Matrix metalloproteinase-1 as a potential biomarker for early gastric cancer detection and its effect on gastric cancer cell proliferation and migration
The present study aimed to investigate the association between matrix metalloproteinase-1 (MMP-1) and early gastric cancer (EGC), while also evaluating the effect of MMP-1 on gastric cancer cell proliferation and migration. Transcriptome RNA sequencing and database analysis were conducted to assess the relationship between MMP-1 expression and EGC. Differences in MMP-1 expression between clinical EGC samples and paracancerous tissues were detected using fluorescence quantitative polymerase chain reaction (PCR). In N87 gastric cancer cells, changes in proliferation- and migration-related indicator expression were determined. Gene sequencing revealed differential expression of MMP-1 in early and advanced gastric cancers. Furthermore, enhanced MMP-1 expression was observed in early and advanced gastric cancer tissues, exhibiting a positive correlation with the malignant phenotype in gastric cancer cell lines. Fluorescence quantitative PCR revealed considerably higher MMP-1 expression in EGC tissues than in paracancerous tissues. CCK8 and EdU assays demonstrated a significant increase in N87 cell proliferation on MMP-1 upregulation and a decrease on its downregulation. The scratch assay results demonstrated a corresponding enhancement in N87 cell migratory capacity with MMP-1 upregulation, which was attenuated on its downregulation. Western blot experiments revealed a decrease in the expression of the epithelial-mesenchymal transition-related protein E-cadherin after MMP-1 upregulation, while vimentin expression significantly increased. Conversely, the downregulation of MMP-1 led to opposite outcomes. Overall, MMP-1 emerges as a potential biomarker for EGC diagnosis and plays a crucial role in the regulation of N87 gastric cancer cell proliferation and migration.
1. Rahman R, Asombang AW, Ibdah JA. Characteristics of gastric cancer in Asia. World J Gastroenterol. 2014;20(16):4483-4490. doi: 10.3748/wjg.v20.i16.4483
2. Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 2020;21(11):4012. doi: 10.3390/ijms21114012
3. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654-2664. doi: 10.1016/s0140-6736(16)30354-3
4. Yang MD, Lin KC, Lu MC, et al. Contribution of matrix metalloproteinases-1 genotypes to gastric cancer susceptibility in Taiwan. BioMedicine (Taipei). 2017;7(2):10. doi: 10.1051/bmdcn/2017070203
5. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1-73. doi: 10.1016/bs.pmbts.2017.02.005
6. Tsai CW, Chang WS, Gong CL, et al. Contribution of matrix metallopeptidase-1 genotypes, smoking, alcohol drinking and areca chewing to nasopharyngeal Carcinoma susceptibility. Anticancer Res. 2016;36(7):3335-3340.
7. Zhao S, Yu M. Identification of MMP1 as a potential prognostic biomarker and correlating with immune infiltrates in cervical squamous cell carcinoma. DNA Cell Biol. 2020;39(2):255-272. doi: 10.1089/dna.2019.5129
8. Peng Q, Xu Y. Association between promoter polymorphisms of matrix metalloproteinase-1 and risk of gastric cancer. Onco Targets Ther. 2015;8:2519-2526. doi: 10.2147/ott.S83004
9. Scheau C, Badarau IA, Costache R, et al. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst). 2019;2019:9423907. doi: 10.1155/2019/9423907
10. Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol. 2018;81:241-330. doi: 10.1016/bs.apha.2017.08.002
11. Moracho N, Learte AIR, Muñoz-Sáez E, et al. Emerging roles of MT-MMPs in embryonic development. Dev Dyn. 2022;251(2):240-275. doi: 10.1002/dvdy.398
12. Kassiri Z, Khokha R. Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thromb Haemost. 2005;93(2):212-219. doi: 10.1160/th04-08-0522
13. Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5): 585-600. doi: 10.1165/rcmb.2015-0020TR
14. Grillet B, Pereira RVS, Van Damme J, Abu El-Asrar A, Proost P, Opdenakker G. Matrix metalloproteinases in arthritis: Towards precision medicine. Nat Rev Rheumatol. 2023;19(6):363-377. doi: 10.1038/s41584-023-00966-w
15. Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta. 2014;1840(8):2571-2580. doi: 10.1016/j.bbagen.2014.03.007
16. Xie J, Zhou X, Wang R, et al. Identification of potential diagnostic biomarkers in MMPs for pancreatic carcinoma. Medicine (Baltimore). 2021;100(23):e26135. doi: 10.1097/md.0000000000026135
17. Lopez-Navarro ER, Gutierrez J. Metalloproteinases and their inhibitors in neurological disease. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(1):27-38. doi: 10.1007/s00210-021-02188-x
18. Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: Implications in disease. FEBS J. 2021;288(24):7162-7182. doi: 10.1111/febs.15701
19. Kapoor C, Vaidya S, Wadhwan V, Hitesh, Kaur G, Pathak A. Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther. 2016;12(1):28-35. doi: 10.4103/0973-1482.157337
20. Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer. 2021;21(1):149. doi: 10.1186/s12885-021-07860-2
21. Shakery T, Safari F. Downregulation of PINKBAR/pAKT and MMP2/MMP9 expression in MDA-MB-231 breast cancer cells as potential targets in cancer therapy by hAMSCs secretome. Cells Tissues Organs. 2023;212(2):155-163. doi: 10.1159/000520370
22. Wang X, Wang B, Xie J, Hou D, Zhang H, Huang H. Melatonin inhibits epithelialtomesenchymal transition in gastric cancer cells via attenuation of IL1β/NFκB/MMP2/ MMP9 signaling. Int J Mol Med. 2018;42(4):2221-2228. doi: 10.3892/ijmm.2018.3788
23. Rani V, Yadav D, Atale N. Matrixmetalloproteinase inhibitors: Promising therapeutic targets against cancer. Curr Pharm Des. 2021;27(45):4557-4567. doi: 10.2174/1381612827666210830103059
24. Yang C, Gong A. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Int J Med Sci. 2021;18(3):792-800. doi: 10.7150/ijms.47339
25. Xu J, Changyong E, Yao Y, Ren S, Wang G, Jin H. Matrix metalloproteinase expression and molecular interaction network analysis in gastric cancer. Oncol Lett. 2016;12(4):2403-2408. doi: 10.3892/ol.2016.5013
26. Cai QW, Li J, Li XQ, Wang JQ, Huang Y. Expression of STAT3, MMP-1 and TIMP-1 in gastric cancer and correlation with pathological features. Mol Med Rep. 2012;5(6):1438-1442. doi: 10.3892/mmr.2012.849
27. Chen YJ, Liang L, Li J, et al. IRF-2 inhibits gastric cancer invasion and migration by down-regulating MMP-1. Dig Dis Sci. 2020;65(1):168-177. doi: 10.1007/s10620-019-05739-8
28. Liu M, Hu Y, Zhang MF, et al. MMP1 promotes tumor growth and metastasis in esophageal squamous cell
carcinoma. Cancer Lett. 2016;377(1):97-104. doi: 10.1016/j.canlet.2016.04.034
29. Peng HH, Zhang X, Cao PG. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma. Braz J Med Bioll Res. 2012;45(1):86-92. doi: 10.1590/s0100-879x2011007500152
30. Zhou J, Xu M, Tan J, Zhou L, Dong F, Huang T. MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front Oncol. 2022;12:1030590. doi: 10.3389/fonc.2022.1030590
31. Shen Q, Polom K, Williams C, et al. A targeted proteomics approach reveals a serum protein signature as diagnostic biomarker for resectable gastric cancer. EBioMedicine. 2019;44:322-333. doi: 10.1016/j.ebiom.2019.05.044
32. Wang K, Zheng J, Yu J, et al. Knockdown of MMP1 inhibits the progression of colorectal cancer by suppressing the PI3K/Akt/cmyc signaling pathway and EMT. Oncol Rep. 2020;43(4):1103-1112. doi: 10.3892/or.2020.7490
33. Kumar P, Sebastian A, Verma K, et al. mRNA expression analysis of E-cadherin, VEGF, and MMPs in gastric cancer: A pilot study. Indian J Surg Oncol. 2021;12(Suppl 1):85-92. doi: 10.1007/s13193-020-01096-5
34. Matsuoka T, Yashiro M. Biomarkers of gastric cancer: Current topics and future perspective. World J Gastroenterol. 2018;24(26):2818-2832. doi: 10.3748/wjg.v24.i26.2818
35. Sun Y, Jin J, Jing H, et al. ITIH4 is a novel serum biomarker for early gastric cancer diagnosis. Clin Chim Acta. 2021;523:365-373. doi: 10.1016/j.cca.2021.10.022
36. Wu D, Zhang P, Ma J, et al. Serum biomarker panels for the diagnosis of gastric cancer. Cancer Med. 2019;8(4):1576-1583. doi: 10.1002/cam4.2055
37. Guo X, Peng Y, Song Q, et al. A liquid biopsy signature for the early detection of gastric cancer in patients. Gastroenterology. 2023;165(2):402-413.e13. doi: 10.1053/j.gastro.2023.02.044
38. Zheng L, Wu C, Xi P, et al. The survival and the long-term trends of patients with gastric cancer in Shanghai, China. BMC Cancer. 2014;14:300. doi: 10.1186/1471-2407-14-300
39. Yang J, Bo L, Han T, Ding D, Nie M, Yin K. Pathway-and clinical-factor-based risk model predicts the prognosis of patients with gastric cancer. Mol Med Rep. 2018;17(5):6345-6356. doi: 10.3892/mmr.2018.8722
40. Chrom P, Stec R, Szczylik C. Second-line treatment of advanced gastric cancer: Current options and future perspectives. Anticancer Res. 2015;35(9):4575-4583.
