533

 

  1. Cen B, Zhang J, Pan X, et al. Stimuli-responsive peptide/ siRNA nanoparticles as a radiation sensitizer for glioblastoma treatment by co-inhibiting RELA/P65 and EGFR. Int J Nanomedicine. 2024;19:11517-11537. doi: 10.2147/IJN.S483252

 

  1. Cao M, Zhang Z, Zhang X, et al. Peptide self-assembly into stable capsid-like nanospheres and co-assembly with DNA to produce smart artificial viruses. J Colloid Interface Sci. 2022;615:395-407. doi: 10.1016/j.jcis.2022.01.181

 

  1. Yang L, Lang Y, Wu H, et al. Engineered toll-like receptor nanoagonist binding to extracellular matrix elicits safe and robust antitumor immunity. ACS Nano. 2023;17(6):5340-5353. doi: 10.1021/acsnano.2c08429

 

  1. Wang Z, Hao D, Wang Y, et al. Peptidyl virus-like nanovesicles as reconfigurable “Trojan horse” for targeted siRNA delivery and synergistic inhibition of cancer cells. Small. 2023;19(1):e2204959. doi: 10.1002/smll.202204959

 

  1. Zhu YS, Tang K, Lv J. Peptide-drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol Sci. 2021;42(10):857-869. doi: 10.1016/j.tips.2021.07.001

 

  1. Cai X, Zhang M, Zou J, et al. A novel self-assembling peptide nanofiber hydrogel with glucagon-like peptide-1 functionality enhances islet survival to improve islet transplantation outcome in diabetes treatment. J Nanobiotechnology. 2024;22(1):792. doi: 10.1186/s12951-024-03072-5

 

  1. Chen W, Xian S, Webber B, et al. Engineering supramolecular nanofiber depots from a glucagon-like peptide-1 therapeutic. ACS Nano. 2024;18(45):31274-31285. doi: 10.1021/acsnano.4c10248

 

  1. Yang C, Hu F, Zhang X, et al. Combating bacterial infection by in situ self-assembly of AIEgen-peptide conjugate. Biomaterials. 2020;244:119972. doi: 10.1016/j.biomaterials.2020.119972

 

  1. Zhang W, Zeng Y, Xiao Q, et al. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat Commun. 2024;15(1):5670. doi: 10.1038/s41467-024-49825-6

 

  1. Liu J, Zhang X, Zou P, et al. Peptide-based nano-antibiotic transformers with antibiotic adjuvant effect for multidrug resistant bacterial pneumonia therapy. Nano Today. 2022;44:101505. doi: 10.1016/j.nantod.2022.101505

 

  1. Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci. 2020;11(33):8644-8656. doi: 10.1039/d0sc02937h

 

  1. Yang L, Peltier R, Zhang M, et al. Desuccinylation-triggered peptide self-assembly: Live cell imaging of SIRT5 activity and mitochondrial activity modulation. J Am Chem Soc. 2020;142(42):18150-18159. doi: 10.1021/jacs.0c08463

 

  1. O’Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater. 2021;133:153-167. doi: 10.1016/j.actbio.2021.05.003

 

  1. Pentlavalli S, Coulter S, Laverty G. Peptide nanomaterials for drug delivery applications. Curr Protein Pept Sci. 2020;21(4):401-412. doi: 10.2174/1389203721666200101091834

 

  1. Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today. 2016;11(1):41-60. doi: 10.1016/j.nantod.2016.02.004

 

  1. Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv. 2022;59:107968. doi: 10.1016/j.biotechadv.2022.107968

 

  1. Chellappan DK, Prasher P, Saravanan V, et al. Protein and peptide delivery to lungs by using advanced targeted drug delivery. Chem Biol Interact. 2022;351:109706. doi: 10.1016/j.cbi.2021.109706

 

  1. Ye S, Wang S, Gao D, et al. A new γ-glutamyltranspeptidase-based intracellular self-assembly of fluorine-18 labeled probe for enhancing pet imaging in tumors. Bioconjug Chem. 2020;31(2):174-181. doi: 10.1021/acs.bioconjchem.9b00803

 

  1. Hu Y, Miao Y, Zhang J, et al. Alkaline phosphatase enabled fluorogenic reaction and in situ coassembly of near-infrared and radioactive nanoparticles for in vivo imaging. Nano Lett. 2021;21(24):10377-10385. doi: 10.1021/acs.nanolett.1c03683

 

  1. Hu Y, Zhang J, Miao Y, et al. Enzyme-mediated in situ self-assembly promotes in vivo bioorthogonal reaction for pretargeted multimodality imaging. Angew Chem Int Ed. 2021;60(33):18082-18093. doi: 10.1002/anie.202103307

 

  1. Li S, Van Hest JCM, Xing R, Yan X. Peptide self-assembly meets photodynamic therapy: From molecular design to antitumor applications. Chem Commun. 2025;61(73):13841-13851. doi: 10.1039/d5cc03988f

 

  1. Liu Z, Yu C, Li Z, Wang X, Shang D. Matrix metalloproteinase-triggered self-assembling peptides for biomedical applications. J Mater Chem B. 2025;13(28):8298-8334. doi: 10.1039/d5tb00625b

 

  1. Guo RC, Zhang XH, Fan PS, et al. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew Chem Int Ed Engl. 2021;60(47):25128-25134. doi: 10.1002/anie.202111839

 

  1. Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater. 2024;35:181-207. doi: 10.1016/j.bioactmat.2024.01.023

 

  1. Kim J, Lee S, Kim Y, et al. In situ self-assembly for cancer therapy and imaging. Nat Rev Mater. 2023;8(11):710-725. doi: 10.1038/s41578-023-00589-3

 

  1. Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. Sci China Life Sci. 2020;63(8):1142-1158. doi: 10.1007/s11427-019-1641-6

 

  1. Wang Y, Qiao SL, Wang H. Facile synthesis of peptide cross-linked nanogels for tumor metastasis inhibition. ACS Appl Nano Mater. 2018;1(2):785-792. doi: 10.1021/acsanm.7b00203

 

  1. Li LL, Qiao ZY, Wang L, Wang H. Programmable construction of peptide-based materials in living subjects: From modular design and morphological control to theranostics. Adv Mater. 2019;31(45):e1804971. doi: 10.1002/adma.201804971

 

  1. Wang X, Li C, Wang Y, et al. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B. 2022;12(11):4098-4121. doi: 10.1016/j.apsb.2022.08.013

 

  1. Cheng DB, Zhang XH, Gao YJ, et al. Endogenous reactive oxygen species-triggered morphology transformation for enhanced cooperative interaction with mitochondria. J Am Chem Soc. 2019;141(18):7235-7239. doi: 10.1021/jacs.8b07727

 

  1. Wang Y, Hu X, Weng J, et al. A photoacoustic probe for the imaging of tumor apoptosis by caspase-mediated macrocyclization and self-assembly. Angew Chem Int Ed. 2019;58(15):4886-4890. doi: 10.1002/anie.201813748

 

  1. Li X, Cao C, Wei P, et al. Self-assembly of amphiphilic peptides for recognizing high furin-expressing cancer cells. ACS Appl Mater Interfaces. 2019;11(13):12327-12334. doi: 10.1021/acsami.9b01281

 

  1. Zorko M, Jones S, Langel U. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev. 2022;180:114044. doi: 10.1016/j.addr.2021.114044
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing