Osteoimmunological effects of macrophages: Mediators that maintain bone homeostasis and function as nanoscale robocops in bone repair

The immune system is essential in the regulation of bone metabolic diseases. When immune dysfunction arises, the skeletal system alters its response to immune signals, potentially resulting in bone loss or a heightened risk of fractures. Macrophage activation is considered a critical factor in immunology, tissue homeostasis, disease progression, and inflammation resolution. With ongoing advancements in technology, the use of nanomaterials in combination with macrophages for bone tissue repair has become a highly promising area of research. This review explores the crosstalk between macrophages and their polarized forms, as well as their interactions with bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts. Furthermore, this work emphasizes the critical aspects of using novel nanomaterials that engage macrophages to enhance bone tissue repair. The goal is to underscore the significance of understanding these biological processes in maintaining homeostasis between the skeletal and immune systems, with a particular focus on bone immunology for future research.
- Horton JE, Raisz LG, Simmons HA, Oppenheim JJ, Mergenhagen SE. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science. 1972;177(4051):793-795. doi: 10.1126/science.177.4051.793
- Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon SE. Evidence for the secretion of an osteoclast stimulating factor in myeloma. New Engl J Med. 1974;291(20):1041-1046. doi: 10.1056/nejm197411142912001
- Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 2014;41(1):14-20. doi: 10.1016/j.immuni.2014.06.008
- Murray PJ. Macrophage polarization. Ann Rev Physiol. 2017;79:541-566. doi: 10.1146/annurev-physiol-022516-034339
- Horwood NJ. Macrophage polarization and bone formation: A review. Clin Rev Allergy Immunol. 2016;51(1):79-86. doi: 10.1007/s12016-015-8519-2
- Lassus J, Salo J, Jiranek WA, et al. Macrophage activation results in bone resorption. Clin Orthop Relat Res. 1998;352:7-15.
- Gong L, Zhao Y, Zhang Y, Ruan Z. The macrophage polarization regulates MSC osteoblast differentiation in vitro. Ann Clin Lab Sci. 2016;46(1):65-71.
- Zhang Y, Böse T, Unger RE, Jansen JA, Kirkpatrick CJ, Van den Beucken J. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell Tissue Res. 2017;369(2):273-286. doi: 10.1007/s00441-017-2598-8
- Veronese ML, Veronesi A, D’Andrea E, et al. Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice. I. T lymphocyte requirement for B cell tumor generation. J Exp Med. 1992;176(6):1763-1767. doi: 10.1084/jem.176.6.1763
- Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14(10):986-995. doi: 10.1038/ni.2705
- Das A, Sinha M, Datta S, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 2015;185(10):2596-2606. doi: 10.1016/j.ajpath.2015.06.001
- Ginhoux F, Jung S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392-404. doi: 10.1038/nri3671
- Wang H, Yu H, Huang T, Wang B, Xiang L. Hippo-YAP/ TAZ signaling in osteogenesis and macrophage polarization: Therapeutic implications in bone defect repair. Genes Dis. 2023;10(6):2528-2539. doi: 10.1016/j.gendis.2022.12.012
- Yang D, Yang L, Cai J, et al. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res. 2021;167:105576. doi: 10.1016/j.phrs.2021.105576
- Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419. doi: 10.3389/fphys.2018.00419
- Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450-462. doi: 10.1016/j.immuni.2016.02.015
- Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440. doi: 10.1002/jcp.26429
- Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol. 2015;27(4):237-248. doi: 10.1016/j.smim.2015.10.003
- Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677-686. doi: 10.1016/j.it.2004.09.015
- Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am J Pathol. 2012;180(4):1340-1355. doi: 10.1016/j.ajpath.2012.02.004
- Yan Q, Liu H, Zhu R, Zhang Z. Contribution of macrophage polarization in bone metabolism: A literature review. Cytokine. 2024;184:156768. doi: 10.1016/j.cyto.2024.156768
- Daneshvar A, Nemati P, Azadi A, Amid R, Kadkhodazadeh M. M2 macrophage-derived exosomes for bone regeneration: A systematic review. Arch Oral Biol. 2024;166:106034. doi: 10.1016/j.archoralbio.2024.106034
- Khoury MI. Osteoporosis and inflammation: Cause to effect or comorbidity? Review. Int J Rheum Dis. 2024;27(10):e15357. doi: 10.1111/1756-185x.15357
- Benasciutti E, Mariani E, Oliva L, et al. MHC class II transactivator is an in vivo regulator of osteoclast differentiation and bone homeostasis co-opted from adaptive immunity. J Bone Miner Res. 2014;29(2):290-303. doi: 10.1002/jbmr.2090
- Liu N, Dong J, Li L, Liu F. Osteoimmune interactions and therapeutic potential of macrophage-derived small extracellular vesicles in bone-related diseases. Int J Nanomedicine. 2023;18:2163-2180. doi: 10.2147/ijn.S403192
- Liang Z, Zhang G, Gan G, et al. Activation of the HMGB1- TLR4 pathway impacts the functionality of bone marrow mesenchymal stem cells and disrupts macrophage polarization in immune thrombocytopenia. Br J Haematol. 2024;205(4):1516-1531. doi: 10.1111/bjh.19709
- Yang N, Wu T, Li M, et al. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming. Bioact Mater. 2025;43:48-66. doi: 10.1016/j.bioactmat.2024.09.012
- Zhang J, Akiyama K, Mun AY, et al. Age-related effects on MSC immunomodulation, macrophage polarization, apoptosis, and bone regeneration correlate with IL-38 expression. Int J Mol Sci. 2024;25(6):3252. doi: 10.3390/ijms25063252
- Carty F, Mahon BP, English K. The influence of macrophages on mesenchymal stromal cell therapy: Passive or aggressive agents? Clin Exp Immunol. 2017;188(1):1-11. doi: 10.1111/cei.12929
- Ko JH, Lee HJ, Jeong HJ, et al. Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc Natl Acad Sci U S A. 2016;113(1):158-163. doi: 10.1073/pnas.1522905113
- De Barros S, Dehez S, Arnaud E, et al. Aging-related decrease of human ASC angiogenic potential is reversed by hypoxia preconditioning through ROS production. Mol Ther J. 2013;21(2):399-408. doi: 10.1038/mt.2012.213
- Jiang X, Li W, Ge L, Lu M. Mesenchymal stem cell senescence during aging: From mechanisms to rejuvenation strategies. Aging Dis. 2023;14(5):1651-1676. doi: 10.14336/ad.2023.0208
- Wang T, Yu Z, Lin S, et al. 3D-printed Mg-incorporated PCL-based scaffolds improves rotator cuff tendon-bone healing through regulating macrophage polarization. Front Bioeng Biotechnol. 2024;12:1407512. doi: 10.3389/fbioe.2024.1407512
- Zhang S, Xie D, Zhang Q. Mesenchymal stem cells plus bone repair materials as a therapeutic strategy for abnormal bone metabolism: Evidence of clinical efficacy and mechanisms of action implied. Pharmacol Res. 2021;172:105851. doi: 10.1016/j.phrs.2021.105851
- Satoh T, Otsuka A, Contassot E, French LE. The inflammasome and IL-1β: Implications for the treatment of inflammatory diseases. Immunotherapy. 2015;7(3):243-254. doi: 10.2217/imt.14.106
- Robaszkiewicz A, Qu C, Wisnik E, et al. ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β. Sci Rep. 2016;6:21131. doi: 10.1038/srep21131
- Ohori F, Kitaura H, Ogawa S, et al. IL-33 inhibits TNF-α- induced osteoclastogenesis and bone resorption. Int J Mol Sci. 2020;21(3):1130. doi: 10.3390/ijms21031130
- Shiratori T, Kyumoto-Nakamura Y, Kukita A, et al. IL-1β induces pathologically activated osteoclasts bearing extremely high levels of resorbing activity: A possible pathological subpopulation of osteoclasts, accompanied by suppressed expression of kindlin-3 and talin-1. J Immunol. 2018;200(1):218-228. doi: 10.4049/jimmunol.1602035
- Putnam NE, Fulbright LE, Curry JM, et al. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus osteomyelitis. PLoS Pathog. 2019;15(4):e1007744. doi: 10.1371/journal.ppat.1007744
- Kim JH, Jin HM, Kim K, et al. The mechanism of osteoclast differentiation induced by IL-1. J Immunol. 2009;183(3):1862-1870. doi: 10.4049/jimmunol.0803007
- Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: A narrative review. Int J Oral Sci. 2020;12(1):2. doi: 10.1038/s41368-019-0068-8
- Sims NA. Influences of the IL-6 cytokine family on bone structure and function. Cytokine. 2021;146:155655. doi: 10.1016/j.cyto.2021.155655
- Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem. 2008;283(17):11535-11540. doi: 10.1074/jbc.M607999200
- Feng W, Liu H, Luo T, et al. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways. Sci Rep. 2017;7:41411. doi: 10.1038/srep41411
- Chang PY, Wu HK, Chen YH, et al. Interleukin-6 transiently promotes proliferation of osteoclast precursors and stimulates the production of inflammatory mediators. Mol Biol Rep. 2022;49(5):3927-3937. doi: 10.1007/s11033-022-07243-1
- Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33:127-148. doi: 10.1093/intimm/dxaa078
- Kang YK, Zhang MC. IL-23 promotes osteoclastogenesis in osteoblast-osteoclast co-culture system. Genet Mol Res GMR. 2014;13(2):4673-4679. doi: 10.4238/2014.June.18.10
- Adamopoulos IE, Tessmer M, Chao CC, et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol. 2011;187(2):951-959. doi: 10.4049/jimmunol.1003986
- Quinn JM, Sims NA, Saleh H, et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J Immunol. 2008;181(8):5720-5729. doi: 10.4049/jimmunol.181.8.5720
- Chimenti MS, Perricone C, Conigliaro P, et al. Tackling the autoimmune side in spondyloarthritis: A systematic review. Autoimmun Rev. 2020;19(10):102648. doi: 10.1016/j.autrev.2020.102648
- Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol. 2008;38(10):2845-2854. doi: 10.1002/eji.200838192
- Kamiya S, Nakamura C, Fukawa T, et al. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. J Bone Miner Metab. 2007;25(5):277-285. doi: 10.1007/s00774-007-0766-8
- Razawy W, Alves CH, Koedam M, et al. IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Sci Rep. 2021;11(1):10244. doi: 10.1038/s41598-021-89625-2
- Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177-185. doi: 10.1038/nature21363
- Jafaripour S, Sedighi S, Jokar MH, Aghaei M, Moradzadeh M. Inflammation, diet, and type 2 diabetes: A mini-review. J Immunoassay Immunochem. 2020;41(4):768-777. doi: 10.1080/15321819.2020.1750423
- Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 2014;5:48. doi: 10.3389/fimmu.2014.00048
- Luo G, Li F, Li X, Wang ZG, Zhang B. TNFα and RANKL promote osteoclastogenesis by upregulating RANK via the NFκB pathway. Mol Med Rep. 2018;17(5):6605-6611. doi: 10.3892/mmr.2018.8698
- Yao Z, Lei W, Duan R, Li Y, Luo L, Boyce BF. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J Biol Chem. 2017;292(24):10169-10179. doi: 10.1074/jbc.M116.771816
- Zha L, He L, Liang Y, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother. 2018;102:369-374. doi: 10.1016/j.biopha.2018.03.080
- Murad R, Shezad Z, Ahmed S, Ashraf M, Qadir M, Rehman R. Serum tumour necrosis factor alpha in osteopenic and osteoporotic postmenopausal females: A cross-sectional study in Pakistan. JPMA J Pak Med Assoc. 2018;68(3):428-431.
- Lange U, Teichmann J, Müller-Ladner U, Strunk J. Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: A prospective open-label pilot study. Rheumatology (Oxford). 2005;44(12):1546-1548. doi: 10.1093/rheumatology/kei082
- Tang M, Tian L, Luo G, Yu X. Interferon-gamma-mediated osteoimmunology. Front Immunol. 2018;9:1508. doi: 10.3389/fimmu.2018.01508
- Yoshimatsu M, Kitaura H, Fujimura Y, et al. IL-12 inhibits TNF-alpha induced osteoclastogenesis via a T cell-independent mechanism in vivo. Bone. 2009;45(5):1010-1016. doi: 10.1016/j.bone.2009.07.079
- Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999;103(1 Pt 1):11-24. doi: 10.1016/s0091-6749(99)70518-x
- Horwood NJ, Elliott J, Martin TJ, Gillespie MT. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol. 2001;166(8):4915-4921. doi: 10.4049/jimmunol.166.8.4915
- Cornish J, Gillespie MT, Callon KE, Horwood NJ, Moseley JM, Reid IR. Interleukin-18 is a novel mitogen of osteogenic and chondrogenic cells. Endocrinology. 2003;144(4):1194-1201. doi: 10.1210/en.2002-220936
- Ma X, Zhu X, He X, Yi X, Jin A. The Wnt pathway regulator expression levels and their relationship to bone metabolism in thoracolumbar osteoporotic vertebral compression fracture patients. Am J Transl Res. 2021;13(5):4812-4818.
- Fujioka K, Kishida T, Ejima A, et al. Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10. Biochem Biophys Res Commun. 2015;456(3):785-791. doi: 10.1016/j.bbrc.2014.12.040
- Yi L, Li Z, Jiang H, Cao Z, Liu J, Zhang X. Gene modification of transforming growth factor β (TGF-β) and interleukin 10 (IL-10) in suppressing mt sonicate induced osteoclast formation and bone absorption. Med Sci Monit. 2018;24:5200-5207. doi: 10.12659/msm.909720
- Azizieh F, Raghupathy R, Shehab D, Al-Jarallah K, Gupta R. Cytokine profiles in osteoporosis suggest a proresorptive bias. Menopause. 2017;24(9):1057-1064. doi: 10.1097/gme.0000000000000885
- Sapra L, Bhardwaj A, Mishra PK, et al. Regulatory B cells (Bregs) inhibit osteoclastogenesis and play a potential role in ameliorating ovariectomy-induced bone loss. Front Immunol. 2021;12:691081. doi: 10.3389/fimmu.2021.691081
- Talaat RM, Sidek A, Mosalem A, Kholief A. Effect of bisphosphonates treatment on cytokine imbalance between TH17 and Treg in osteoporosis. Inflammopharmacology. 2015;23(2-3):119-125. doi: 10.1007/s10787-015-0233-4
- Wang Y, Zhang W, Lim SM, Xu L, Jin JO. Interleukin-10- producing B cells help suppress ovariectomy-mediated osteoporosis. Immune Netw. 2020;20(6):e50. doi: 10.4110/in.2020.20.e50
- Kassem M, Kveiborg M, Eriksen EF. Production and action of transforming growth factor-beta in human osteoblast cultures: Dependence on cell differentiation and modulation by calcitriol. Eur J Clin Investig. 2000;30(5):429-437. doi: 10.1046/j.1365-2362.2000.00645.x
- Kasagi S, Chen W. TGF-beta1 on osteoimmunology and the bone component cells. Cell Biosci. 2013;3(1):4. doi: 10.1186/2045-3701-3-4
- Pathak JL, Bakker AD, Verschueren P, et al. CXCL8 and CCL20 enhance osteoclastogenesis via modulation of cytokine production by human primary osteoblasts. PLoS One. 2015;10(6):e0131041. doi: 10.1371/journal.pone.0131041
- Collins FL, Williams JO, Bloom AC, et al. CCL3 and MMP-9 are induced by TL1A during death receptor 3 (TNFRSF25)- dependent osteoclast function and systemic bone loss. Bone. 2017;97:94-104. doi: 10.1016/j.bone.2017.01.002
- Xuan W, Feng X, Qian C, et al. Osteoclast differentiation gene expression profiling reveals chemokine CCL4 mediates RANKL-induced osteoclast migration and invasion via PI3K pathway. Cell Biochem Funct. 2017;35(3):171-177. doi: 10.1002/cbf.3260
- Dong Y, Song C, Wang Y, et al. Inhibition of PRMT5 suppresses osteoclast differentiation and partially protects against ovariectomy-induced bone loss through downregulation of CXCL10 and RSAD2. Cell Signal. 2017;34:55-65. doi: 10.1016/j.cellsig.2017.03.004
- Liu P, Lee S, Knoll J, et al. Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ. 2017;24(4):672-682. doi: 10.1038/cdd.2016.165
- Koizumi K, Saitoh Y, Minami T, et al. Role of CX3CL1/ fractalkine in osteoclast differentiation and bone resorption. J Immunol. 2009;183(12):7825-7831. doi: 10.4049/jimmunol.0803627
- Cao G, Xu Q, Huang S, et al. B10 cells regulate macrophage polarization to alleviate inflammation and bone loss in periodontitis. J Periodontol. 2024;96:355-368. doi: 10.1002/jper.24-0114
- Ross EA, Devitt A, Johnson JR. Macrophages: The good, the bad, and the gluttony. Front Immunol. 2021;12:708186. doi: 10.3389/fimmu.2021.708186
- Cao Y, Liu J, Huang C, et al. Wilforlide A ameliorates the progression of rheumatoid arthritis by inhibiting M1 macrophage polarization. J Pharmacol Sci. 2022;148(1):116-124. doi: 10.1016/j.jphs.2021.10.005
- Degboé Y, Poupot R, Poupot M. Repolarization of unbalanced macrophages: Unmet medical need in chronic inflammation and cancer. Int J Mol Sci. 2022;23(3):1496. doi: 10.3390/ijms23031496
- Malemud CJ, Miller AH. Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets. 2008;12(2):171-183. doi: 10.1517/14728222.12.2.171
- McHugh J. Synovial macrophage populations linked to RA remission. Nat Rev Rheumatol. 2020;16(9):471. doi: 10.1038/s41584-020-0481-6
- Park SY, Lee SW, Lee SY, et al. SIRT1/adenosine monophosphate-activated protein kinase α signaling enhances macrophage polarization to an anti-inflammatory phenotype in rheumatoid arthritis. Front Immunol. 2017;8:1135. doi: 10.3389/fimmu.2017.01135
- Agrawal N. A comprehensive review on the advancements of dual COX-2/5-LOX inhibitors as anti-inflammatory drugs. Chem Biol Drug Design. 2025;105(5):e70114. doi: 10.1111/cbdd.70114
- Timur UT, Caron MMJ, Bastiaansen-Jenniskens YM, et al. Celecoxib-mediated reduction of prostanoid release in Hoffa’s fat pad from donors with cartilage pathology results in an attenuated inflammatory phenotype. Osteoarthritis Cartilage. 2018;26(5):697-706. doi: 10.1016/j.joca.2018.01.025
- Cappelli LC, Brahmer JR, Forde PM, et al. Clinical presentation of immune checkpoint inhibitor-induced inflammatory arthritis differs by immunotherapy regimen. Semin Arthritis Rheum. 2018;48(3):553-557. doi: 10.1016/j.semarthrit.2018.02.011
- Bensa A, Sangiorgio A, Boffa A, Salerno M, Moraca G, Filardo G. Corticosteroid injections for knee osteoarthritis offer clinical benefits similar to hyaluronic acid and lower than platelet-rich plasma: A systematic review and meta-analysis. EFORT Open Rev. 2024;9(9):883-895. doi: 10.1530/eor-23-0198
- Baschant U, Lane NE, Tuckermann J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(11):645-655. doi: 10.1038/nrrheum.2012.166
- Cao Y, Cai R, Han S, et al. Quantitative analysis of the efficacy and associated factors of intra-articular hyaluronic acid with respect to osteoarthritis symptoms: A systematic review of randomized trials and model-based meta-analysis. Osteoarthritis Cartilage. 2025;33:666-679. doi: 10.1016/j.joca.2025.01.008
- Shu CC, Zaki S, Ravi V, Schiavinato A, Smith MM, Little CB. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: Differential effect of stem cell and hyaluronan treatment. Arthritis Res Ther. 2020;22(1):29. doi: 10.1186/s13075-020-2117-2
- Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol. 2022;13:982773. doi: 10.3389/fimmu.2022.982773
- Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R, Simpson A. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res. 2020;9(11):798-807. doi: 10.1302/2046-3758.911.bjr-2020-0178.r1
- Castanheira C, Balaskas P, Falls C, et al. Equine synovial fluid small non-coding RNA signatures in early osteoarthritis. BMC Vet Res. 2021;17(1):26. doi: 10.1186/s12917-020-02707-7
- Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol. 2021;200:101970. doi: 10.1016/j.pneurobio.2020.101970
- Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation. 2020;17(1):240. doi: 10.1186/s12974-020-01897-z
- Xu Y, Cui K, Li J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. 2020;69(1):e12660. doi: 10.1111/jpi.12660
- Fodor D, Bondor C, Albu A, Simon SP, Craciun A, Muntean L. The value of osteopontin in the assessment of bone mineral density status in postmenopausal women. J Investig Med. 2013;61(1):15-21. doi: 10.2310/jim.0b013e3182761264
- Dou C, Ding N, Zhao C, et al. Estrogen deficiency-mediated M2 macrophage osteoclastogenesis contributes to M1/M2 ratio alteration in ovariectomized osteoporotic mice. J Bone Miner Res. 2018;33(5):899-908. doi: 10.1002/jbmr.3364
- Wu X, Xia Y, Dai H, et al. Metabolic control during macrophage polarization by a citrate-functionalized scaffold for maintaining bone homeostasis. Adv Healthc Mater. 2024;13(22):e2400770. doi: 10.1002/adhm.202400770
- Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462. doi: 10.3389/fimmu.2019.01462
- Toita R, Shimizu Y, Shimizu E, et al. Collagen patches releasing phosphatidylserine liposomes guide M1-to-M2 macrophage polarization and accelerate simultaneous bone and muscle healing. Acta Biomater. 2024;187:51-65. doi: 10.1016/j.actbio.2024.08.012
- Xu HT, Lee CW, Li MY, Wang YF, Yung PS, Lee OK. The shift in macrophages polarisation after tendon injury: A systematic review. J Orthop Translast. 2020;21:24-34. doi: 10.1016/j.jot.2019.11.009
- Yang Y, Zeng Q, Zhao C, et al. Metal-free antioxidant nanozyme incorporating bioactive hydrogel as an antioxidant scaffold for accelerating bone reconstruction. Biomaterials. 2025;320:123285. doi: 10.1016/j.biomaterials.2025.123285
- Zhang Q, Pathak JL, Wu H, et al. Pollen-like mesoporous silica nanoparticles facilitate macrophage-mediated anti-inflammatory response via physical contact cues in the osteoimmune microenvironment. Acta Biomater. 2025;197:339-356. doi: 10.1016/j.actbio.2025.03.014
- Lv L, Xie Y, Li K, et al. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Adv Healthc Mater. 2018;7(19):e1800675. doi: 10.1002/adhm.201800675
- Ni S, Zhai D, Huan Z, Zhang T, Chang J, Wu C. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis. Nanoscale. 2020;12(31):16474-16488. doi: 10.1039/d0nr03886e
- Zhang T, Jiang M, Yin X, Yao P, Sun H. The role of autophagy in the process of osseointegration around titanium implants with micro-nano topography promoted by osteoimmunity. Sci Rep. 2021;11(1):18418. doi: 10.1038/s41598-021-98007-7
- Yang C, Zhao C, Wang X, et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale. 2019;11(38):17699-17708. doi: 10.1039/c9nr05730g
- Chen B, You Y, Ma A, et al. Zn-incorporated TiO(2) nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages. Int J Nanomed. 2020;15:2095-2118. doi: 10.2147/ijn.S244349
- Pan H, Xie Y, Zhang Z, et al. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis. Biomed Mater. 2017;12(4):045006. doi: 10.1088/1748-605X/aa6b7c
- Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano. 2019;13(6):6581-6595. doi: 10.1021/acsnano.9b00489
- Bai L, Liu Y, Du Z, et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018;76:344-358. doi: 10.1016/j.actbio.2018.06.023
- Bai L, Chen P, Zhao Y, et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials. 2021;278:121162. doi: 10.1016/j.biomaterials.2021.121162
- Ma QL, Fang L, Jiang N, et al. Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces. Biomaterials. 2018;154:234-247. doi: 10.1016/j.biomaterials.2017.11.003
- Sun G, Shu T, Ma S, Li M, Qu Z, Li A. A submicron forest-like silicon surface promotes bone regeneration by regulating macrophage polarization. Front Bioeng Biotechnol. 2024;12:1356158. doi: 10.3389/fbioe.2024.1356158
- Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8(4):e1801106. doi: 10.1002/adhm.201801106
- Kim YH, Oreffo ROC, Dawson JI. From hurdle to springboard: The macrophage as target in biomaterial-based bone regeneration strategies. Bone. 2022;159:116389. doi: 10.1016/j.bone.2022.116389
- Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials. 2020;239:119833. doi: 10.1016/j.biomaterials.2020.119833
- Zhang W, Zhao F, Huang D, Fu X, Li X, Chen X. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration. ACS Appli Mater Interfaces. 2016;8(45):30747-30758. doi: 10.1021/acsami.6b10378
- Lee CH, Kim YJ, Jang JH, Park JW. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. Nanotechnol. 2016;27(8):085101. doi: 10.1088/0957-4484/27/8/085101
- Choi SM, Park JW. Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function. J Biomed Mater Res Part A. 2018;106(12):3009-3020. doi: 10.1002/jbm.a.36490
- Xu AT, Xie YW, Xu JG, Li J, Wang H, He FM. Effects of strontium-incorporated micro/nano rough titanium surfaces on osseointegration via modulating polarization of macrophages. Colloids Surf B Biointerfaces. Nov 2021;207:111992. doi: 10.1016/j.colsurfb.2021.111992
- Li J, Wen J, Li B, et al. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation. Adv Sci (Weinh). 2018;5(2):1700678. doi: 10.1002/advs.201700678
- Liu Z, Zhu J, Li Z, Liu H, Fu C. Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration. Front Bioeng Biotechnol. 2023;11:1140393. doi: 10.3389/fbioe.2023.1140393
- Xie Y, Hu C, Feng Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater. 2020;7(3):233-245. doi: 10.1093/rb/rbaa006
- Xue P, Chang Z, Chen H, et al. Macrophage membrane (MMs) camouflaged near-infrared (NIR) responsive bone defect area targeting nanocarrier delivery system (BTNDS) for rapid repair: Promoting osteogenesis via phototherapy and modulating immunity. J Nanobiotechnol. 2024;22(1):87. doi: 10.1186/s12951-024-02351-5
- Wang C, Liu Y, Wang Y, et al. Adenovirus-mediated siRNA targeting CXCR2 attenuates titanium particle-induced osteolysis by suppressing osteoclast formation. Med Sci Monit. 2016;22:727-735. doi: 10.12659/msm.897243
- Huang F, Pan H, Tan Z, Chen L, Li T, Liu Y. Prevotella histicola Prevented Particle-Induced osteolysis via gut microbiota-dependent modulation of inflammation in Ti-treated mice. Probiotics Antimicrob Proteins. 2024;16(2):383-393. doi: 10.1007/s12602-023-10057-7
- Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B. 2024;12(31):7480-7496. doi: 10.1039/d3tb02563b
- Zhang Q, Sun W, Li T, Liu F. Polarization behavior of bone macrophage as well as associated osteoimmunity in glucocorticoid-induced osteonecrosis of the femoral head. J Inflamm Res. 2023;16:879-894. doi: 10.2147/jir.S401968