41. Wang X, Deng J, Liang H. Well differentiated carcinoma with a poor prognosis: A retrospective analysis of papillary gastric adenocarcinoma. Surg Today. 2021;51(8):1387-1396. doi: 10.1007/s00595-021-02289-3
42. Digklia A, Wagner AD. Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol. 2016;22(8):2403-2414. doi: 10.3748/wjg.v22.i8.2403
43. Wei R, Du X, Wang J, et al. Risk and prognosis of subsequent primary gastric cancer. Oncol Res Treat. 2022;45(4):186-196. doi: 10.1159/000521846
44. Chang JY, Shim KN, Tae CH, et al. Comparison of clinical outcomes after endoscopic submucosal dissection and surgery in the treatment of early gastric cancer: A single-institute study. Medicine (Baltimore). 2017;96(30):e7210. doi: 10.1097/md.0000000000007210
45. Kumar S, Katona BW, Long JM, et al. Endoscopic ultrasound has limited utility in diagnosis of gastric cancer in carriers of CDH1 mutations. Clin Gastroenterol Hepatol. 2020;18(2):505-508.e1. doi: 10.1016/j.cgh.2019.04.064
46. Wang F, Hu D, Lou X, et al. BNIP3 and DAPK1 methylation in peripheral blood leucocytes are noninvasive biomarkers for gastric cancer. Gene. 2024;898:148109. doi: 10.1016/j.gene.2023.148109
47. Hu D, Lou X, Meng N, et al. Peripheral blood-based DNA methylation of long non-coding RNA H19 and metastasis-associated lung adenocarcinoma transcript 1 promoters are potential non-invasive biomarkers for gastric cancer detection. Cancer Control. 2021;28:10732748211043667. doi: 10.1177/10732748211043667
48. Fan H, Li X, Li ZW, et al. Urine proteomic signatures predicting the progression from premalignancy to malignant gastric cancer. EBioMedicine. 2022;86:104340. doi: 10.1016/j.ebiom.2022.104340
49. Kao HW, Pan CY, Lai CH, et al. Urine miR-21-5p as a potential non-invasive biomarker for gastric cancer. Oncotarget. 2017;8(34):56389-56397. doi: 10.18632/oncotarget.16916
50. Hoshino I. The usefulness of microRNA in urine and saliva as a biomarker of gastroenterological cancer. Int J Clin Oncol. 2021;26(8):1431-1440. doi: 10.1007/s10147-021-01911-1
51. Miyamoto S, Watanabe Y, Oikawa R, et al. Analysis of helicobacter pylori genotypes in clinical gastric wash samples. Tumour Biol. 2016;37(8):10123-10132. doi: 10.1007/s13277-016-4886-4
52. Chae HD, Kim IH. Prognostic significance of CEA expression by RT-PCR in peritoneal wash from patients with gastric cancer: Result of a 5-year follow-up after curative resection. Scand J Gastroenterol. 2016;51(8):956-960. doi: 10.3109/00365521.2016.1172339
53. Zhou X, Liu J, Meng A, et al. Gastric juice piR-1245: A promising prognostic biomarker for gastric cancer. J Clin Lab Anal. 2020;34(4):e23131. doi: 10.1002/jcla.23131
54. Pan Y, Zheng Y, Yang J, et al. A new biomarker for the early diagnosis of gastric cancer: Gastric juice-and serum-derived SNCG. Future Oncol. 2022;18(28):3179-3190. doi: 10.2217/fon-2022-0253
55. Lopes C, Chaves J, Ortigão R, Dinis-Ribeiro M, Pereira C. Gastric cancer detection by non-blood-based liquid biopsies: A systematic review looking into the last decade of research. United European Gastroenterol J. 2023;11(1):114-130. doi: 10.1002/ueg2.12328
56. Enríquez-Sánchez LB, Gallegos-Portillo LG, Camarillo- Cisneros J, et al. Cost-benefit of serum pepsinogen screening for gastric adenocarcinoma in the Mexican population. Rev Gastroenterol Mexico (Eng Ed). 2022;87(3):285-291. doi: 10.1016/j.rgmxen.2021.11.002
57. Machii R, Takahashi H. Japanese cancer screening programs during the COVID-19 pandemic: Changes in participation between 2017-2020. Cancer Epidemiol. 2023;82:102313. doi: 10.1016/j.canep.2022.102313
58. Cesaretti M, Bian AZL. In vivo medical imaging technologies: New possibility in diagnosis of gastric cancer. Minerva Chir. 2016;71(4):270-277.
59. Zhu SL, Dong J, Zhang C, Huang YB, Pan W. Application of machine learning in the diagnosis of gastric cancer based on noninvasive characteristics. PLoS One. 2020;15(12):e0244869. doi: 10.1371/journal.pone.0244869
60. Thapa S, Fischbach LA, Delongchamp R, Faramawi MF, Orloff MS. Using machine learning to predict progression in the gastric precancerous process in a population from a developing country who underwent a gastroscopy for dyspeptic symptoms. Gastroenterol Res Pract. 2019;2019:8321942. doi: 10.1155/2019/8321942
61. Leja M, Linē A. Early detection of gastric cancer beyond endoscopy-new methods. Best Pract Res Clin Gastroenterol. 2021;50-51:101731. doi: 10.1016/j.bpg.2021.101731
62. Qian Z, Wang J. Application of computed tomography imaging in diagnosis of endocrine nerve of gastric cancer and nursing intervention effect. World Neurosurg. 2021;149:341-351. doi: 10.1016/j.wneu.2020.10.005
63. Rezaei Z, Ranjbaran J, Safarpour H, et al. Identification of early diagnostic biomarkers via WGCNA in gastric cancer. Biomed Pharmacother. 2022;145:112477. doi: 10.1016/j.biopha.2021.112477
64. Numakura S, Uozaki H. Low MLL2 protein expression is associated with fibrosis in early stage gastric cancer. In Vivo. 2021;35(1):603-609. doi: 10.21873/invivo.12297
65. Guan X. Cancer metastases: Challenges and opportunities. Acta Pharm Sin B. 2015;5(5):402-418. doi: 10.1016/j.apsb.2015.07.005
66. Fu BM. Tumor metastasis in the microcirculation. Adv Exp Med Biol. 2018;1097:201-218. doi: 10.1007/978-3-319-96445-4_11
67. Guo S, Huang J, Li G, Chen W, Li Z, Lei J. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis. Mol Cancer. 2023;22(1):193. doi: 10.1186/s12943-023-01909-5
68. Burr R, Gilles C, Thompson EW, Maheswaran S. Epithelial-mesenchymal plasticity in circulating tumor cells, the precursors of metastasis. Adv Exp Med Biol. 2020;1220:11-34. doi: 10.1007/978-3-030-35805-1_2
69. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212-226. doi: 10.1016/j.tcb.2018.12.001
70. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 2019;18(1):70. doi: 10.1186/s12943-019-0994-2
71. Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Front Med. 2018;12(4):361-373. doi: 10.1007/s11684-018-0656-6
72. Phillips RM, Lam C, Wang H, Tran PT. Bittersweet tumor development and progression: Emerging roles of epithelial plasticity glycosylations. Adv Cancer Res. 2019;142:23-62. doi: 10.1016/bs.acr.2019.01.002
73. Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 2020;30(10):764-776. doi: 10.1016/j.tcb.2020.07.003
74. Zhang W, Huang X, Huang R, et al. MMP1 overexpression promotes cancer progression and associates with poor outcome in head and neck carcinoma. Comput Math Methods Med. 2022;2022:3058342. doi: 10.1155/2022/3058342
75. Tian R, Li X, Gao Y, Li Y, Yang P, Wang K. Identification and validation of the role of matrix metalloproteinase-1 in cervical cancer. Int J Oncol. 2018;52(4):1198-1208. doi: 10.3892/ijo.2018.4267
76. Du L, Liu N, Jin J, et al. ZNF3 regulates proliferation, migration and invasion through MMP1 and TWIST in colorectal cancer. Acta Biochim Biophys Sin (Shanghai). 2022;54(12):1889-1896. doi: 10.3724/abbs.2022187
77. Cierna Z, Mego M, Janega P, et al. Matrix metalloproteinase 1 and circulating tumor cells in early breast cancer. BMC Cancer. 2014;14:472. doi: 10.1186/1471-2407-14-472
78. Zhu Y, Tao Z, Chen Y, et al. Exosomal MMP-1 transfers metastasis potential in triple-negative breast cancer through PAR1-mediated EMT. Breast Cancer Res Treat. 2022;193(1):65-81. doi: 10.1007/s10549-022-06514-6