Emerging immunomodulatory effects of CDK4/6 inhibitors in breast cancer therapy: A comprehensive review

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, initially developed to regulate cell cycle progression, have recently been recognized as potent immunomodulatory agents in cancer therapy. Accumulating evidence indicates that these inhibitors can modulate key immune cells, including T cells, natural killer cells, and macrophages, thereby enhancing their antitumor functions. By arresting cell cycle progression in both tumor and immune cells, CDK4/6 inhibitors create an immune-permissive microenvironment that facilitates more effective immune-mediated tumor eradication. In addition, these inhibitors may help overcome immune resistance mechanisms, providing a strong rationale for their combination with immune checkpoint inhibitors to amplify antitumor responses. Despite these promising findings, the specific mechanisms through which CDK4/6 inhibitors enhance immune responses, as well as their potential applications in breast cancer, remain areas of active investigation. A deeper understanding of their immunomodulatory effects is essential for developing novel combination therapies that could significantly improve the efficacy of cancer immunotherapy. This review synthesizes the latest evidence on the immunomodulatory effects of CDK4/6 inhibitors, highlighting their potential to augment antitumor immunity and exploring future directions for their clinical application.
- George MA, Qureshi S, Omene C, Toppmeyer DL, Ganesan S. Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol. 2021;11:693104. doi: 10.3389/fonc.2021.693104
- Schettini F, De Santo I, Rea CG, et al. CDK 4/6 inhibitors as single agent in advanced solid tumors. Front Oncol. 2018;8:608. doi: 10.3389/fonc.2018.00608
- Ye M, Xu H, Ding J, Jiang L. Therapy for hormone receptor-positive, human epidermal growth receptor 2-negative metastatic breast cancer following treatment progression via CDK4/6 inhibitors: A literature review. Breast Cancer (Dove Med Press). 2024;16:181-197. doi: 10.2147/BCTT.S438366
- Iranzo P, Callejo A, Assaf JD, et al. Overview of checkpoint inhibitors mechanism of action: Role of immune-related adverse events and their treatment on progression of underlying cancer. Front Med (Lausanne). 2022;9:875974. doi: 10.3389/fmed.2022.875974
- Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune checkpoint inhibitors in cancer therapy. Current Oncol. 2022;29(5):3044-3060. doi: 10.3390/curroncol29050247
- Nunes Filho P, Albuquerque C, Pilon Capella M, Debiasi M. Immune checkpoint inhibitors in breast cancer: A narrative review. Oncol Ther. 2023;11(2):171-183. doi: 10.1007/s40487-023-00224-9
- Scirocchi F, Scagnoli S, Botticelli A, et al. Immune effects of CDK4/6 inhibitors in patients with HR+/HER2- metastatic breast cancer: Relief from immunosuppression is associated with clinical response. EBioMedicine. 2022;79:104010. doi: 10.1016/j.ebiom.2022.104010
- Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471-475. doi: 10.1038/nature23465
- Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: Towards the next phase. Cell Cycle. 2018;17(15):1871-1885. doi: 10.1080/15384101.2018.1502567
- Stanciu IM, Parosanu AI, Orlov-Slavu C, et al. Mechanisms of resistance to CDK4/6 inhibitors and predictive biomarkers of response in HR+/HER2-metastatic breast cancer-a review of the literature. Diagnostics (Basel). 2023;13(5):987. doi: 10.3390/diagnostics13050987
- Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6inhibition in cancer: Beyond cell cycle arrest. Trends Cell Biol. 2018;28(11):911-925. doi: 10.1016/j.tcb.2018.07.002
- Hendrychova D, Jorda R, Krystof V. How selective are clinical CDK4/6 inhibitors? Med Res Rev. 2021;41(3):1578-1598. doi: 10.1002/med.21769
- Pandey K, An HJ, Kim SK, et al. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: A review. Int J Cancer. 2019;145(5):1179-1188. doi: 10.1002/ijc.32020
- Mouron S, Bueno MJ, Munoz M, et al. p27Kip1 V109G as a biomarker for CDK4/6 inhibitors indication in hormone receptor-positive breast cancer. JNCI Cancer Spectr. 2023;7(2):pkad014. doi: 10.1093/jncics/pkad014
- Hafner M, Mills CE, Subramanian K, et al. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem Biol. 2019;26(8):1067-1080.e8. doi: 10.1016/j.chembiol.2019.05.005
- Zhang Y, Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 2020;1248:201-226. doi: 10.1007/978-981-15-3266-5_9
- Han Y, Liu D, Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 2020;10(3):727-742.
- Hossen MM, Ma Y, Yin Z, et al. Current understanding of CTLA-4: From mechanism to autoimmune diseases. Frontiers in Immunol. 2023;14:1198365. doi: 10.3389/fimmu.2023.1198365
- Rosskopf S, Leitner J, Zlabinger GJ, Steinberger P. CTLA-4 antibody ipilimumab negatively affects CD4+ T-cell responses in vitro. Cancer Immunol Immunother. 2019;68(8):1359-1368. doi: 10.1007/s00262-019-02369-x
- Deng J, Wang ES, Jenkins RW, et al. CDK4/6 inhibition augments antitumor immunity by enhancing t-cell activation. Cancer Discov. 2018;8(2):216-233. doi: 10.1158/2159-8290.CD-17-0915
- Tong J, Tan X, Song X, et al. CDK4/6 inhibition suppresses p73 phosphorylation and activates DR5 to potentiate chemotherapy and immune checkpoint blockade. Cancer Res. 2022;82(7):1340-1352. doi: 10.1158/0008-5472.CAN-21-3062
- Wang L, Wu Y, Kang K, et al. CDK4/6 inhibitor abemaciclib combined with low-dose radiotherapy enhances the anti-tumor immune response to PD-1 blockade by inflaming the tumor microenvironment in Rb-deficient small cell lung cancer. Transl Lung Cancer Res. 2024;13(5):1032-1046. doi: 10.21037/tlcr-24-33
- Li W, Guo F, Zeng R, et al. CDK4/6 alters TBK1 phosphorylation to inhibit the STING signaling pathway in prostate cancer. Cancer Res. 2024;84(16):2588-2606. doi: 10.1158/0008-5472.CAN-23-3704
- Zhou C, Zhao S, Zhang Y, Cheng J, Shi J, Du G. Mesoporous polydopamine targeting CDK4/6 inhibitor toward brilliant synergistic immunotherapy of breast cancer. Small. 2024;20(30):e2310565. doi: 10.1002/smll.202310565
- Uzhachenko RV, Bharti V, Ouyang Z, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors. Cell Rep. 2021;35(12):109271. doi: 10.1016/j.celrep.2021.109271
- Wang Q, Guldner IH, Golomb SM, et al. Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer. Nature Commun. 2019;10(1):3817. doi: 10.1038/s41467-019-11729-1
- Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 2018;22(11):2978-2994. doi: 10.1016/j.celrep.2018.02.053
- Xiao J, Liang J, Fan J, et al. CDK4/6 inhibition enhances oncolytic virus efficacy by potentiating tumor-selective cell killing and T-cell activation in refractory glioblastoma. Cancer Res. 2022;82(18):3359-3374. doi: 10.1158/0008-5472.CAN-21-3656
- Wu J, Wang J, O’Connor TN, et al. Separable cell cycle arrest and immune response elicited through pharmacological CDK4/6 and MEK inhibition in RAsmut disease models. Mol Cancer Ther. 2024;23(12):1801-1814. doi: 10.1158/1535-7163.MCT-24-0369
- Zhang Y, Lian Y, Zhou C, et al. Self-assembled natural triterpenoids for the delivery of cyclin-dependent kinase 4/6 inhibitors to enhance cancer chemoimmunotherapy. J Control Release. 2025;378:791-802. doi: 10.1016/j.jconrel.2024.12.067
- Lelliott EJ, Kong IY, Zethoven M, et al. CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. Cancer Discov. 2021;11(10):2582-2601. doi: 10.1158/2159-8290.CD-20-1554
- Yang WC, Wei MF, Huang CS, Shen YC, Kuo SH. Synergistic potential of CDK4/6 inhibitors and radiotherapy with Anti- PD-L1 immunotherapy in triple-negative breast cancer. Int J Radiat Oncol Biol Phys. 2024;120(2 Suppl):S46. doi: 10.1016/j.ijrobp.2024.07.071
- Zhang QF, Li J, Jiang K, et al. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner. Theranostics. 2020;10(23):10619-10633. doi: 10.7150/thno.44871
- Heckler M, Ali LR, Clancy-Thompson E, et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discov. 2021;11(10):2564-2581. doi: 10.1158/2159-8290.CD-20-1540
- Teh JLF, Erkes DA, Cheng PF, et al. Activation of CD8+ T cells contributes to antitumor effects of CDK4/6 inhibitors plus MEK inhibitors. Cancer Immunol Res. 2020;8(9):1114-1121. doi: 10.1158/2326-6066.CIR-19-0743
- Bai X, Guo ZQ, Zhang YP, et al. CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy. Nature Commun. 2023;14(1):1247. doi: 10.1038/s41467-023-36892-4
- Ruscetti M, Leibold J, Bott MJ, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362(6421):1416-1422. doi: 10.1126/science.aas9090
- Wu Y, Shrestha P, Heape NM, Yarchoan R. CDK4/6 inhibitors sensitize gammaherpesvirus-infected tumor cells to T-cell killing by enhancing expression of immune surface molecules. J Transl Med. 2022;20(1):217. doi: 10.1186/s12967-022-03400-z
- Lai AY, Sorrentino JA, Dragnev KH, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J Immunother Cancer. 2020;8(2):e000847. doi: 10.1136/jitc-2020-000847
- Salewski I, Henne J, Engster L, et al. CDK4/6 blockade provides an alternative approach for treatment of mismatch-repair deficient tumors. Oncoimmunology. 2022;11(1):2094583. doi: 10.1080/2162402X.2022.2094583
- Sun M, Dong L, Wang Y, et al. The role of targeting CDK4/6 in cancer immunotherapy. Holist Integr Oncol. 2024;3(1):32. doi: 10.1007/s44178-024-00100-0
- Zhang S, Xu Q, Sun W, Zhou J, Zhou J. Immunomodulatory effects of CDK4/6 inhibitors. Biochim Biophys Acta Rev Cancer. 2023;1878(4):188912. doi: 10.1016/j.bbcan.2023.188912
- Liu C, Huang Y, Cui Y, et al. The immunological role of CDK4/6 and potential mechanism exploration in ovarian cancer. Front Immunol. 2021;12:799171. doi: 10.3389/fimmu.2021.799171
- Lee DH, Imran M, Choi JH, et al. CDK4/6 inhibitors induce breast cancer senescence with enhanced anti-tumor immunogenic properties compared with DNA-damaging agents. Mol Oncol. 2024;18(1):216-232. doi: 10.1002/1878-0261.13541
- Pandey P, Khan F, Upadhyay TK, Sharangi AB. Deciphering the immunomodulatory role of cyclin-dependent kinase 4/6 inhibitors in the tumor microenvironment. Int J Mol Sci. 2023;24(3):2236. doi: 10.3390/ijms24032236
- Watt AC, Cejas P, DeCristo MJ, et al. CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nat Cancer. 2021;2(1):34-48. doi: 10.1038/s43018-020-00135-y
- Fan H, Liu W, Zeng Y, et al. DNA damage induced by CDK4 and CDK6 blockade triggers anti-tumor immune responses through cGAS-STING pathway. Commun Biol. 2023;6(1):1041. doi: 10.1038/s42003-023-05412-x
- Charles A, Bourne CM, Korontsvit T, et al. Low-dose CDK4/6 inhibitors induce presentation of pathway specific MHC ligands as potential targets for cancer immunotherapy. Oncoimmunology. 2021;10(1):1916243. doi: 10.1080/2162402X.2021.1916243
- Liu J, Cheng M, Xu J, Liang Y, Yin B, Liang J. Effect of CDK4/6 inhibitors on tumor immune microenvironment. Immunol Invest. 2024;53(3):437-449. doi: 10.1080/08820139.2024.2304565
- Stopfer LE, Mesfin JM, Joughin BA, Lauffenburger DA, White FM. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat Commun. 2020;11(1):2760. doi: 10.1038/s41467-020-16588-9
- Kumar A, Ramani V, Bharti V, et al. Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses. J Immunother Cancer. 2023;11(5):e006019. doi: 10.1136/jitc-2022-006019
- Kohlmeyer JL, Lingo JJ, Kaemmer CA, et al. CDK4/6- MEK inhibition in MPNSTs causes plasma cell infiltration, sensitization to PD-L1 blockade, and tumor regression. Clin Cancer Res. 2023;29(17):3484-3497. doi: 10.1158/1078-0432.CCR-23-0749
- Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell. 2016;30(2):359-360. doi: 10.1016/j.ccell.2016.07.003
- Huang Z, Zhao B, Qin Z, et al. Novel dual inhibitors targeting CDK4 and VEGFR2 synergistically suppressed cancer progression and angiogenesis. Eur J Med Chem. 2019;181:111541. doi: 10.1016/j.ejmech.2019.07.044
- Liu R, Li HF, Li S. PD-1-mediated inhibition of T cell activation: Mechanisms and strategies for cancer combination immunotherapy. Cell Insight. 2024;3(2):100146. doi: 10.1016/j.cellin.2024.100146
- Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553(7686):91-95. doi: 10.1038/nature25015
- Shrestha M, Wang DY, Ben-David Y, Zacksenhaus E. CDK4/6 inhibitors and the pRB-E2F1 axis suppress PVR and PD-L1 expression in triple-negative breast cancer. Oncogenesis. 2023;12(1):29. doi: 10.1038/s41389-023-00475-1
- Palicelli A, Croci S, Bisagni A, et al. What do we have to know about PD-L1 expression in prostate cancer? A systematic literature review. Part 4: Experimental treatments in pre-clinical studies (cell lines and mouse models). Int J Mol Sci. 2021;22(22):12297. doi: 10.3390/ijms222212297
- Jerusalem G, Prat A, Salgado R, et al. Neoadjuvant nivolumab + palbociclib + anastrozole for oestrogen receptor-positive/human epidermal growth factor receptor 2-negative primary breast cancer: Results from checkMate 7A8. Breast. 2023;72:103580. doi: 10.1016/j.breast.2023.103580
- Rugo HS, Kabos P, Beck JT, et al. Abemaciclib in combination with pembrolizumab for HR+, HER2- metastatic breast cancer: Phase 1b study. NPJ Breast Cancer. 2022;8(1):118. doi: 10.1038/s41523-022-00482-2
- Yuan Y, Lee JS, Yost SE, et al. Phase I/II trial of palbociclib, pembrolizumab and letrozole in patients with hormone receptor-positive metastatic breast cancer. Eur J Cancer. 2021;154:11-20. doi: 10.1016/j.ejca.2021.05.035
- Santa-Maria C, Wang C, Cimino-Mathews A, et al. Abstract OT3-02-03: IMMUNe mOdulation in early stage estrogen receptor positive breast cancer treated with neoADjuvant avelumab, palbociclib, and tamoxifen: The immunoADAPT study (NCT03573648). Cancer Res. 2019;79(4 Suppl):OT3-02-03. doi: 10.1158/1538-7445.SABCS18-OT3-02-03
- Zavras P, Chen R, Qi H, et al. Abstract PO1-01-09: Neoadjuvant endocrine therapy and avelumab with or without palbociclib in stage II/III endocrine receptor-positive breast cancer: The immunoADAPT trial. Cancer Res. 2024;84(9 Suppl):PO1-01-09. doi: 10.1158/1538-7445.SABCS23-PO1-01-09
- Garrido-Castro AC, Graham N, Ali LR, et al. Phase I study of ribociclib (CDK4/6 inhibitor) with spartalizumab (PD-1 inhibitor) with and without fulvestrant in metastatic hormone receptor-positive breast cancer or advanced ovarian cancer. J Immunother Cancer. 2025;13(2):e010430. doi: 10.1136/jitc-2024-010430
- Masuda J, Sakai H, Tsurutani J, et al. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: A phase II study (WJOG11418B NEWFLAME trial). J Immunother Cancer. 2023;11(9):e007126. doi: 10.1136/jitc-2023-007126
- Mayer EL, Ren Y, Wagle N, et al. PACE: A randomized phase II study of fulvestrant, palbociclib, and avelumab after progression on cyclin-dependent kinase 4/6 inhibitor and aromatase inhibitor for hormone receptor-positive/human epidermal growth factor receptor-negative metastatic breast cancer. J Clin Oncol. 2024;42(17):2050-2060. doi: 10.1200/JCO.23.01940
- Kearney MR, McGuinness JE, Kalinsky K. Clinical trial data and emerging immunotherapeutic strategies: Hormone receptor-positive, HER2- negative breast cancer. Breast Cancer Res Treat. 2021;189(1):1-13. doi: 10.1007/s10549-021-06291-8
- Lelliott EJ, Sheppard KE, McArthur GA. Harnessing the immunotherapeutic potential of CDK4/6 inhibitors in melanoma: Is timing everything? NPJ Precis Oncol. 2022;6(1):26. doi: 10.1038/s41698-022-00273-9
- Xue Y, Zhai J. Strategy of combining CDK4/6 inhibitors with other therapies and mechanisms of resistance. Int J Clin Exp Pathol. 2024;17(7):189-207. doi: 10.62347/HGNI4903
- Shim SH, Lee JY, Lee YY, et al. Major clinical research advances in gynecologic cancer in 2023: A tumultuous year for endometrial cancer. J Gynecol Oncol. 2024;35(2):e66. doi: 10.3802/jgo.2024.35.e66
- Wang Y, Liu L, Graff SL, Cheng L. Recent advancements in biomarkers and molecular diagnostics in hormonal receptor-positive breast cancer. Histopathology. 2024;87:3-17. doi: 10.1111/his.15395
- Finn RS, Boer K, Bondarenko I, et al. Overall survival results from the randomized phase 2 study of palbociclib in combination with letrozole versus letrozole alone for first-line treatment of ER+/HER2- advanced breast cancer (PALOMA-1, TRIO-18). Breast Cancer Res Treat. 2020;183(2):419-428. doi: 10.1007/s10549-020-05755-7
- Im SA, Mukai H, Park IH, et al. Palbociclib plus letrozole as first-line therapy in postmenopausal Asian women with metastatic breast cancer: Results from the phase III, randomized PALOMA-2 study. J Glob Oncol. 2019;5:1-19. doi: 10.1200/JGO.18.00173
- Cristofanilli M, Rugo HS, Im SA, et al. Overall survival with palbociclib and fulvestrant in women with HR+/ HER2- ABC: Updated exploratory analyses of PALOMA-3, a double-blind, phase III randomized study. Clin Cancer Res. 2022;28(16):3433-3442. doi: 10.1158/1078-0432.CCR-22-0305
- Jhaveri K, O’Shaughnessy J, Fasching PA, et al. Matching-adjusted indirect comparison of PFS and OS comparing ribociclib plus letrozole versus palbociclib plus letrozole as first-line treatment of HR+/HER2- advanced breast cancer. Ther Adv Med Oncol. 2023;15:103580. doi: 10.1177/17588359231216095
- Slamon DJ, Neven P, Chia S, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;36(24):2465-2472. doi: 10.1200/JCO.2018.78.9909
- Lu YS, Im SA, Colleoni M, et al. Updated overall survival of ribociclib plus endocrine therapy versus endocrine therapy alone in pre- and perimenopausal patients with HR+/HER2- advanced breast cancer in MONALEESA-7: A phase III randomized clinical trial. Clin Cancer Res. 2022;28(5):851-859. doi: 10.1158/1078-0432.CCR-21-3032
- Johnston S, Martin M, Di Leo A, et al. MONARCH 3 final PFS: A randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer. 2019;5:5. doi: 10.1038/s41523-018-0097-z
- Sledge GW Jr., Toi M, Neven P, et al. MONARCH 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875-2884. doi: 10.1200/JCO.2017.73.7585
- Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol. 2024;16:17588359241282499. doi: 10.1177/17588359241282499
- Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution - a game-changing era for breast cancer treatment. Nat Rev Clin Oncol. 2024;21(2):89-105. doi: 10.1038/s41571-023-00840-4
- Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 inhibitors: The mechanism of action may not be as simple as once thought. Cancer Cell. 2018;34(1):9-20. doi: 10.1016/j.ccell.2018.03.023
- Teh JLF, Aplin AE. Arrested developments: CDK4/6 Inhibitor resistance and alterations in the tumor immune microenvironment. Clin Cancer Res. 2019;25(3):921-927. doi: 10.1158/1078-0432.CCR-18-1967
- De Angelis C, Fu X, Cataldo ML, et al. Activation of the IFN signaling pathway is associated with resistance to CDK4/6 inhibitors and immune checkpoint activation in ER-positive breast cancer. Clin Cancer Res. 2021;27(17):4870-4882. doi: 10.1158/1078-0432.CCR-19-4191
- Sammons S, Moore H, Cushman J, Hamilton E. Efficacy, safety and toxicity management of adjuvant abemaciclib in early stage HR+/HER2- high-risk breast cancer. Expert Rev Anticancer Ther. 2022;22(8):805-814. doi: 10.1080/14737140.2022.2093719
- Nabieva N, Fasching PA. CDK4/6 inhibitors-overcoming endocrine resistance is the standard in patients with hormone receptor-positive breast cancer. Cancers(Basel). 2023;15(6):1763. doi: 10.3390/cancers15061763
- Zhao S, Zhang H, Yang N, Yang J. A narrative review about CDK4/6 inhibitors in the setting of drug resistance: Updates on biomarkers and therapeutic strategies in breast cancer. Transl Cancer Res. 2023;12(6):1617-1634. doi: 10.21037/tcr-22-2807
- Dall’Acqua A, Bartoletti M, Masoudi-Khoram N, et al. Inhibition of CDK4/6 as therapeutic approach for ovarian cancer patients: Current evidences and future perspectives. Cancers (Basel). 2021;13(12):3035. doi: 10.3390/cancers13123035
- Lelliott EJ, McArthur GA, Oliaro J, Sheppard KE. Immunomodulatory effects of BRAF, MEK, and CDK4/6 inhibitors: Implications for combining targeted therapy and immune checkpoint blockade for the treatment of melanoma. Front Immunol. 2021;12:661737. doi: 10.3389/fimmu.2021.661737
- Himoto T, Masaki T. Current trends on the involvement of zinc, copper, and selenium in the process of hepatocarcinogenesis. Nutrients. 2024;16(4):472. doi: 10.3390/nu16040472
- Lubinski J, Lener MR, Marciniak W, et al. Serum essential elements and survival after cancer diagnosis. Nutrients. 2023;15(11):2611. doi: 10.3390/nu15112611
- Ohl K, Tenbrock K. Oxidative stress in SLE T cells, is NRF2 really the target to treat? Front Immunol. 2021;12:633845. doi: 10.3389/fimmu.2021.633845
- Kim B, Kim HY, Lee WW. Zap70 regulates TCR-mediated zip6 activation at the immunological synapse. Front Immunol. 2021;12:687367. doi: 10.3389/fimmu.2021.687367
- George MM, Subramanian Vignesh K, Landero Figueroa JA, Caruso JA, Deepe GS Jr. Zinc induces dendritic cell tolerogenic phenotype and skews regulatory T cell-Th17 balance. J Immunol. 2016;197(5):1864-1876. doi: 10.4049/jimmunol.1600410
- LeVee AA, Egelston CA, Yost SE, et al. A phase I/II trial of palbociclib, pembrolizumab, and endocrine therapy for patients with HR+/HER2- locally advanced or metastatic breast cancer (MBC): Clinical outcomes and stool microbial profiling. J Clin Oncol. 2024;42(16 Suppl):1038-1038. doi: 10.1200/JCO.2024.42.16_suppl.1038