AccScience Publishing / OTE / Online First / DOI: 10.36922/OTE025300005
REVIEW ARTICLE

The current status and future perspectives of robot-assisted joint replacement: A review

Zeyu Liu1 Sen Luo1 Chunsheng Wang1 Run Tian1 Pei Yang1 Kunzheng Wang1*
Show Less
1 Department of Joint and Foot-Ankle Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
Received: 24 July 2025 | Revised: 3 November 2025 | Accepted: 6 November 2025 | Published online: 28 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The global trend of population aging and the high prevalence of osteoarthritis (OA) have made joint replacement surgery a key treatment option for patients with end-stage OA. However, conventional procedures are limited by human error, resulting in suboptimal accuracy and reproducibility of prosthesis placement. The emergence of robot-assisted joint replacement (RAJR) offers a novel approach to enhancing surgical precision and improving clinical outcomes. This review provides a comprehensive overview of the development of robot-assisted joint arthroplasty, with a detailed examination of current applications and research progress in robot-assisted total hip, total knee, and unicompartmental knee arthroplasty. Studies have demonstrated that robotic systems significantly improve the accuracy of prosthesis positioning, enhance radiographic alignment, and improve soft-tissue balance. Nevertheless, challenges remain, including prolonged operative time, increased costs, and steep learning curves. Current evidence is insufficient to establish clear advantages of robotic systems in terms of mid- to long-term functional outcomes and prosthesis survival. Looking ahead, with continued technological refinement, improved cost-effectiveness, and deeper integration of artificial intelligence, RAJR is expected to become more widely adopted, advancing the field toward greater precision, personalization, and intelligence.

Keywords
Robotic surgical procedures
Arthroplasty
Hip replacement
Knee replacement
Artificial intelligence
Funding
None.
Conflict of interest
Kunzheng Wang is the Honorary Editor-in-Chief, Pei Yang is the Editor-in-Chief, and Run Tian is the Editorial Board Member of this journal, but were not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declare that they have no competing interests.
References
  1. Collins DP, Elsouri KN, Demory Beckler M. Osteoarthritis: Can we do better? Cureus. 2022;14(11):e31505. doi: 10.7759/cureus.31505

 

  1. Yao Q, Wu X, Tao C, et al. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56. doi: 10.1038/s41392-023-01330-w

 

  1. Hasan S, Ahmed A, Waheed MA, Saleh ES, Omari A. Transforming orthopedic joint surgeries: The role of artificial intelligence (AI) and robotics. Cureus. 2023;15(8):e43289. doi: 10.7759/cureus.43289

 

  1. Prakash R, Agrawal Y. Robotic technology in total knee arthroplasty. Br J Hosp Med (Lond). 2023;84(6):1-9. doi: 10.12968/hmed.2022.0491

 

  1. Zhang H, Jiang XA, Jin BC, Zhang HH, Liang JB. Current developments in robotic assistance technology for total knee arthroplasty: A comprehensive overview. J Orthop Surg Res. 2025;20(1):80. doi: 10.1186/s13018-025-05490-z

 

  1. Moldovan F, Moldovan L. The impact of total hip arthroplasty on the incidence of hip fractures in Romania. J Clin Med. 2025;14(13):4636. doi: 10.3390/jcm14134636

 

  1. Kim K, Kwon S, Kwon J, Hwang J. A review of robotic-assisted total hip arthroplasty. Biomed Eng Lett. 2023;13(4):523-535. doi: 10.1007/s13534-023-00312-9

 

  1. Venosa M, Logroscino G, Romanini E, et al. Robotic-assisted hip and knee revision arthroplasty: A scoping review. J Exp Orthop. 2025;12(2):e70285. doi: 10.1002/jeo2.70285

 

  1. Song SJ, Park CH. Learning curve for robot-assisted knee arthroplasty; optimizing the learning curve to improve efficiency. Biomed Eng Lett. 2023;13(4):515-521. doi: 10.1007/s13534-023-00311-w

 

  1. Yang Y, Wang Y, Chen Y, et al. Tracing the evolution of robotic-assisted total knee arthroplasty: A bibliometric analysis of the top 100 highly cited articles. J Robot Surg. 2023;17(6):2973-2985. doi: 10.1007/s11701-023-01742-4

 

  1. Kow RY, Abdul Rani R, Mohamad Nazarallah MH, et al. Robotic-assisted hip and knee arthroplasty: A bibliometric analysis using the scopus database. Cureus. 2024;16(3):e56617. doi: 10.7759/cureus.56617

 

  1. Xu J, Li L, Fu J, et al. Status of robot-assisted artificial total joint arthroplasty in China: A cross-sectional survey of joint surgeons. Int Orthop. 2023;47(2):543-550. doi: 10.1007/s00264-022-05633-5

 

  1. Kurmis AP, Lustig S, Zambianchi F, Chen Y. Editorial: Advances in artificial intelligence and robotics in joint arthroplasty. Arthroplasty. 2025;7(1):17. doi: 10.1186/s42836-025-00302-5

 

  1. Bullock EKC, Brown MJ, Clark G, Plant JGA, Blakeney WG. Robotics in total hip arthroplasty: Current Concepts. J Clin Med. 2022;11(22):6674. doi: 10.3390/jcm11226674

 

  1. Langer S, Lallinger V, Heine N, Zapf J, Glowalla C. Three-dimensional individual joint reconstruction through the Mako robotic arm-assisted surgical technique: Possibilities and limitations of the surgical technique. Orthopadie (Heidelb). 2024;53(11):845-852. doi: 10.1007/s00132-024-04554-y

 

  1. Yang HY, Seon JK. The landscape of surgical robotics in orthopedics surgery. Biomed Eng Lett. 2023;13(4):537-542. doi: 10.1007/s13534-023-00321-8

 

  1. Lim JR, Chun YM. Robot-assisted orthopedic surgeries around shoulder joint: Where we are? Biomed Eng Lett. 2023;13(4):553-559. doi: 10.1007/s13534-023-00324-5

 

  1. Desai KB, Mulpur P, Jayakumar T, Suhas Masilamani AB, Ranjan A, Gurava Reddy AV. Adoption of robotics in arthroplasty- a survey of perceptions, utilization and challenges with technology amongst Indian surgeons. J Orthop. 2023;46:51-57. doi: 10.1016/j.jor.2023.10.019

 

  1. Wu XD, Zhou Y, Shao H, Yang D, Guo SJ, Huang W. Robotic-assisted revision total joint arthroplasty: A state-of-the-art scoping review. EFORT Open Rev. 2023;8(1):18-25. doi: 10.1530/EOR-22-0105

 

  1. Tian R, Gao X, Kong N, et al. A new seven-axis robotic-assisted total hip arthroplasty system improves component positioning: A prospective, randomized, multicenter study. Sci Rep. 2024;14(1):12643. doi: 10.1038/s41598-024-63624-5

 

  1. Lu X, Zhang Z, Xu H, Wang W, Zhang H. A new designed full process coverage robot-assisted total hip arthroplasty: A multicentre randomized clinical trial. Int J Surg. 2024;110(4):2141-2150. doi: 10.1097/JS9.0000000000001103

 

  1. Vigdorchik JM, Sharma AK, Aggarwal VK, Carroll KM, Jerabek SA. The use of robotic-assisted total hip arthroplasty in developmental dysplasia of the hip. Arthroplast Today. 2020;6(4):770-776. doi: 10.1016/j.artd.2020.07.022

 

  1. Domb BG, Chen JW, Lall AC, Perets I, Maldonado DR. Minimum 5-year outcomes of robotic-assisted primary total hip arthroplasty with a nested comparison against manual primary total hip arthroplasty: A propensity score-matched study. J Am Acad Orthop Surg. 2020;28(20):847-856. doi: 10.5435/JAAOS-D-19-00328

 

  1. Incesoy MA, Yildiz F, Pulatkan MA, et al. CT-based, robotic-arm assisted total hip arthroplasty (Mako) through anterior approach provides improved cup placement accuracy but no difference in clinical outcomes when compared to conventional technique. Technol Health Care. 2024;32(5):3681-3691. doi: 10.3233/THC-231111

 

  1. Llombart-Blanco R, Mariscal G, Barrios C, Vera P, Llombart- Ais R. MAKO robot-assisted total hip arthroplasty: A comprehensive meta-analysis of efficacy and safety outcomes. J Orthop Surg Res. 2024;19(1):698. doi: 10.1186/s13018-024-05199-5

 

  1. Kumar V, Patel S, Baburaj V, Rajnish RK, Aggarwal S. Does robotic-assisted surgery improve outcomes of total hip arthroplasty compared to manual technique? A systematic review and meta-analysis. Postgrad Med J. 2023;99(1171):375-383. doi: 10.1136/postgradmedj-2021-141135

 

  1. An HM, Cao Z, Zhang S, Yang MZ, Kong XP, Chai W. Why robot-assisted total hip arthroplasty aborted: Chinese experience of four hundred and twenty nine consecutive cases. Int Orthop. 2024;48(9):2359-2365. doi: 10.1007/s00264-024-06250-0

 

  1. Wang Y, Wang R, Gong S, et al. A comparison of radiological and clinical outcomes between robotic-assisted and conventional total hip arthroplasty: A meta-analysis. Int J Med Robot. 2023;19(1):e2463. doi: 10.1002/rcs.2463

 

  1. Kirchner GJ, Lieber AM, Haislup B, Kerbel YE, Moretti VM. The cost of robot-assisted total hip arthroplasty: Comparing safety and hospital charges to conventional total hip arthroplasty. J Am Acad Orthop Surg. 2021;29(14):609-615. doi: 10.5435/JAAOS-D-20-00715

 

  1. Sweet MC, Borrelli GJ, Manawar SS, Miladore N. Comparison of outcomes after robotic-assisted or conventional total hip arthroplasty at a minimum 2-year follow-up: A systematic review. JBJS Rev. 2021;9(6):e20.00144. doi: 10.2106/JBJS.RVW.20.00144

 

  1. Walgrave S, Oussedik S. Comparative assessment of current robotic-assisted systems in primary total knee arthroplasty. Bone Jt Open. 2023;4(1):13-18. doi: 10.1302/2633-1462.41.BJO-2022-0070.R1

 

  1. Han S, Rodriguez-Quintana D, Freedhand AM, Mathis KB, Boiwka AV, Noble PC. Contemporary robotic systems in total knee arthroplasty: A review of accuracy and outcomes. Orthop Clin North Am. 2021;52(2):83-92. doi: 10.1016/j.ocl.2020.12.001

 

  1. Geng X, Dong Z, Chen J, et al. Better radiological outcomes but equal clinical function of a novel knee arthroplasty robot system: A prospective randomized controlled trial. Int Orthop. 2025;49(7):1679-1687. doi: 10.1007/s00264-025-06523-2

 

  1. Yang P, He R, Lei K, Liu L, Yang L, Guo L. Clinical evaluation of the first semi-active total knee arthroplasty assisting robot made in China: A retrospective propensity score-matched cohort study. Int J Surg. 2023;109(6):1552-1560. doi: 10.1097/JS9.0000000000000322

 

  1. Bhimani SJ, Bhimani R, Smith A, Eccles C, Smith L, Malkani A. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open. 2020;1(2):8-12. doi: 10.1302/2633-1462.12.BJO-2019-0004.R1

 

  1. MacAskill M, Blickenstaff B, Caughran A, Bullock M. Revision total knee arthroplasty using robotic arm technology. Arthroplast Today. 2022;13:35-42. doi: 10.1016/j.artd.2021.11.003

 

  1. Turan K, Camurcu Y, Kezer M, Uysal Y, Kizilay YO, Temiz A. Preliminary outcomes of kinematically aligned robot-assisted total knee arthroplasty with patient-specific cartilage thickness measurement. J Robot Surg. 2023;17(3):979-985. doi: 10.1007/s11701-022-01503-9

 

  1. Byrne C, Durst C, Rezzadeh K, Rockov Z, Moon C, Rajaee S. Robotic-assisted total knee arthroplasty reduces radiographic outliers for low-volume total knee arthroplasty surgeons. Arthroplast Today. 2024;25:101303. doi: 10.1016/j.artd.2023.101303

 

  1. Zhang X, Wang J. Global trends and hotspots in robot-assisted arthroplasty: A CiteSpace-based bibliometric and visualized analysis. J Robot Surg. 2025;19(1):146. doi: 10.1007/s11701-025-02331-3

 

  1. Lychagin AV, Gritsyuk AA, Elizarov MP, et al. Short-term outcomes of total knee arthroplasty using a conventional, computer-assisted, and robotic technique: A pilot clinical trial. J Clin Med. 2024;13(11):3125. doi: 10.3390/jcm13113125

 

  1. Vermue H, Batailler C, Monk P, Haddad F, Luyckx T, Lustig S. The evolution of robotic systems for total knee arthroplasty, each system must be assessed for its own value: A systematic review of clinical evidence and meta-analysis. Arch Orthop Trauma Surg. 2023;143(6):3369-3381. doi: 10.1007/s00402-022-04632-w

 

  1. Yue HY, Ding GQ, Li HX, et al. Does robotic-assisted total knee arthroplasty improve outcomes of adult osteoarthritis patients-a systematic review and trial sequential meta-analysis. Orthop Surg. 2025;17(6):1549-1560. doi: 10.1111/os.70007

 

  1. Ali M, Phillips D, Kamson A, Nivar I, Dahl R, Hallock R. Learning curve of robotic-assisted total knee arthroplasty for non-fellowship-trained orthopedic surgeons. Arthroplast Today. 2022;13:194-198. doi: 10.1016/j.artd.2021.10.020

 

  1. Duan X, Zhao Y, Zhang J, et al. Learning curve and short-term clinical outcomes of a new seven-axis robot-assisted total knee arthroplasty system: A propensity score-matched retrospective cohort study. J Orthop Surg Res. 2023;18(1):425. doi: 10.1186/s13018-023-03899-y

 

  1. Lonner JH, Goh GS. Moving beyond radiographic alignment: Applying the Wald Principles in the adoption of robotic total knee arthroplasty. Int Orthop. 2023;47(2):365-373. doi: 10.1007/s00264-022-05411-3

 

  1. Lau WH, Liu WKT, Chiu KY, et al. Reducing edge loading and alignment outliers with image-free robotic-assisted unicompartmental knee arthroplasty: A case controlled study. Arthroplasty. 2024;6(1):33. doi: 10.1186/s42836-024-00259-x

 

  1. Yeung MHY, Fu H, Cheung A, et al. Robotic arm-assisted unicondylar knee arthroplasty resulted in superior radiological accuracy: A propensity score-matched analysis. Arthroplasty. 2023;5(1):55. doi: 10.1186/s42836-023-00210-6

 

  1. Zhang P, Xu K, Zhang J, Chen P, Fang Y, Wang J. Comparison of robotic-assisted versus conventional unicompartmental knee arthroplasty for the treatment of single compartment knee osteoarthritis: A meta-analysis. Int J Med Robot. 2021;17(1):1-11. doi: 10.1002/rcs.2170

 

  1. Wu C, Fukui N, Lin YK, et al. Comparison of robotic and conventional unicompartmental knee arthroplasty outcomes in patients with osteoarthritis: A retrospective cohort study. J Clin Med. 2021;11(1):220. doi: 10.3390/jcm11010220

 

  1. Are L, De Mauro D, Rovere G, et al. Robotic-assisted unicompartimental knee arthroplasty performed with Navio system: A systematic review. Eur Rev Med Pharmacol Sci. 2023;27(6):2624-2633. doi: 10.26355/eurrev_202303_31799

 

  1. He K, Leng Y, Jiao X, et al. Early clinical outcomes of Naton robotic-assisted medial unicompartmental knee arthroplasty. Int Orthop. 2025;49(6):1339-1349. doi: 10.1007/s00264-025-06519-y

 

  1. Banger M, Doonan J, Rowe P, Jones B, MacLean A, Blyth MJB. Robotic arm-assisted versus conventional medial unicompartmental knee arthroplasty: Five-year clinical outcomes of a randomized controlled trial. Bone Joint J. 2021;103-B(6):1088-1095. doi: 10.1302/0301-620X.103B6.BJJ-2020-1355.R2

 

  1. Guild G, Schwab J, Ross BJ, McConnell MJ, Najafi F, Bradbury TL. Is robotic-assisted unicompartmental knee arthroplasty compared to manual unicompartmental knee arthroplasty associated with decreased revision rates? An updated matched cohort analysis. Arthroplast Today. 2025;32:101652. doi: 10.1016/j.artd.2025.101652

 

  1. Batailler C, Lording T, Naaim A, Servien E, Cheze L, Lustig S. No difference of gait parameters in patients with image-free robotic-assisted medial unicompartmental knee arthroplasty compared to a conventional technique: Early results of a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2023;31(3):803-813. doi: 10.1007/s00167-021-06560-5

 

  1. Liu P, Lu FF, Liu GJ, et al. Robotic-assisted unicompartmental knee arthroplasty: A review. Arthroplasty. 2021;3(1):15. doi: 10.1186/s42836-021-00071-x

 

  1. Wan D, Wang R, Wei J, et al. Mapping knowledge landscapes and emerging trends of robotic-assisted knee arthroplasty: A bibliometric analysis. Medicine (Baltimore). 2023;102(38):e35076. doi: 10.1097/MD.0000000000035076

 

  1. Cacciola G, Bosco F, Giustra F, et al. Learning curve in robotic-assisted total knee arthroplasty: A systematic review of the literature. Appl Sci. 2022;12(21):1085. doi: 10.3390/app122111085

 

  1. Malkani A, Marchand R, Sultan A, et al. The learning curve associated with robotic total knee arthroplasty. J Knee Surg. 2017;31(1):17-21. doi: 10.1055/s-0037-1608809

 

  1. Batailler C, Shatrov J, Sappey-Marinier E, ServienE, Parratte S, Lustig S. Artificial intelligence in knee arthroplasty: Current concept of the available clinical applications. Arthroplasty. 2022;4(1):17. doi: 10.1186/s42836-022-00119-6

 

  1. Lan Q, Li S, Zhang J, Guo H, Yan L, Tang F. Reliable prediction of implant size and axial alignment in AI-based 3D preoperative planning for total knee arthroplasty. Sci Rep. 2024;14(1):16971. doi: 10.1038/s41598-024-67276-3

 

  1. Liu X, Li S, Zou X, et al. Development and clinical validation of a deep learning-based knee CT image segmentation method for robotic-assisted total knee arthroplasty. Int J Med Robot Comput Assist Surg. 2024;20(4):e2664. doi: 10.1002/rcs.2664

 

  1. Park KB, Kim MS, Yoon DK, Jeon YD. Clinical validation of a deep learning-based approach for preoperative decision-making in implant size for total knee arthroplasty. J Orthop Surg Res. 2024;19(1):637. doi: 10.1186/s13018-024-05128-6

 

  1. Bagaria V, Tiwari A. Augmented Intelligence in Joint Replacement Surgery: How can artificial intelligence (AI) bridge the gap between the man and the machine? Arthroplasty. 2022;4(1):4. doi: 10.1186/s42836-021-00108-1

 

  1. Huang KC, Hua Y, Salcedo J. Cost-effectiveness analysis of robotic-arm assisted total knee arthroplasty. PLoS One. 2022;17(11):e0277980. doi: 10.1371/journal.pone.0277980

 

  1. Jevnikar BE, Khan ST, Emara AK, Elmenawi KA, Deren M, Piuzzi NS. Robotic total hip and knee arthroplasty: Economic impact and workflow efficiency. J Robot Surg. 2025;19(1):578. doi: 10.1007/s11701-025-02698-3

 

  1. Ruangsomboon P, Ruangsomboon O, Isaranuwatchai W, Zywiel MG, Naimark DMJ. Cost-effectiveness of robotic-assisted versus conventional total knee arthroplasty: An analysis from a middle income country. Acta Orthop. 2025;96:716-725. doi: 10.2340/17453674.2025.44753
Share
Back to top
Orthopedics and Tissue Engineering, Published by AccScience Publishing