AccScience Publishing / TD / Online First / DOI: 10.36922/td.7108
REVIEW ARTICLE

The role of melanoma-derived exosomes in metastasis: Challenges and opportunities

Manting Luo1 Huirong Hong2 Yufan Yang3 Ziyuan Liu4 Zhiheng Zhou1 Tao Ren5 Guofen Chen6 Jun Xiao1 Bohong Cen3* Jian Wang1* Jianlong Li1*
Show Less
1 Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
2 The First Clinical Medical College, Southern Medical University, Guangzhou, China
3 Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
4 Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
5 Department of Orthopedic, Zengcheng Courtyard of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
6 Division of Orthopedics and Traumatology, Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
Tumor Discovery, 7108 https://doi.org/10.36922/td.7108
Submitted: 8 December 2024 | Revised: 23 February 2025 | Accepted: 27 February 2025 | Published: 3 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Melanoma, a highly aggressive skin cancer, is characterized by its strong metastatic potential and resistance to standard treatments. Recent cancer research has emphasized the significance of exosomes, a type of extracellular vesicle and particle, in mediating cell-to-cell communication and driving tumor progression. Melanoma-derived exosomes contribute to metastasis by facilitating immune evasion, modulating the tumor microenvironment, and inducing epithelial-to-mesenchymal transition. The exosomal cargos, including nucleic acids (DNA, microRNA, long noncoding RNA, and circular RNA), proteins, lipids, and other biomolecules, play critical roles in reprogramming recipient cells to support tumor growth and spread. These exosomes also aid in forming pre-metastatic niches by transferring pro-inflammatory cytokines, extracellular matrix remodeling enzymes, and angiogenic factors to distant organs, preparing these sites for tumor colonization. Furthermore, tumor-derived exosomes promote therapy resistance by delivering drug-resistant molecular signatures, which diminish treatment efficacy. This emerging evidence highlights the therapeutic potential of exosome-based strategies, including inhibitors of exosome biogenesis and uptake or the use of engineered exosomes for targeted drug delivery. Advances in precision medicine also facilitate the use of exosome-derived molecular signatures in early-stage diagnosis and treatment monitoring through liquid biopsy. However, clinical translation remains challenging due to cargo heterogeneity, lack of standardized isolation methods, and potential off-target effects in exosome-based therapies. Addressing these challenges could lead to more effective therapies and better patient outcomes. This review synthesizes current knowledge on the biogenesis, composition, and functional roles of tumor-derived exosomes in metastasis, alongside their potential applications as biomarkers and therapeutic strategies. Deciphering exosomal dynamics in melanoma may open new avenues for advanced diagnostics and treatments.

Keywords
Melanoma
Exosome
Metastasis
Funding
The authors gratefully acknowledge financial support from the GuangDong Basic and Applied Basic Research Foundation (2024A1515030050) and the Presidential Foundation of Nanfang Hospital, Southern Medical University (2023A031).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet. 2023;402:485-502. doi: 10.1016/s0140-6736(23)00821-8

 

  1. Davey MG, Miller N, McInerney NM. A review of epidemiology and cancer biology of malignant melanoma. Cureus. 2021;13:e15087. doi: 10.7759/cureus.15087

 

  1. Waseh S, Lee JB. Advances in melanoma: Epidemiology, diagnosis, and prognosis. Front Med. 2023;10:1268479. doi: 10.3389/fmed.2023.1268479

 

  1. Elder DE, Bastian BC, Cree IA, Massi D, Scolyer RA. The 2018 World Health organization classification of cutaneous, mucosal, and uveal melanoma: Detailed analysis of 9 distinct subtypes defined by their evolutionary pathway. Arch Pathol Lab Med. 2020;144:500-522. doi: 10.5858/arpa.2019-0561-RA

 

  1. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20:1366-1379. doi: 10.1080/15384047.2019.1640032

 

  1. Xiao D, Barry S, Kmetz D, et al. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 2016;376:318-327. doi: 10.1016/j.canlet.2016.03.050

 

  1. Chen Y, Fang Y, Li L, Luo H, Cao T, Tu B. Exosomal miR-22-3p from mesenchymal stem cells inhibits the epithelial-mesenchymal transition (EMT) of melanoma cells by regulating LGALS1. Front Biosci (Landmark Ed). 2022;27:275. doi: 10.31083/j.fbl2709275

 

  1. Tsering T, Laskaris A, Abdouh M, et al. Uveal melanoma-derived extracellular vesicles display transforming potential and carry protein cargo involved in metastatic niche preparation. Cancers (Basel). 2020;12:2923. doi: 10.3390/cancers12102923

 

  1. Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Fut Sci OA. 2020;6:FSO465. doi: 10.2144/fsoa-2019-0116

 

  1. Sabag N, Yakobson A, Retchkiman M, Silberstein E. Novel biomarkers and therapeutic targets for melanoma. Int J Mol Sci. 2022;23:11656. doi: 10.3390/ijms231911656

 

  1. Reschke R, Enk AH, Hassel JC. Chemokines and cytokines in immunotherapy of melanoma and other tumors: From biomarkers to therapeutic targets. Int J Mol Sci. 2024;25:6532. doi: 10.3390/ijms25126532

 

  1. Panda SS, Sahoo RK, Patra SK, Biswal S, Biswal BK. Molecular insights to therapeutic in cancer: Role of exosomes in tumor microenvironment, metastatic progression and drug resistance. Drug Discov Today. 2024;29:104061. doi: 10.1016/j.drudis.2024.104061

 

  1. Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883-891. doi: 10.1038/nm.2753

 

  1. Damsky WE, Rosenbaum LE, Bosenberg M. Decoding melanoma metastasis. Cancers (Basel). 2011;3:126-163. doi: 10.3390/cancers3010126

 

  1. Yoo H, Kim H, Kwon ST, et al. Tumor invasion in the hyponychium is associated with distant metastasis and poor prognosis in subungual melanoma: A histologic landscape of 44 cases. J Am Acad Dermatol. 2022;86:1027-1034. doi: 10.1016/j.jaad.2021.06.847

 

  1. Boutros A, Croce E, Ferrari M, et al. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol. 2024;196:104276. doi: 10.1016/j.critrevonc.2024.104276

 

  1. Lepletier A, Madore J, O’Donnell JS, et al. Tumor CD155 expression is associated with resistance to anti-PD1 immunotherapy in metastatic melanoma. Clin Cancer Res. 2020;26:3671-3681. doi: 10.1158/1078-0432.Ccr-19-3925

 

  1. Corrales E, Levit-Zerdoun E, Metzger P, et al. PI3K/AKT signaling allows for MAPK/ERK pathway independency mediating dedifferentiation-driven treatment resistance in melanoma. Cell Commun Signal. 2022;20:187. doi: 10.1186/s12964-022-00989-y

 

  1. Tang X, Rao J, Yin S, et al. PD-L1 knockdown via hybrid micelle promotes paclitaxel induced cancer-immunity cycle for melanoma treatment. Eur J Pharm Sci. 2019;127:161-174. doi: 10.1016/j.ejps.2018.10.021

 

  1. Hoshino A, Kim HS, Bojmar L, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182:1044-1061.e1018. doi: 10.1016/j.cell.2020.07.009

 

  1. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: Communication from a distance. Dev Cell. 2019;49:347-360. doi: 10.1016/j.devcel.2019.04.011

 

  1. Rodrigues G, Hoshino A, Kenific CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019;21:1403-1412. doi: 10.1038/s41556-019-0404-4

 

  1. Jella KK, Bukrinsky MI, Grizzi F. Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines. 2018;6:421. doi: 10.3390/vaccines6040069

 

  1. Wang G, Li J, Bojmar L, et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature. 2023;618:374-382. doi: 10.1038/s41586-023-06114-4

 

  1. Rodrigues G, Zhang H, Lyden D. Tumour vesicular micromachinery uncovered. Nat Cell Biol. 2019;21:795-797. doi: 10.1038/s41556-019-0351-0

 

  1. Dai J, Su Y, Zhong S, et al. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145. doi: 10.1038/s41392-020-00261-0

 

  1. Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20:332-343. doi: 10.1038/s41556-018-0040-4

 

  1. Katzmann DJ. No ESCRT to the melanosome: MVB sorting without ubiquitin. Dev Cell. 2006;10:278-280. doi: 10.1016/j.devcel.2006.02.005

 

  1. Bojmar L, Kim HS, Tobias GC, et al. Extracellular vesicle and particle isolation from human and murine cell lines, tissues, and bodily fluids. STAR Protoc. 2021;2:100225. doi: 10.1016/j.xpro.2020.100225

 

  1. Lee YJ, Shin KJ, Jang HJ, et al. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell. 2023;58:320-334.e328. doi: 10.1016/j.devcel.2023.01.006

 

  1. Alonso YAM, Migliano SM, Teis D. ESCRT-III and Vps4: A dynamic multipurpose tool for membrane budding and scission. FEBS J. 2016;283:3288-3302. doi: 10.1111/febs.13688

 

  1. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21:77-91. doi: 10.1016/j.devcel.2011.05.015

 

  1. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977

 

  1. Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19-30; sup pp 11-13. doi: 10.1038/ncb2000

 

  1. De Luca T, Pelosi A, Trisciuoglio D, et al. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog. 2016;55:2304-2312. doi: 10.1002/mc.22437

 

  1. Radford KJ, Thorne RF, Hersey P. CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma. Biochem Biophys Res Commun. 1996;222:13-18. doi: 10.1006/bbrc.1996.0690

 

  1. Lee YJ, Shin KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med. 2024;56:877-889. doi: 10.1038/s12276-024-01209-y

 

  1. Hofmann UB, Houben R, Bröcker EB, Becker JC. Role of matrix metalloproteinases in melanoma cell invasion. Biochimie. 2005;87:307-314. doi: 10.1016/j.biochi.2005.01.013

 

  1. Tucci M, Mannavola F, Passarelli A, Stucci LS, Cives M, Silvestris F. Exosomes in melanoma: A role in tumor progression, metastasis and impaired immune system activity. Oncotarget. 2018;9:20826-20837. doi: 10.18632/oncotarget.24846

 

  1. Lind EF, Ohashi PS. Mir-155, a central modulator of T-cell responses. Eur J Immunol. 2014;44:11-15. doi: 10.1002/eji.201343962

 

  1. Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother. 2021;138:111528. doi: 10.1016/j.biopha.2021.111528

 

  1. Li J, Li Q, Lin L, et al. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT). BMC Neurol. 2018;18:133. doi: 10.1186/s12883-018-1139-8

 

  1. Zeng B, Chen Y, Chen H, et al. Exosomal miR-211-5p regulates glucose metabolism, pyroptosis, and immune microenvironment of melanoma through GNA15. Pharmacol Res. 2023;188:106660. doi: 10.1016/j.phrs.2023.106660

 

  1. Zhou X, Yan T, Huang C, et al. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2018;37:242. doi: 10.1186/s13046-018-0911-3

 

  1. Chen Y, Zhang YH, Li J, et al. Novel lncRNA Gm33149 modulates metastatic heterogeneity in melanoma by regulating the miR-5623-3p/Wnt axis via exosomal transfer. Cancer Gene Ther. 2024;31:364-375. doi: 10.1038/s41417-023-00707-x

 

  1. Feichtenschlager V, Zheng YJ, Ho W, et al. Deconstructing the role of MALAT1 in MAPK-signaling in melanoma: Insights from antisense oligonucleotide treatment. Oncotarget. 2023;14:543-560. doi: 10.18632/oncotarget.28447

 

  1. Ma C, Gu R, Wang X, et al. circRNA CDR1as promotes pulmonary artery smooth muscle cell calcification by upregulating CAMK2D and CNN3 via sponging miR-7-5p. Mol Ther Nucleic Acids. 2020;22:530-541. doi: 10.1016/j.omtn.2020.09.018

 

  1. Zhong Q, Huang J, Wei J, Wu R. Circular RNA CDR1as sponges miR-7-5p to enhance E2F3 stability and promote the growth of nasopharyngeal carcinoma. Cancer Cell Int. 2019;19:252. doi: 10.1186/s12935-019-0959-y

 

  1. Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer. 2024;24:322. doi: 10.1186/s12885-024-11819-4

 

  1. Daßler-Plenker J, Küttner V, Egeblad M. Communication in tiny packages: Exosomes as means of tumor-stroma communication. Biochim Biophys Acta Rev Cancer. 2020;1873:188340. doi: 10.1016/j.bbcan.2020.188340

 

  1. Liu J, Ren L, Li S, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 2021;11:2783-2797. doi: 10.1016/j.apsb.2021.01.001

 

  1. Kamińska P, Buszka K, Zabel M, Nowicki M, Alix- Panabières C, Budna-Tukan J. Liquid biopsy in melanoma: Significance in diagnostics, prediction and treatment monitoring. Int J Mol Sci. 2021;22:9714. doi: 10.3390/ijms22189714

 

  1. Venanzi FM, Gabai V, Mariotti F, et al. p62-DNA-encoding plasmid reverts tumor grade, changes tumor stroma, and enhances anticancer immunity. Aging (Albany NY). 2019;11:10711-10722. doi: 10.18632/aging.102486

 

  1. Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 2021;20:154. doi: 10.1186/s12943-021-01463-y

 

  1. Turiello R, Capone M, Morretta E, et al. Exosomal CD73 from serum of patients with melanoma suppresses lymphocyte functions and is associated with therapy resistance to anti-PD-1 agents. J Immunother Cancer. 2022;10:e004043. doi: 10.1136/jitc-2021-004043

 

  1. Kluszczynska K, Czyz M. Extracellular vesicles-based cell-cell communication in melanoma: New perspectives in diagnostics and therapy. Int J Mol Sci. 2023;24:965. doi: 10.3390/ijms24020965

 

  1. Wang W, Yuan X, Mu J, et al. Quercetin induces MGMT(+) glioblastoma cells apoptosis via dual inhibition of Wnt3a/β- Catenin and Akt/NF-κB signaling pathways. Phytomedicine. 2023;118:154933. doi: 10.1016/j.phymed.2023.154933

 

  1. Ma B, Ran R, Liao HY, Zhang HH. The paradoxical role of matrix metalloproteinase-11 in cancer. Biomed Pharmacother. 2021;141:111899. doi: 10.1016/j.biopha.2021.111899

 

  1. Zebrowska A, Widlak P, Whiteside T, Pietrowska M. Signaling of tumor-derived sEV impacts melanoma progression. Int J Mol Sci. 2020;21:5066. doi: 10.3390/ijms21145066

 

  1. Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression and therapy: Thematic review series: Biology of lipid rafts. J Lipid Res. 2020;61:611-635. doi: 10.1194/jlr.TR119000439

 

  1. Lobasso S, Tanzarella P, Mannavola F, et al. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front Physiol. 2021;12:748895. doi: 10.3389/fphys.2021.748895

 

  1. Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 2021;10:1056. doi: 10.3390/cells10051056

 

  1. Mamand DR, Bazaz S, Mohammad DK, et al. Extracellular vesicles originating from melanoma cells promote dysregulation in haematopoiesis as a component of cancer immunoediting. J Extracell Vesicles. 2024;13:e12471. doi: 10.1002/jev2.12471

 

  1. Gu WJ, Shen YW, Zhang LJ, et al. The multifaceted involvement of exosomes in tumor progression: Induction and inhibition. MedComm (2020). 2021;2:297-314. doi: 10.1002/mco2.49

 

  1. Wang S, Li F, Ye T, et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci Transl Med. 2021;13:eabb6981. doi: 10.1126/scitranslmed.abb6981

 

  1. Liu N, Yan M, Tao Q, et al. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer. 2023;11:e007146. doi: 10.1136/jitc-2023-007146

 

  1. Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382-386. doi: 10.1038/s41586-018-0392-8

 

  1. Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020;20:209-215. doi: 10.1038/s41577-019-0264-y

 

  1. Leary N, Walser S, He Y, et al. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles. 2022;11:e12197. doi: 10.1002/jev2.12197

 

  1. Wang X, Huang J, Chen W, Li G, Li Z, Lei J. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp Mol Med. 2022;54:1390-1400. doi: 10.1038/s12276-022-00855-4

 

  1. Ricciardi E, Giordani E, Ziccheddu G, et al. Metastatic melanoma: Liquid biopsy as a new precision medicine approach. Int J Mol Sci. 2023;24:4014. doi: 10.3390/ijms24044014

 

  1. Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett. 2014;347:29-37. doi: 10.1016/j.canlet.2014.02.004

 

  1. Rehman AU, Khan P, Maurya SK, et al. Liquid biopsies to occult brain metastasis. Mol Cancer. 2022;21:113. doi: 10.1186/s12943-022-01577-x

 

  1. Bayat M, Sadri Nahand J. Exosomal miRNAs: The tumor’s trojan horse in selective metastasis. Mol Cancer. 2024;23:167. doi: 10.1186/s12943-024-02081-0

 

  1. Li Z, Fang R, Fang J, He S, Liu T. Functional implications of Rab27 GTPases in cancer. Cell Commun Signal. 2018;16:44. doi: 10.1186/s12964-018-0255-9

 

  1. Das SK, Sarkar D, Emdad L, Fisher PB. MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res. 2019;144:137-191. doi: 10.1016/bs.acr.2019.03.011

 

  1. Zhang S, et al. Mutant p53 drives cancer metastasis via RCP-mediated Hsp90α secretion. Cell Rep. 2020;32:107879. doi: 10.1016/j.celrep.2020.107879

 

  1. Barreca V, Boussadia Z, Polignano D, et al. Metabolic labelling of a subpopulation of small extracellular vesicles using a fluorescent palmitic acid analogue. J Extracell Vesicles. 2023;12:e12392. doi: 10.1002/jev2.12392

 

  1. Baietti MF, Zhang Z, Mortier E, et al. Syndecan-syntenin- ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677-685. doi: 10.1038/ncb2502

 

  1. Li Y, Chen ZK, Duan X, et al. Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Exp Mol Med. 2022;54:1379-1389. doi: 10.1038/s12276-022-00856-3

 

  1. Linder M, Pogge von Strandmann E. The role of extracellular HSP70 in the function of tumor-associated immune cells. Cancers (Basel). 2021;13:4721. doi: 10.3390/cancers13184721

 

  1. Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-335. doi: 10.1038/nature15756

 

  1. Mirzaei H, Gholamin S, Shahidsales S, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer. 2016;53:25-32. doi: 10.1016/j.ejca.2015.10.009

 

  1. Mao L, Liu S, Chen Y, Huang H, Ding F, Deng L. Engineered exosomes: A potential therapeutic strategy for septic cardiomyopathy. Front Cardiovasc Med. 2024;11:1399738. doi: 10.3389/fcvm.2024.1399738

 

  1. Zhong W, Lu Y, Han X, et al. Upregulation of exosome secretion from tumor-associated macrophages plays a key role in the suppression of anti-tumor immunity. Cell Rep. 2023;42:113224. doi: 10.1016/j.celrep.2023.113224

 

  1. Pu Y, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 2022;13:874589. doi: 10.3389/fimmu.2022.874589

 

  1. Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: Potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm. 2012;81:102-112. doi: 10.1016/j.ejpb.2012.02.008

 

  1. Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor targeting: From tissue distribution to intracellular fate. Int J Nanomed. 2020;15:9355-9371. doi: 10.2147/ijn.S281890

 

  1. Horodecka K, Düchler M. CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles. Int J Mol Sci. 2021;22:6072. doi: 10.3390/ijms22116072

 

  1. Shi A, Li J, Qiu X, et al. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics. 2021;11:6616-6631. doi: 10.7150/thno.57701

 

  1. Poongodi R, Chen YL, Yang TH, et al. Bio-scaffolds as cell or exosome carriers for nerve injury repair. Int J Mol Sci. 2021;22:13347. doi: 10.3390/ijms222413347

 

  1. Moghaddam AS, Afshari JT, Esmaeili SA, Saburi E, Joneidi Z, Momtazi-Borojeni AA. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1-9. doi: 10.1016/j.atherosclerosis.2019.03.016

 

  1. Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 2021;12:749192. doi: 10.3389/fimmu.2021.749192

 

  1. Yang B, Chen Y, Shi J. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31:e1802896. doi: 10.1002/adma.201802896

 

  1. Kim H, Kim H, Feng Y, et al. PRMT5 control of cGAS/ STING and NLRC5 pathways defines melanoma response to antitumor immunity. Sci Transl Med. 2020;12:eaaz5683. doi: 10.1126/scitranslmed.aaz5683

 

  1. Najem A, Soumoy L, Sabbah M, et al. Understanding molecular mechanisms of phenotype switching and crosstalk with TME to reveal new vulnerabilities of melanoma. Cells. 2022;11:1157. doi: 10.3390/cells11071157

 

  1. Wei CY, Zhu MX, Yang YW, et al. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol. 2019;12:21. doi: 10.1186/s13045-019-0711-z

 

  1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423-1437. doi: 10.1038/nm.3394

 

  1. Ambrosini G, Rai AJ, Carvajal RD, Schwartz GK. Uveal melanoma exosomes induce a prometastatic microenvironment through macrophage migration inhibitory factor. Mol Cancer Res. 2022;20:661-669. doi: 10.1158/1541-7786.Mcr-21-0526

 

  1. Li J, Cai J, Zhao S, et al. GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. J Exp Clin Cancer Res. 2016;35:184. doi: 10.1186/s13046-016-0463-3

 

  1. Tan Y, Tang F, Li J, et al. Tumor-derived exosomes: The emerging orchestrators in melanoma. Biomed Pharmacother. 2022;149:112832. doi: 10.1016/j.biopha.2022.112832

 

  1. Gyukity-Sebestyén E, Harmati M, Dobra G, et al. Melanoma-derived exosomes induce PD-1 overexpression and tumor progression via mesenchymal stem cell oncogenic reprogramming. Front Immunol. 2019;10:2459. doi: 10.3389/fimmu.2019.02459

 

  1. Li T, Wu T, Li X, Qian C. Transcriptional switches in melanoma T Cells: Facilitating polarizing into regulatory T cells. Int Immunopharmacol. 2024;137:112484. doi: 10.1016/j.intimp.2024.112484

 

  1. Asleh K, Dery V, Taylor C, et al. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomarker Res. 2023;11:99. doi: 10.1186/s40364-023-00540-2

 

  1. Pathania AS, Prathipati P, Challagundla KB. New insights into exosome mediated tumor-immune escape: Clinical perspectives and therapeutic strategies. Biochim Biophys Acta Rev Cancer. 2021;1876:188624. doi: 10.1016/j.bbcan.2021.188624

 

  1. Petersen KE, Manangon E, Hood JL, et al. A review of exosome separation techniques and characterization of B16- F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM. Anal Bioanal Chem. 2014;406:7855-7866. doi: 10.1007/s00216-014-8040-0

 

  1. Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017;7:2732-2745. doi: 10.7150/thno.18752

 

  1. Erman A, Ignjatović M, Leskovšek K, et al. The prognostic and predictive value of human gastrointestinal microbiome and exosomal mRNA expression of PD-L1 and IFNγ for immune checkpoint inhibitors response in metastatic melanoma patients: PROTOCOL TRIAL. Biomedicines. 2023;11:2016. doi: 10.3390/biomedicines11072016

 

  1. Li P, Xie Y, Wang J, et al. Gene engineered exosome reverses T cell exhaustion in cancer immunotherapy. Bioact Mater. 2024;34:466-481. doi: 10.1016/j.bioactmat.2024.01.008

 

  1. Wang X, Tian L, Lu J, Ng IO. Exosomes and cancer-diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis. 2022;11:54. doi: 10.1038/s41389-022-00431-5

 

  1. Ye Y, Shi Q, Yang T, et al. In vivo visualized tracking of tumor-derived extracellular vesicles using CRISPR-Cas9 system. Technol Cancer Res Treat. 2022;21:15330338221085370. doi: 10.1177/15330338221085370

 

  1. Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science. 2023;379:eabp8964. doi: 10.1126/science.abp8964

 

  1. Agarwal P, Crepps MP, Stahr NA, et al. Identification of canine circulating miRNAs as tumor biospecific markers using Next-generation sequencing and Q-RT-PCR. Biochem Biophys Rep. 2021;28:101106. doi: 10.1016/j.bbrep.2021.101106

 

  1. Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41:835-842. doi: 10.1248/bpb.b18-00133

 

  1. Chen YF, Luh F, Ho YS, Yen Y. Exosomes: A review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci. 2024;31:67. doi: 10.1186/s12929-024-01055-0

 

  1. Singh K, Nalabotala R, Koo KM, Bose S, Nayak R, Shiddiky MJA. Separation of distinct exosome subpopulations: Isolation and characterization approaches and their associated challenges. Analyst. 2021;146:3731-3749. doi: 10.1039/d1an00024a

 

  1. Paganini C, Palmiero UC, Pocsfalvi G, Touzet N, Bongiovanni A, Arosio P. Scalable production and isolation of extracellular vesicles: Available sources and lessons from current industrial bioprocesses. Biotechnol J. 2019;14:e1800528. doi: 10.1002/biot.201800528

 

  1. Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin Transl Sci. 2024;17:e13904. doi: 10.1111/cts.13904

 

  1. Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the functional dynamics and challenges of exosomes in pharmaceutical innovation and precision medicine. Pharmaceutics. 2024;16:709. doi: 10.3390/pharmaceutics16060709

 

  1. Hu S, Ma J, Su C, et al. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 2021;135:567-581. doi: 10.1016/j.actbio.2021.09.003

 

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing