AccScience Publishing / TD / Online First / DOI: 10.36922/TD025180030
ORIGINAL RESEARCH ARTICLE

Integration of habitat and peritumoral radiomics for predicting esophagotracheal fistula in esophageal cancer patients post-radiotherapy

Zhuomiao Ye1,2 Fei Xie3 Longbin Zhang4 YiQing Zhao5 Chao Deng3* Mingzhu Yin1,2*
Show Less
1 Clinical Research Center, Medical Pathology Center, Cancer Early Detection and Treatment Center and Translational Medicine Research Center, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
2 School of Medicine Chongqing University, Chongqing University, Shapingba, Chongqing, China
3 Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
4 Cancer Center, Chongqing University Three Gorges Hospital, Chongqing, China
5 Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
Tumor Discovery, 025180030 https://doi.org/10.36922/TD025180030
Received: 28 April 2025 | Revised: 23 May 2025 | Accepted: 30 May 2025 | Published online: 30 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Esophageal cancer is a prevalent and lethal malignancy, particularly in Asian countries. Esophagotracheal fistula (ETF) is a severe complication that significantly impacts patient survival and quality of life. This study aims to develop a radiomics model based on habitat and peritumoral analysis to predict ETF occurrence in esophageal cancer patients following radiotherapy. We conducted a retrospective study involving 120 esophageal cancer patients treated between January 2018 and December 2022. We utilized computed tomography imaging data to perform habitat and peritumoral radiomics analyses. The study cohort was divided into a training set (n = 84) and a validation set (n = 36). Models were constructed using machine learning algorithms, and their performance was evaluated using the area under the receiver operating characteristic curve area under the curve (AUC), calibration curves, and decision curve analysis. The habitat-based radiomics model achieved superior predictive performance with an AUC of 0.831 in the test cohort, outperforming conventional radiomics and clinical models. The integration of habitat features, peritumoral radiomics, and clinical risk factors resulted in a comprehensive model with excellent discriminatory ability and calibration. Habitat analysis revealed distinct subregions within tumors, with specific habitats correlating strongly with ETF development. Our study demonstrates the potential of habitat and peritumoral radiomics in predicting ETF in esophageal cancer patients undergoing radiotherapy. The developed Combined model, integrating advanced radiomics features and clinical factors, provides a promising tool for individualized risk stratification and treatment planning. Future research should focus on prospective validation and the incorporation of multimodal imaging to enhance predictive accuracy.

Keywords
Esophageal cancer
Radiomics
Esophagotracheal fistula
Habitat analysis
Peritumoral radiomics
Funding
This work was supported in part by the Chongqing Wanzhou Municipal Science and Health Joint Medical Research Project (Grant no.: wzstc-kw2023035).
Conflict of interest
Mingzhu Yin is the Editor-in-Chief of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Watanabe M, Toh Y, Ishihara R, et al. Comprehensive registry of esophageal cancer in Japan, 2015. Esophagus. 2023;20(1):1-28. doi: 10.1007/s10388-022-00950-5

 

  1. Kumagai S, Koyama S, Shitara K. Precise patient stratification in esophageal cancer: Biomarkers for immunochemotherapy. Cancer Cell. 2023;41(7):1199-1201. doi: 10.1016/j.ccell.2023.06.004

 

  1. Yoshinami Y, Nishimura E, Hosokai T, et al. Rare malignant neoplasm of the esophagus: Current status and future perspectives. Jpn J Clin Oncol. 2024;54(2):111-120. doi: 10.1093/jjco/hyad144

 

  1. Xu YH, Lu P, Gao MC, Wang R, Li YY, Song JX. Progress of magnetic resonance imaging radiomics in preoperative lymph node diagnosis of esophageal cancer. World J Radiol. 2023;15(7):216-225. doi: 10.4329/wjr.v15.i7.216

 

  1. Jha AK, Mithun S, Sherkhane UB, et al. Emerging role of quantitative imaging (radiomics) and artificial intelligence in precision oncology. Explor Target Antitumor Ther. 2023;4(4):569-582. doi: 10.37349/etat.2023.00153

 

  1. Puttanawarut C, Sirirutbunkajorn N, Tawong N, et al. Radiomic and dosiomic features for the prediction of radiation pneumonitis across esophageal cancer and lung cancer. Front Oncol. 2022;12:768152. doi: 10.3389/fonc.2022.768152

 

  1. Constanzo J, Wei L, Tseng HH, El Naga I. Radiomics in precision medicine for lung cancer. Transl Lung Cancer Res. 2017;6(6):635-647. doi: 10.21037/tlcr.2017.09.07

 

  1. Zhu C, Liu J, Ke M, Yong Y, Luo B, Feng G. Hybrid stent in management of malignant airway obstruction with carina esophageal fistula: A case report. Medicine (Baltimore). 2023;102(14):e33405. doi: 10.1097/MD.0000000000033405

 

  1. Rieder F, Fiocchi C. Mechanisms of tissue remodeling in inflammatory bowel disease. Dig Dis. 2013;31(2):186-193. doi: 10.1159/000353364

 

  1. Liu JZ, Zhong YS, Xu MD, Chen WF, Zhou PH, Yao LQ. [Membrane-covered self-expanding stents in the treatment of high-positioned esophageal stenosis or fistula]. Zhonghua Wei Chang Wai Ke Za Zhi. 2013;16(12):1146-1150.

 

  1. Brunner S, Bruns CJ, Schroder W. [Esophagotracheal and esophagobronchial fistulas]. Chirurg. 2021;92(6):577-588. doi: 10.1007/s00104-021-01370-4

 

  1. Nagore-Ancona JF, Acosta-Martinez A, Gonzalez-Luna JA, Martin-Perez JA, Sanchez-Baltazar AL, Perna-Lozada L. Surgical approach for iatrogenic tracheoesophageal fistula. Case report and literature review. Cir Cir. 2021;89(6): 811-817. doi: 10.24875/ciru.20000730

 

  1. Amin MB, Greene FL, Edge SB, et al. AJCC Cancer Staging Manual. 8th ed. Berlin: Springer; 2017.

 

  1. Yuan J, Wu M, Qiu L, et al. Tumor habitat-based MRI features assessing early response in locally advanced nasopharyngeal carcinoma. Oral Oncol. 2024;158:106980. doi: 10.1016/j.oraloncology.2024.106980

 

  1. Bi Q, Miao K, Xu N, et al. Habitat radiomics based on MRI for predicting platinum resistance in patients with high-grade serous ovarian carcinoma: A multicenter study. Acad Radiol. 2024;31(6):2367-2380. doi: 10.1016/j.acra.2023.11.038

 

  1. Wu J, Meng H, Zhou L, et al. Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: A multicenter study. Sci Rep. 2024;14(1):15877. doi: 10.1038/s41598-024-66751-1

 

  1. Huang H, Chen H, Zheng D, et al. Habitat-based radiomics analysis for evaluating immediate response in colorectal cancer lung metastases treated by radiofrequency ablation. Cancer Imaging. 2024;24(1):44. doi: 10.1186/s40644-024-00692-w

 

  1. Liu Y, Li Z, Xiong H, Gao X, Wu J, Wu S. Understanding and enhancement of internal clustering validation measures. IEEE Trans Cybern. 2013;43(3):982-994. doi: 10.1109/tsmcb.2012.2220543

 

  1. Hurtgen M, Herber SC. Treatment of malignant tracheoesophageal fistula. Thorac Surg Clin. 2014;24(1):117-127. doi: 10.1016/j.thorsurg.2013.09.006

 

  1. Abelson JA, Murphy JD, Loo BW Jr., et al. Esophageal tolerance to high-dose stereotactic ablative radiotherapy. Dis Esophagus. 2012;25(7):623-629. doi: 10.1111/j.1442-2050.2011.01295.x

 

  1. Balazs A, Kupcsulik PK, Galambos Z. Esophagorespiratory fistulas of tumorous origin. Non-operative management of 264 cases in a 20-year period. Eur J Cardiothorac Surg. 2008;34(5):1103-1107. doi: 10.1016/j.ejcts.2008.06.025

 

  1. Noronha V, Joshi A, Patil VM, et al. Efficacy and safety of induction chemotherapy in esophageal cancer with airway involvement. J Gastrointest Cancer. 2016;47(3):294-304. doi: 10.1007/s12029-016-9830-8

 

  1. Wang H, Zhang L, Liu W. Tracheoesophageal fistula caused by successful response to pembrolizumab in a patient with squamous cell lung cancer. J Thorac Oncol. 2019;14(7):e141-e143. doi: 10.1016/j.jtho.2019.02.013

 

  1. Jeong SY, Park JE, Kim N, Kim HS. Hypovascular cellular tumor in primary central nervous system lymphoma is associated with treatment resistance: Tumor habitat analysis using physiologic MRI. AJNR Am J Neuroradiol. 2022;43(1):40-47. doi: 10.3174/ajnr.A7351

 

  1. Napel S, Mu W, Jardim-Perassi BV, Aerts HJ, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer. 2018;124(24):4633-4649. doi: 10.1002/cncr.31630

 

  1. Caii W, Wu X, Guo K, Chen Y, Shi Y, Chen J. Integration of deep learning and habitat radiomics for predicting the response to immunotherapy in NSCLC patients. Cancer Immunol Immunother. 2024;73(8):153. doi: 10.1007/s00262-024-03724-3

 

  1. Yuda Handaya A, Anwar SL, Fauzi AR, Werdana VA. Sweat gland tumor microenvironment. Adv Exp Med Biol. 2020;1296:259-274. doi: 10.1007/978-3-030-59038-3_16

 

  1. Huang YC, Huang SM, Yeh JH, et al. Utility of CT radiomics and delta radiomics for survival evaluation in locally advanced nasopharyngeal carcinoma with concurrent chemoradiotherapy. Diagnostics (Basel). 2024;14(9):941. doi: 10.3390/diagnostics14090941

 

  1. Webb EM, Elicker BM, Webb WR. Using CT to diagnose nonneoplastic tracheal abnormalities: Appearance of the tracheal wall. AJR Am J Roentgenol. 2000;174(5):1315-1321. doi: 10.2214/ajr.174.5.1741315

 

  1. Berkovich GY, Levine MS, Miller WT Jr. CT findings in patients with esophagitis. AJR Am J Roentgenol. 2000;175(5):1431-1434. doi: 10.2214/ajr.175.5.1751431

 

  1. Xia F, Mao J, Ding J, Yang H. Observation of normal appearance and wall thickness of esophagus on CT images. Eur J Radiol. 2009;72(3):406-411. doi: 10.1016/j.ejrad.2008.09.002

 

  1. Ger RB, Wei L, Naqa IE, Wang J. The promise and future of radiomics for personalized radiotherapy dosing and adaptation. Semin Radiat Oncol. 2023;33(3):252-261. doi: 10.1016/j.semradonc.2023.03.003

 

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing