AccScience Publishing / TD / Online First / DOI: 10.36922/TD025290066
REVIEW ARTICLE

Potential approaches in the development of novel therapeutics for ovarian cancer

Deepa Thomas1 Renad AlAnsari1 Adnan Alsaei1 Uwe Torsten1,2,3 G. Roshan Deen1*
Show Less
1 Materials for Medicine Research Group, School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Bahrain
2 Department of Obstetrics and Gynaecology, School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Bahrain
3 Pan Arabian Society for Research in Gynaecological Oncology (PARSGO), Berlin, Germany
Tumor Discovery, 025290066 https://doi.org/10.36922/TD025290066
Received: 14 July 2025 | Revised: 11 November 2025 | Accepted: 13 November 2025 | Published online: 22 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

“Ovarian cancer” is not a specific diagnosis; instead, it is a collective term for various cancer types that affect the ovaries, fallopian tubes, and the peritoneum. Over 30 distinct forms of ovarian cancer are estimated to exist, with significant variations in occurrence and prognosis among the various types. Based on GLOBOCAN 2022 estimates, the number of women diagnosed with ovarian cancer is projected to increase by more than 55% by 2050. The annual deaths due to ovarian cancer among women are expected to rise to 350,956, marking an increase of nearly 70% compared to 2022. The incidence of ovarian cancer has been increasing substantially among younger females, probably due to the increasing prevalence of obesity, metabolic syndrome, estrogen exposure, and nulliparity. At present, the primary treatment options for ovarian cancer are based on three pillars: surgical debulking, chemotherapy, and maintenance therapy. However, the long-term survival rate remains low due to the late stages of the disease, with a high recurrence risk. Because treatment still relies heavily on cytotoxic chemotherapy, adverse effects and acquired drug resistance remain common. Therefore, there is a need for new therapeutics that optimize treatment options. In this review, an updated overview of current and future approaches to developing new therapeutics for ovarian cancer is presented.

Keywords
Nanotechnology
Aptamer
Sonodynamic therapy
Nanozymes
Immune checkpoint inhibitors
Gas plasma
Ovarian cancer
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol. 2024;21(5):389-400. doi: 10.1038/s41571-024-00881-3

 

  1. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: Epidemiology and risk factors. Int J Womens Health. 2019;30(11):287-299. doi: 10.2147/ijwh.s197604

 

  1. Razaq L, Dhali A, Maity R, et al. Demographic trends in mortality due to ovarian cancer in the United States. World J Clin Oncol. 2025;16(6):108393. doi: 10.5306/wjco.v16.i6.108393

 

  1. Okunowo AA, Adaramoye VO. Women’s knowledge on ovarian cancer symptoms and risk factors in Nigeria: An institutional-based study. J Epidemiol Glob Health. 2018;8(1-2):34-41. doi: 10.2991/j.jegh.2018.07.002

 

  1. Dilruba S, Kalayda GV. Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol. 2016;77(6):1103-1124. doi: 10.1007/s00280-016-2976-z

 

  1. Hu X, Li F, Noor N, Ling D. Platinum drugs: From Pt(II) compounds, Pt(IV) prodrugs, to Pt nanocrystals/ nanoclusters. Sci Bull (Beijing). 2017;62(8):589-596. doi: 10.1016/j.scib.2017.03.008

 

  1. Ho GY, Woodward N, Coward JI. Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 2016;102:37-46.

 

  1. Zhou Y, Guo W. Efficacy and safety of paclitaxel and carboplatin for platinum-sensitive ovarian cancer: A systematic review and meta-analysis. J Clin Pharm Ther. 2023;4:1951412. doi: 10.1155/2023/1951412.

 

  1. Leiser AL, Maluf FC, Chi DS, et al. A phase I study evaluating the safety and pharmacokinetics of weekly paclitaxel and carboplatin in relapsed ovarian cancer. Int J Gynecol Cancer. 2007;17(2):379-386. doi: 10.1111/j.1525-1438.2007.00811.x

 

  1. Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. J Clin Oncol. 2014;32(13):1302-1308. doi: 10.1200/jco.2013.51.4489

 

  1. Moufariij S, Cearbhail REO. Novel therapeutics in ovarian cancer: Expanding the toolbox. Curr Oncol. 2024;31(1):97-114. doi: 10.3390/curroncol31010007

 

  1. Sunada S, Nakanishi A, Miki Y. Crosstalk of DNA double‐strand break repair pathways in poly(ADP‐ribose) polymerase inhibitor treatment of breast cancer susceptibility gene 1/2‐mutated cancer. Cancer Sci. 2018;109(4):893-899. doi: 10.1111/cas.13530

 

  1. Loizzi V, Ranieri G, Laforgia M, et al. PARP inhibitors and epithelial ovarian cancer: Molecular mechanisms, clinical development and future prospective. Oncol Lett. 2020;20(4):90. doi: 10.3892/ol.2020.11951

 

  1. Soung YH, Chung J. Combination treatment strategies to overcome PARP inhibitor resistance. Biomolecules. 2023;13(10):1480. doi: 10.3390/biom13101480

 

  1. Arora S, Balasubramaniam S, Zhang H, et al. Approval summary: Olaparib monotherapy or in combination with bevacizumab for the maintenance treatment of patients with advanced ovarian cancer. Oncologist. 2020;26(1):e164-e172. doi: 10.1002/onco.13551

 

  1. Herencia-Ropero A, Llop-Guevara A, Staniszewska AD, et al. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Genome Med. 2024;16(1):107. doi: 10.1186/s13073-024-01370-z

 

  1. Ilaria C, Katherine K, Sneha S, Amit MO. Chasing immune checkpoint inhibitors in ovarian cancer: Novel combinations and biomarker discovery. Cancers (Basel). 2023;15(12):3220. doi: 10.3390/cancers15123220

 

  1. Won HY, Anna DF, Lawrence K. Immune checkpoint inhibitors in Ovarian cancer: Where do we go from here? Cancer Drug Resist. 2023;6(2):358-377. doi: 10.20517/cdr.2023.13

 

  1. Moroney JW, Powderly J, Christopher HL, et al. Safety and clinical activity of atezolizumab plus bevacizumab in patients with ovarian cancer: A phase Ib study. Clin Cancer Res. 2020;26(21):5631-5637. doi: 10.1158/1078-0432.ccr-20-0477

 

  1. Lee JM, Cimino-Mathews A, Peer CJ, et al. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancers: A dose-escalation, phase I study. J Clin Oncol. 2020;35(19):2193-2202. doi: 10.1200/jco.2016.72.1340.

 

  1. Galle P, Finn RS, Mitchell CR, et al. Treatment- emergent antidrug antibodies related to PD-1, PD-L1, or CTLA-4 inhibitors across tumor types: A systematic review. J Immunother Cancer. 2024;2(1):e008266. doi: 10.1136/jitc-2023-008266

 

  1. Zamarin D, Burger RA, Sill MW, et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: An NRG oncology study. J Clin Oncol. 2020;38(16):1814-1823. doi: 10.1200/jco.19.02059

 

  1. Zhao L, Zhai Y, Niu G. Research progress of immune checkpoint inhibitors in ovarian cancer. Explor Immunol. 2024;4:853-870. doi: 10.37349/ei.2024.00177

 

  1. Narayana RV, Gupta R. Exploring the therapeutic use and outcome of antibody-drug conjugates in ovarian cancer treatment. Oncogene. 2025;44(28):2343-2356. doi: 10.1038/s41388-025-03448-3

 

  1. Yuan R, McGeehan A, Zhou S, et al. The anti-FRα antibody-drug conjugate luveltamab tazevibulin demonstrates efficacy in non-small cell lung cancer preclinical models and induces immunogenic cell death. Mol Cancer Ther. 2025;24(9):1428-1441. doi: 10.1158/1535-7163.mct-24-0649

 

  1. An D, Banerjee S, Lee JM. Recent advancements of antiangiogenic combination therapies in ovarian cancer. Cancer Treat Rev. 2021;98:102224. doi: 10.1016/j.ctrv.2021.102224

 

  1. Chao M, Weijing G, Xu W, et al. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol. 2023;7(14):1147717. doi: 10.3389/fphar.2023.1147717

 

  1. Stark DP, Cook A, Brown JM, et al. Quality of life with cediranib in relapsed ovarian cancer: The ICON6 phase 3 randomized clinical trial. Cancer. 2017;123(14):2752-2761. doi: 10.1002/cncr.30657

 

  1. Backes FJ, Wei L, Chen M, et al. Phase I evaluation of lenvatinib and weekly paclitaxel in patients with recurrent endometrial, ovarian, fallopian tube, or primary peritoneal cancer. Gynecol Oncol. 2021;162(3):619-625. doi: 10.1016/j.ygyno.2021.06.032

 

  1. Chengwen J, Mingyuan Y, Hualei B, Chenjuan J. Antiangiogenic strategies in epithelial ovarian cancer: Mechanism, resistance, and combination therapy. J Oncol. 2022;2022(1):4880355. doi: 10.1155/2022/4880355

 

  1. Zhang Z, Zhou L, Xie N, et al. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther. 2020;5(1):113. doi: 10.1038/s41392-020-00213-8

 

  1. Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther. 2024;9(1):92. doi: 10.1038/s41392-024-01808-1

 

  1. Kobayashi Y, Kashima H, Wu RC, et al. Mevalonate pathway antagonist suppresses formation of serous tubal intraepithelial carcinoma and ovarian carcinoma in mouse models. Clin Cancer Res. 2015;21(20):4652-62. doi: 10.1158/1078-0432.CCR-14-3368.

 

  1. Hutchinson J, Marignol L. Clinical potential of statins in prostate cancer radiation therapy. Anticancer Res. 2017;37(10):5363-5372. doi: 10.21873/anticanres.11962

 

  1. Greenaway JB, Virtanen C, Osz K, et al. Ovarian tumour growth is characterized by mevalonate pathway gene signature in an orthotopic, syngeneic model of epithelial ovarian cancer. Oncotarget. 2016;7(30):47343-47365. doi: 10.18632/oncotarget.10121

 

  1. Stine JE, Guo H, Sheng X, et al. The HMG-CoA Reductase inhibitor simvastatin exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget. 2016;7(1):946-960. doi: 10.18632/oncotarget.5834

 

  1. Xie W, Ning L, Huang Y, et al. Statin use and survival outcomes in endocrine-related gynecologic cancers: A systematic review and meta-analysis. Oncotarget. 2017;8(25):41508-41517. doi: 10.18632/oncotarget.17242

 

  1. Li X, Zhou J. Impact of post diagnostic statin use on ovarian cancer mortality: A systematic review and meta-analysis of observational studies. Br J Clin Pharmacol. 2018;84(6):1109-1120. doi: 10.1111/bcp.13559

 

  1. Tuesley KM, Webb PM, Protani MM, et al. Nitrogen-based bisphosphonate use and ovarian cancer risk in women aged 50 years and older. J Natl Cancer Inst. 2022;114(6):878-884. doi: 10.1093/jnci/djac050

 

  1. Chu D, Wu J, Wang K, et al. Effect of metformin use on the risk and prognosis of endometrial cancer: A systematic review and meta-analysis. BMC Cancer. 2018;18(1):438. doi: 10.1186/s12885-018-4334-5

 

  1. Hanna RK, Zhou C, Malloy KM, et al. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol Oncol. 2012;125(2):458-469. doi: 10.1016/j.ygyno.2012.01.009

 

  1. Kaur P, Berchuck A, Chase A, et al. Metformin use and survival in people with ovarian cancer: A population-based cohort study from British Columbia, Canada. Neoplasia. 2024;56(10290):101026. doi: 10.1016/j.neo.2024.101026

 

  1. Trabert B, Ness RB, Lo-Ciganic WH, et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: A pooled analysis in the ovarian cancer association consortium. J Natl Cancer Inst. 2014;106(2):djt431. doi: 10.1093/jnci/djt431

 

  1. Huang Y, Lichtenberger LM, Taylor M, et al. Anti-tumor and antiangiogenic effects of aspirin-PC in ovarian cancer. Mol Cancer Ther. 2016;15(12):2894-2904. doi: 10.1158/1535-7163.mct-16-0074

 

  1. Barnard ME, Hecht JL, Rice MS, et al. Anti-inflammatory drug use and ovarian cancer risk by COX1/COX2 expression and infiltration of tumor-associated macrophages. Cancer Epidemiol Biomarkers Prev. 2018;27(12):1509-1517. doi: 10.1158/1055-9965.epi-18-0346

 

  1. Kim JS, Baek SJ, Sali T, Eling TE. The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/ MIC-1/GDF-15. Mol Cancer Ther. 2005;4(3):487-493. doi: 10.1158/1535-7163.mct-04-0201

 

  1. Kobayashi Y, Banno K, Kunitomi H, Tominaga E, Aoki D. Current state and outlook for drug repositioning anticipated in the field of ovarian cancer. J Gynecol Oncol. 2018;30(1):e10. doi: 10.3802/jgo.2019.30. e10

 

  1. Xia Y, Chang T, Wang Y, et al. YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS One. 2014;9(3):e91770. doi: 10.1371/journal.pone.0091770

 

  1. Kodama M, Kodama T, Newberg JY, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci. 2014;114(35):E7301-E7310. doi: 10.1073/pnas.1705441114.

 

  1. Li N, Zhan X. Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lnc RNA-EIF4A3-mRNAAxes. EPMA J. 2020;(2):289-309. doi: 10.1007/s13167-020-00209-y

 

  1. Nunes M, Henriques Abreu M, Bartosch C, Ricardo S. Recycling the purpose of old drugs to treat ovarian cancer. Int J Mol Sci. 2020;21(20):7768. doi: 10.3390/ijms21207768

 

  1. Choi CH, Ryu JY, Cho YJ, et al. The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci Rep. 2017;7(1):6552. doi: 10.1038/s41598-017-06510-7

 

  1. Michelle WYWB, Zlata J, Saad S, et al. Drug repurposing to target TGF-β in chemo resistant high-grade serous ovarian cancer. Mol Cancer Ther. 2023;22(12 Supplement):C041. doi: 10.1158/1535-7163.TARG-23-C041

 

  1. Rinne N, Christie EL, Ardasheva A, et al. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. Cancer Drug Resist. 2021;4(3):573-595. doi: 10.20517/cdr.2021.05

 

  1. Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 2019;59(6):147-160. doi: 10.1016/j.semcancer.2019.05.012

 

  1. Garrido MP, Fredes AN, Lobos-González L, et al. Current treatments and new possible complementary therapies for epithelial ovarian cancer. Biomedicines. 2021;10(1):77. doi: 10.3390/biomedicines10010077

 

  1. Jordyn Sava. FDA Awards Full Approval to Larotrectinib in NTRK+ Solid Tumors. Available from: https://www. targetedonc.com/view/fda-awards-full-approval-to-larotrectinib-in-ntrk-solid-tumors [Last accessed on 2025 Apr 10].

 

  1. Hind MO, Meral T. Entrectinib: A new selective tyrosine kinase inhibitor approved for the treatment of pediatric and adult patients with NTRK fusion positive, recurrent or advanced solid tumors. Curr Med Chem. 2022;29(15):2602-2616. doi: 10.2174/0929867328666210914121324

 

  1. Blake JF, Kolakowski GR, Tuch BB, et al. The development of LOXO-195, a second generation TRK kinase inhibitor that overcomes acquired resistance to 1st Generation inhibitors observed in patients with TRK-fusion cancers. Eur J Cancer. 2016;69(1):S144-S145. doi: 10.1016/S0959-8049(16)33029-5

 

  1. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271-282. doi: 10.1016/S1470-2045(19)30691-6

 

  1. Chow S, Berek JS, Dorigo O. Development of therapeutic vaccines for ovarian cancer. Vaccines (Basel). 2020;8(4):657. doi: 10.3390/vaccines8040657

 

  1. Michael A, Wilson W, Sunshine S, et al. A randomized phase II trial to examine modified vaccinia ankara-5T4 vaccine in patients with relapsed asymptomatic ovarian cancer (TRIOC). Int J Gynecol Cancer. 2024;34(8):1225-1231. doi: 10.1136/ijgc-2023-005200

 

  1. Kalli KR, Block MS, Kasi PM, et al. Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients. Clin Cancer Res. 2018;24(13):3014-3025. doi: 10.1158/1078-0432.ccr-17-2499

 

  1. Gupta A, O’Cearbhaill RE, Block MS, et al. Vaccination with folate receptor-alpha peptides in patients with ovarian cancer following response to platinum-based therapy: A randomized, multicenter clinical trial. Gynecol Oncol. 2024;189(10290):90-97. doi: 10.1016/j.ygyno.2024.07.675

 

  1. Disis ML, Grabstein KH, Sleath PR. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res. 1999;5(6):1289-1297.

 

  1. Gray HJ, Benigno B, Berek J, et al. Progression-free and overall survival in ovarian cancer patients treated with CVac, a mucin 1 dendritic cell therapy in a randomized phase 2 trial. J Immunother Cancer. 2016;4(1):34. doi: 10.1186/s40425-016-0137-x

 

  1. Li Y, Tong F, Wang Y, et al. In situ tumor vaccine with optimized nano adjuvants and lymph node targeting capacity to treat ovarian cancer and metastases. Acta Pharm Sin B. 2024;14(9):4102-4117. doi: 10.1016/j.apsb.2024.06.003

 

  1. Ohno S, Kyo S, Myojo S, et al. Wilms’ Tumor 1 (WT1) Peptide immunotherapy for gynecological malignancy. Anticancer Res. 2009;29(11):4779-4784.

 

  1. Miyatake T, Ueda Y, Morimoto A, et al. WT1 peptide immunotherapy for gynecologic malignancies resistant to conventional therapies: A phase II trial. J Cancer Res Clin Oncol. 2013;139(3):457-463. doi: 10.1007/s00432-012-1348-2

 

  1. Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol. 2022;(10):953887. doi: 10.3389/fbioe.2022.953887

 

  1. Al-Hawary SIS, Jasim SA, Hjazi A, et al. Nucleic acid-based vaccine for ovarian cancer cells; bench to bedside. Cell Biochem Funct. 2024;42(2):e3978. doi: 10.1002/cbf.3978

 

  1. Brancewicz J, Padzińska-Pruszyńska IB, Kubiak M, Kucharzewska P. Immunotherapy for platinum-resistant ovarian cancer as a glimmer of hope. Cells 2025;14:995.

 

  1. Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Nanotechnology for boosting ovarian cancer immunotherapy. J Ovarian Res. 2024;14;17(1):202. doi: 10.1186/s13048-024-01507-z

 

  1. Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2010;16(1):95. doi: 10.1186/s11671-021-03553-8

 

  1. Gupta M, Sharma V, Sharma K, et al. A kNGR peptide-tethered lipid-polymer hybrid nanocarrier-based synergistic approach for effective tumor therapy: Development, Characterization, ex-vivo, and in-vivo assessment. Pharmaceutics. 2022;14(7):1401. doi: 10.3390/pharmaceutics14071401

 

  1. Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: From clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902-6915. doi: 10.7150/jca.49532

 

  1. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel). 2019;9(3):474. doi: 10.3390/nano9030474

 

  1. Bhadran A, Polara H, Babanyinah GK, Baburaj C, Stefan MC. Advances in doxorubicin chemotherapy: Emerging Polymeric nanocarriers for drug loading and delivery. Cancers. 2025;17(14):2303. doi: 10.3390/cancers17142303

 

  1. Siddique S, Chow JCL. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci. 2020;10(11):3824. doi: 10.3390/app10113824

 

  1. Gomes HIO, Martins CSM, Prior JAV. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials (Basel). 2021;11(4):964. doi: 10.3390/nano11040964

 

  1. Arias LS, Pessan JP, Vieira APM, et al. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel). 2018;7(2):46. doi: 10.3390/antibiotics7020046

 

  1. Barenholz Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J Control Release. 2012;160(2):117-134. doi: 10.1016/j.jconrel.2012.03.020

 

  1. Wang L, Evans JC, Ahmed L, Allen C. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci Rep. 2023;13(1):3226. doi: 10.1038/s41598-023-28424-3

 

  1. Dasa SSK, Diakova G, Suzuki R, et al. Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer. Theranostics. 2018;8(10):2782-2798. doi: 10.7150/thno.23050

 

  1. Mensah LB, Morton SW, Li J, et al. Layer-by-layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum-based drug resistance therapy in ovarian cancer. Bioeng Transl Med. 2019;4(2):e10131. doi: 10.1002/btm2.10131

 

  1. Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted nanocarrier-based drug delivery strategies for improving the therapeutic efficacy of PARP inhibitors against ovarian cancer. Int J Mol Sci. 2024;25(15):8304. doi: 10.3390/ijms25158304

 

  1. Novohradsky V, Zajac J, Vrana O, Kasparkova J, Brabec V. Simultaneous delivery of olaparib and carboplatin in PEGylated liposomes imparts this drug combination hypersensitivity and selectivity for breast tumor cells. Oncotarget. 2018;9(47):28456-28473. doi: 10.18632/oncotarget.25466

 

  1. Li L, He D, Guo Q, et al. Exosome- liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemo resistant ovarian cancer. J Nanobiotechnol. 2022;20(1):50. doi: 10.1186/s12951-022-01264-5.

 

  1. Kaye SB. Management of platinum-sensitive relapsed ovarian cancer, reference to the international collaboration in ovarian neoplasm-4/arbeitsgemeinschaft gynakologische onkologie. ovarian cancer-2.2 trial. Int J Gynecol Cancer. 2005;1:31-35. doi: 10.1111/j.1525-1438.2005.15354. x

 

  1. Mutlu-Agardan NB, Sarisozen C, Torchilin VP. Cytotoxicity of novel redox sensitive PEG2000-S-S-PTX micelles against drug-resistant ovarian and breast cancer cells. Pharm Res. 2020;37(3):65. doi: 10.1007/s11095-020-2759-4

 

  1. Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: Synthesis, characterisation and pharmacokinetic study. Int J Polym Mater. 2021;70(14):115. doi: 10.1080/00914037.2020.1776282

 

  1. Wu Y, Lv S, Li Y, et al. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater Sci. 2020;8(3):949-959. doi: 10.1039/c9bm01662g

 

  1. Michy T, Massias T, Bernard C, et al. Verteporfin-loaded lipid nanoparticles improve ovarian cancer photodynamic therapy in vitro and in vivo. Cancers (Basel). 2019;11(11):1760. doi: 10.3390/cancers11111760

 

  1. Han S, Dwivedi P, Mangrio FA, et al. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):957-967. doi: 10.1080/21691401.2019.1576705

 

  1. Stella B, Peira E, Dianzani C, et al. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials (Basel). 2019;8(2):110. doi: 10.3390/nano8020110

 

  1. Sguizzato M, Cortesi R, Gallerani, et al. Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7- phosphaadamantane (PTA) platinum (II) carboxylates. Mater Sci Eng C Mater Biol Appl. 2017;1(74):357-364. doi: 10.1016/j.msec.2016.12.020

 

  1. Li F, Lu J, Liu J, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun. 2017;8(1):1390. doi: 10.1038/s41467-017-01565-6.

 

  1. Dai F, Zhang Y, Zhu X, Shan N, Chen Y. The anti- chemo resistant effect and mechanism of MUC1 a resistant R-29b chimera in ovarian cancer. Gynecol Oncol. 2013;131(2):451-459. doi: 10.1016/j.ygyno.2013.07.112

 

  1. Vandghanooni S, Eskandani M, Barar J, Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted therapy of miR- 21-inhibited ovarian cancer cells. Nanomedicine (Lond). 2018;13(21):2729-2758. doi: 10.2217/nnm-2018-0205

 

  1. Cai L, Xu G, Shi C, et al. Telodendrimer nanocarrier for Co-delivery of paclitaxel and cisplatin: A synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37:456-468. doi: 10.1016/j.biomaterials.2014.10.044

 

  1. Cruz A, Mota P, Ramos C, et al. Polyurea dendrimer folate-targeted nanodelivery of l- buthionine sulfoximine as a tool to tackle ovarian cancer chemoresistance. Antioxidants (Basel). 2020;9(2):133. doi: 10.3390/antiox9020133

 

  1. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J Nanobiotechnol. 2022;20(1):262. doi: 10.1186/s12951-022-01477-8

 

  1. Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors, a comprehensive review. Nanoscale Adv. 2024;6(16):4015-4046. doi: 10.1039/d4na00214h

 

  1. He W, Yang F, Chen K, Zeng Q. Targeted gold nanoparticles for ovarian cancer (review). Oncol Letter. 2024;28(6):589. doi: 10.3892/ol.2024.14723

 

  1. Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: A potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. Environ Sci Pollut Res Int. 2023;30(8):20168-20184. doi: 10.1007/s11356-022-23507-6

 

  1. Shen Y, Wang M, Wang H, Zhou J, Chen J. Multifunctional human serum albumin fusion protein as a docetaxel nanocarrier for chemo-photothermal synergetic therapy of ovarian cancer. ACS Appl Mater Interfaces. 2022;14(17):19907-19917. doi: 10.1021/acsami.2c03687

 

  1. Kumar D, Moghiseh M, Chitcholtan K, et al. LHRH conjugated gold nanoparticles assisted efficient ovarian cancer targeting evaluated via spectral photon-counting CT Imaging: A proof-of-concept research. J Mater Chem B. 2023;11(9):1916-1928. doi: 10.1039/d2tb02416k

 

  1. Piktel E, Ościłowska I, Suprewicz Ł, et al. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles. Int J Nanomedicine. 2021;9(16):1993-2011. doi: 10.2147/ijn.s277014

 

  1. Lee CS, Kim TW, Kang Y, et al. Targeted drug delivery nanocarriers based on hyaluronic acid-decorated dendrimer encapsulating gold nanoparticles for ovarian cancer therapy. Mater Today Chem. 2022;26:1010832022. doi: 10.1016/j.mtchem.2022.101083

 

  1. Hossen MN, Wang L, Dwivedi SKD, et al. Gold nanoparticles disrupt the IGFBP2/mTOR/PTEN axis to inhibit ovarian cancer growth. Adv Sci (Weinh). 2022;9(31):e2200491. doi: 10.1002/advs.202200491

 

  1. Luo D, Chinnathambi A, Alahmadi TA, Prabakaran DS, Zhang G. Preparation, characterization and investigation of the anti-human ovarian cancer activity of silver nanoparticles green-formulated by Salvia officinalis leaf aqueous extract. Arch Med Sci. 2022. doi: 10.5114/aoms/145111

 

  1. Abbasi S, İlhan A, Jabbari H, Javidzade P, Safari M, Zadeh FA. Cytotoxicity evaluation of synthesized silver nanoparticles by a green method against ovarian cancer cell lines. Nanomed Res J. 2022;7(2):156-164. doi: 10.22034/nmrj.2022.02.005

 

  1. Ramezani T, Nabiuni M, Baharara J, Parivar K, Namvar F. Sensitization of resistance ovarian cancer cells to cisplatin by biogenic synthesized silver nanoparticles through p53 activation. Iran J Pharm Res. 2019;18(1):222-231.

 

  1. Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: Combination therapy for effective cancer treatment. Int J Nanomedicine. 2017;12:6487-6502. doi: 10.2147/ijn.s135482

 

  1. Liu N, Lai L, Xu P, et al. Targeted ultrafine iron oxide nanoparticles for delivery of the topoisomerase inhibitor SN38 and ovarian cancer treatment. J Biomed Nanotechnol. 2022;18(7):1738-1745(8). doi: 10.1166/jbn.2022.3386

 

  1. Shahdeo D, Roberts A, Kesarwani V, et al. Polymeric biocompatible iron oxide nanoparticles labeled with peptides for imaging in ovarian cancer. Biosci Rep. 2022;42(2):BSR20212622. doi: 10.1042/bsr20212622

 

  1. Zhoua G, Youb Y, Wang B, Wang S, Liu J. Green synthesis of magnetic Fe3O4/Ag nanocomposite using pomegranate peel extract for the treatment of ovarian cancer. Arab J Chem. 2023;17(1):105394. doi: 10.1016/j.arabjc.2023.105394

 

  1. Huang Y, Lin J, Xiong Y, et al. Superparamagnetic iron oxide nanoparticles induce ferroptosis of human ovarian cancer stem cells by weakening cellular autophagy. J Biomed Nanotechnol. 2020;16(11):1612-1622. doi: 10.1166/jbn.2020.2991

 

  1. Iroegbu AOC, Teffo ML, Sadiku ER. Cancer therapy with engineered nanozymes: From molecular designto tumor-responsive catalysis. Nanomedicine (Lond). 2025;20(14):1799-1817. doi: 10.1080/17435889.2025.2520736

 

  1. Giri S, Karakoti A, Graham RP, et al. Nanoceria: A rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS One. 2013;8(1):e54578. doi: 10.1371/journal.pone.0054578

 

  1. Xubin Z, Shuaipeng F, Qingqing X, et al. Current advances in nanozyme -based nanodynamic therapies for cancer. Acta Biomater. 2025;191:1-128. doi: 10.1016/j.actbio.2024.11.023.

 

  1. Foglietta F, Macrì M, Panzanelli P, et al. Ultrasound boosts doxorubicin efficacy against sensitive and resistant ovarian cancer cells. Eur J Pharm Biopharm. 2023;183:119-131. doi: 10.1016/j.ejpb.2023.01.005

 

  1. Yue S, He Y, Wang M, et al. enhancement of sonodynamic treatment of ovarian cancer based on Pt-B-P ternary nanoparticles. Nanomedicine. 2023;51:102686. doi: 10.1016/j.nano.2023.102686

 

  1. Li J, Hu Z, Zhu J. Antitumor effects of pegylated zinc protoporphyrin-mediated sonodynamic therapy in ovarian cancer. Pharmaceutics. 2023;15(9):2275. doi: 10.3390/pharmaceutics15092275

 

  1. Cheng S, Luo Y, Zhang J, et al. The highly effective therapy of ovarian cancer by bismuth-doped oxygen-deficient BaTiO3 with enhanced sono- piezocatalytic effects. Chem Eng J. 2022;442(2021):136380. doi: 10.1016/j.cej.2022.136380

 

  1. Lee HR, Kim DW, Jones VO, et al. Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids. Adv Health Mater. 2021;10(13):e2001368. doi: 10.1002/adhm.202001368

 

  1. Zhou Y, Cao Z, Jiang L, et al. Magnetically actuated sonodynamic nanorobot collectives for potentiated ovarian cancer therapy. Front Bioeng Biotechnol. 2024;26(12):1374423. doi: 10.3389/fbioe.2024.1374423

 

  1. Iavazzo C, Fotiou A, Kokkali K, Vorgias G. Experience with J-plasma device in achieving complete cytoreduction in patients with ovarian cancer. Cancer Diagn Progn. 2023;3(3):392-397. doi: 10.21873/cdp.10230

 

  1. Bekeschus S, Wulf CP, Freund E, et al. Plasma treatment of ovarian cancer cells mitigates their immuno-modulatory products active on THP-1 monocytes. Plasma. 2018;1(1):201-217. doi: 10.3390/plasma1010018

 

  1. Harley JC, Suchowerska N, McKenzie DR. Cancer treatment with gas plasma and with gas plasma-activated liquid: Positives, potentials and problems of clinical translation. Biophys Rev. 2020;12(4):989-1006. doi: 10.1007/s12551-020-00743-z.

 

  1. Gitto SB, Ihewulezi CJN, Powell DJ Jr. Adoptive T cell therapy for ovarian cancer. Gynecol Oncol. 2024;186:77-84. doi: 10.1016/j.ygyno.2024.04.001

 

  1. Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene- modified T cells for ovarian cancer. Clin Cancer Res. 2006;12(20 Pt 1):6106-6115. doi: 10.1158/1078-0432.CCR-06-1183

 

  1. Basu S, Nadhan R, Dhanasekaran DN. Long non-coding RNAs in ovarian cancer: Mechanistic insights and clinical applications. Cancers (Basel). 2025;17(3):472. doi: 10.3390/cancers17030472

 

  1. Lubiński J, Lener MR, Marciniak W, et al. Serum essential elements and survival after cancer diagnosis. Nutrients. 2023;15(11):2611. doi: 10.3390/nu15112611
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing