AccScience Publishing / JCTR / Volume 1 / Issue 2 / DOI: 10.18053/jctres.201502.006
REVIEW

Laser-assisted vessel welding: state of the art and future outlook

Dara R. Pabittei1,2,3 Wadim de Boon4 Michal Heger4 Rowan F. van Golen4 Ron Balm2 Dink A. Legemate2 Bas A. de Mol1,5*
Show Less
1 Department of Cardiothoracic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
2 Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
3 Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
4 Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
5 Department of Biomedical Engineering, Material Technology, Technical University Eindhoven, Eindhoven, the Netherlands
Submitted: 14 July 2015 | Revised: 23 September 2015 | Accepted: 23 September 2015 | Published: 30 September 2015
© 2015 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Laser-assisted vascular welding (LAVW) is an experimental technique being developed as an al-ternative to suture anastomosis. In comparison to mechanical anastomosis, LAVW is less traumatic, non-immunogenic, provides immediate watertight sealant, and possibly a faster and easier procedure for minimally invasive surgery. This review focuses on technical advances to improve welding strength and to reduce thermal damage in LAVW. In terms of welding strength, LAVW has evolved from the photothermal-induced microvascular anastomosis, requiring stay sutures to support welding strength, to sutureless anastomoses of medium-sized vessels, withstanding physiological and supraphysiological pressure. Further improvements in anastomotic strength could be achieved by the addition of chromophore-containing albumin solder and the employment of (biocompatible) polymeric scaffolds. The anastomotic strength and the stability of welds achieved with such a modality, referred to as scaffold- and solder-enhanced LAVW (ssLAVW), are dependent on the intermolecular bonding of solder molecules (cohesive bonding) and the bonding between solder and tissue collagen (adhesive bonding). Presently, the challenges of ssLAVW include (1) obtaining an optimal balance between cohesive and adhesive bonding and (2) minimizing thermal damage. The modulation of thermodynamics during welding, the application of semi-solid solder, and the use of a scaffold that supports both cohesive and adhesive strength are essential to improve welding strength and to limit thermal damage.

Keywords
laser-assisted vessel welding
suture anastomosis
laser-assisted vascular anastomosis
thermodynamic
tissue
heat distribution
Conflict of interest
The authors declare they have no competing interests.
References

[1] Apoil A, Travers V, Jagueux M, Trevidic P, Nicoletis C. [Use of CO2 laser in microsurgical vascular suture. Experimental study of 240 anastomoses and first clinical cases]. Chirurgie 1987; 113: 902- 905.

[2] Back MR, Kopchok GE, White RA, Cavaye DM, Donayre CE, Peng SK. Nd:YAG laser-welded canine arteriovenous anastomoses. Lasers Surg Med 1994; 14: 111- 117.

[3] Bailes JE, Quigley MR, Kwaan HC, Cerullo LJ, Brown JT. Fibrinolytic activity following laser-assisted vascular anastomosis. Microsurgery 1985; 6: 163-168.

[4] Bass LS, Moazami N, Pocsidio J, Oz MC, LoGerfo P, Treat MR. Changes in type I collagen following laser welding. Lasers Surg Med 1992; 12: 500-505.

[5] Basu S, Marini CP, Coons MS, Woloszyn TT, Folliguet TA, Baumann FG, Jacobowitz IJ. Internal mammary coronary artery anastomosis by CO2 laser: an acute experimental study. J Card Surg 1991; 6: 286-293.

[6] Bentz ML, Parva B, Dickson CS, Futrell JW, Johnson PC. Laser-assisted microvascular anastomosis of human adult and placental arteries with expanded polytetrafluoroethylene microconduit. Plast Reconstr Surg 1993; 91: 1124-1131.

[7] Burger RA, Gerharz CD, Kuppers P, Engelmann U. Laser welded vascular anastomosis. Comparison of CO2 and neodym yag laser techniques. Urol Res 1988; 16: 127-131.

[8] Chikamatsu E, Sakurai T, Nishikimi N, Yno T, Nimura Y. Comparison of laser vascular welding, interrupted sutures, and continuous sutures in growing vascular anastomoses. Lasers Surg Med 1995; 16: 34-40.

[9] Constantinescu MA, Alfieri A, Mihalache G, Stuker F, Ducray A, Seiler RW, Frenz M, Reinert M. Effect of laser soldering irradiation on covalent bonds of pure collagen. Lasers Med Sci 2007; 22: 10-14.

[10] Dalsing MC, Packer CS, Kueppers P, Griffith SL, Davis TE. Laser and suture anastomosis: passive compliance and active force production. Lasers Surg Med 1992; 12: 190-198.

[11] Flemming AF, Bown SG, Colles MJ, Brough MD. Comparison of laser-assisted and conventionally sutured microvascular anastomoses by bursting pressure: a reanalysis and further studies. Microsurgery 1990; 11: 25-33.

[12] Gennaro M, Ascer E, Mohan C, Wang S. A comparison of CO2 laser-assisted venous anastomoses and conventional suture techniques: patency, aneurysm formation, and histologic differences. J Vasc Surg 1991; 14: 605-613.

[13] Godlewski G, Pradal P, Rouy S, Charras A, Dauzat M, Lan O, Lopez FM. Microvascular carotid end-to-end anastomosis with the argon laser. World J Surg 1986; 10: 829-833.

[14] Godlewski G, Rouy S, Tang J, Dauzat M, Chambettaz F, Salathé RP. Scanning electron microscopy of microarterial anastomoses with a diode laser: comparison with conventional manual suture. J Reconstr Microsurg 1995; 11: 37-41.

[15] Guo J, Chao YD. Low power CO2 laser-assisted microvascular anastomosis: an experimental study. Neurosurgery 1988; 22: 540- 543.

[16] Jain KK, Gorisch W. Repair of small blood vessels with the neodymium-YAG laser: a preliminary report. Surgery 1979; 85: 684-688.

[17] Jain KK. Sutureless microvascular anastomosis using a neodymium-yag laser. J Microsurg 1980; 1: 436-439.

[18] Klein SL, Chen H, Israel-Graff J. A comparison by burst testing of three types of vascular anastomosis. Microsurgery 1998; 18: 29-32.

[19] Kopchok G, White RA, Grundfest WS, Fujitani RM, Litvack F, Klein SR, White GH. Thermal studies of in-vivo vascular tissue fusion by argon laser. J Invest Surg 1988; 1: 5-12.

[20] Martinot VL, Mordon SR, Mitchell VA, Pellerin PN, Brunetaud JM. Determination of efficient parameters for argon laser-assisted anastomoses in rats: macroscopic, thermal, and histological evaluation. Lasers Surg Med 1994; 15: 168-175.

[21] Martinot VL, Mitchell VA, Mordon SR, Schoofs M, Pellerin PN, Brunetaud M. Sixty argon laser-assisted anastomoses in rats: macroscopic and histological studies. Microsurgery 1995; 16: 803-807.

[22] Nakata S, Campbell CD, Replogle RL. Experimental aortocoronary artery bypass grafting using a CO2 laser on the dog: acute experiment. Ann Thorac Surg 1989; 48: 628-631.

[23] Niijima KH, Yonekawa Y, Handa H, Taki W. Nonsuture microvascular anastomosis using an Nd-YAG laser and a water-soluble polyvinyl alcohol splint. J Neurosurg 1987; 67: 579-583.

[24] Ott B, Zuger BJ, Erni D, Banic A, Schaffner T, Weber HP, Frenz M. Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser. Lasers Med Sci 2001; 16: 260-266.

[25] Quigley MR, Bailes JE, Kwaan HC, Cerullo LJ, Brown JT, Fitsimmons J. Comparison of bursting strength between suture- and laser-anastomosed vessels. Microsurgery 1985; 6: 229-232.

[26] Ruiz-Razura A, Lan M, Hita CE, Khan Z, Hwang NH, Cohen BE. Bursting strength in CO2 laser-assisted microvascular anastomoses. J Reconstr Microsurg 1988; 4: 291-296.

[27] Ruiz-Razura A, Branfman GS, Lan M, Cohen BE. Laser-assisted microsurgical anastomoses in traumatized blood vessels. J Reconstr Microsurg 1990; 6: 55-59.

[28] Schmiedt W, Gruber G, Iversen S, Oelert H. Laser welding-suitable for vascular anastomosis? Thorac Cardiovasc Surg 1994; 42: 333-336.

[29] Schober R, Ulrich F, Sander T, Durselen H, Hessel S. Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science 1986; 232: 1421-1422.

[30] Self SB, Coe DA, Seeger JM. Limited thrombogenicity of low temperature, laser-welded vascular anastomoses. Lasers Surg Med 1996; 18: 241-247.

[31] Stewart RB, Benbrahim A, LaMuraglia GM, Rosenberg M, L’Italien GJ, Abbott WM, Kung RT. Laser assisted vascular welding with real time temperature control. Lasers Surg Med 1996; 19: 9-16.

[32] Tang J, Godlewski G, Rouy S, Dauzat M, Juan JM, Chambettaz F, Salathe R. Microarterial anastomosis using a noncontact diode laser versus a control study. Lasers Surg Med 1994; 14: 229-237.

[33] Tang J, Rouy S, Prudhomme M, Delacretaz G, Godlewski G. Morphological analysis of microarterial media repair after 830 nm diode laser assisted end-to-end anastomosis: Comparison with conventional manual suture. Lasers Med Sci 1997; 12: 300-306.

[34] Tang JT, Godlewski G, Rouy S. Mechanism of aneurysm formation after 830-nm diode-laser-assisted microarterial anastomosis. J Clin Laser Med Surg 1997; 15: 175-179.

[35] Unno N, Sakaguchi S, Koyano K. Microvascular anastomosis using a new diode laser system with a contact probe. Lasers Surg Med 1989; 9: 160-168.

[36] White RA, Kopchok G, Donayre C, Lyons R, White G, Klein SR, Abergel RP, Uitto J. Laser welding of large diameter arteries and veins. ASAIO Trans 1986; 32: 181-183.

[37] White RA. Technical frontiers for the vascular surgeon: laser anastomotic welding and angioscopy-assisted intraluminal instrumentation. J Vasc Surg 1987; 5: 673-680.

[38] Zelt DT, LaMuraglia GM, L'Italien GJ, Megerman J, Kung RT, Stewart RB, Abbott WM. Arterial laser welding with a 1.9 micrometer Raman-shifted laser. J Vasc Surg 1992; 15: 1025-1031.

[39] Bass LS, Treat MR, Dzakonski C, Trokel SL. Sutureless microvascular anastomosis using the THC:YAG laser: a preliminary report. Microsurgery 1989; 10: 189-193.

[40] Bass LS, Treat MR. Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med 1995; 17: 315-349.

[41] Guthrie CR, Murray LW, Kopchok GE, Rosenbaum D, White RA. Biochemical mechanisms of laser vascular tissue fusion. J Invest Surg 1991; 4: 3-12.

[42] Hasegawa M, Sakurai T, Matsushita M, Nishikimi N, Nimura Y, Kobayashi M. Comparison of argon-laser welded and sutured repair of inferior vena cava in a canine model. Lasers Surg Med 2001; 29: 62-69.

[43] Sartorius CJ, Shapiro SA, Campbell RL, Klatte EC, Clark SA. Experimental laser-assisted end-to-side microvascular anastomosis. Microsurgery 1986; 7: 79-83.

[44] Talmor M, Bleustein CB, Poppas DP. Laser tissue welding: a biotechnological advance for the future. Arch Facial Plast Surg 2001; 3: 207-213.

[45] Wolf-de Jonge IC, Beek JF, Balm R. 25 years of laser assisted vascular anastomosis (LAVA): what have we learned? Eur J Vasc Endovasc Surg 2004; 27: 466-476.

[46] Humphrey PW, Slocum MM, Loy TS, Silver D. Neodymium: yttrium-aluminum-garnet laser fusion of endarterectomy flaps. J Vasc Surg 1995; 22: 32-36.

[47] Puca A, Esposito G, Albanese A, Maira G, Rossi F, Pini R. Minimally occlusive laser vascular anastomosis (MOLVA): experimental study. Acta Neurochir (Wien) 2009; 151: 363-368.

[48] O'Neill AC, Winograd JM, Zeballos JL, Johnson TS, Randolph MA, Bujold KE, Kochevar IE, Redmon RW. Microvascular anastomosis using a photochemical tissue bonding technique. Lasers Surg Med 2007; 39: 716-722.

[49] Bass LS, Oz MC, Libutti SK, Treat MR. Alternative wavelengths for sutureless laser microvascular anastomosis: a preliminary study on acute samples. J Clin Laser Med Surg 1992; 10: 207-210.

[50] Birch JF, Mandley DJ, Williams SL, Worrall DR, Trotter PJ, Wilkinson F, Bell PR. Methylene blue based protein solder for vascular anastomoses: an in vitro burst pressure study. Lasers Surg Med 2000; 26: 323-329.

[51] Birch JF, Bell PR. Methylene blue soldered microvascular anastomoses in vivo. Eur J Vasc Endovasc Surg 2002; 23: 325-330.

[52] Bleustein CB, Sennett M, Kung RT, Felsen D, Poppas DP, Stewart RB. Differential scanning calorimetry of albumin solders: interspecies differences and fatty acid binding effects on protein denaturation. Lasers Surg Med 2000; 27: 465-470.

[53] Chuck RS, Oz MC, Delohery TM, Johnson JP, Bass LS, Nowygrod R, Treat MR. Dye-enhanced laser tissue welding. Lasers Surg Med 1989; 9: 471-477.

[54] Grubbs PE, Jr., Wang S, Marini C, Basu S, Rose DM, Cunningham JN, Jr. Enhancement of CO2 laser microvascular anastomoses by fibrin glue. J Surg Res 1988; 45: 112-119.

[55] McNally KM, Sorg BS, Chan EK, Welch AJ, Dawes JM, Owen ER. Optimal parameters for laser tissue soldering. Part I: tensile strength and scanning electron microscopy analysis. Lasers Surg Med 1999; 24: 319-331.

[56] McNally KM, Sorg BS, Welch AJ, Dawes JM, Owen ER. Photothermal effects of laser tissue soldering. Phys Med Biol 1999; 44: 983-1002.

[57] McNally KM, Sorg BS, Chan EK, Welch AJ, Dawes JM, Owen ER. Optimal parameters for laser tissue soldering: II. Premixed versus separate dye-solder techniques. Lasers Surg Med 2000; 26: 346-356.

[58] McNally KM, Sorg BS, Welch AJ. Novel solid protein solder designs for laser-assisted tissue repair. Lasers Surg Med 2000; 27: 147-157.

[59] Ott B, Constantinescu MA, Erni D, Banic A, Schaffner T, Frenz M. Intraluminal laser light source and external solder: in vivo evaluation of a new technique for microvascular anastomosis. Lasers Surg Med 2004; 35: 312-316.

[60] Oz MC, Johnson JP, Parangi S, Chuck RS, Marboe CC, Bass LS, Nowygrod R, Treat MR. Tissue soldering by use of indocyanine green dye-enhanced fibrinogen with the near infrared diode laser. J Vasc Surg 1990; 11: 718-725.

[61] Phillips AB, Ginsburg BY, Shin SJ, Soslow R, Ko W, Poppas DP. Laser welding for vascular anastomosis using albumin solder: an approach for MID-CAB. Lasers Surg Med 1999; 24: 264-268.

[62] Pohl D, Bass LS, Stewart R, Chiu DT. Effect of optical temperature feedback control on patency in laser-soldered microvascular anastomosis. J Reconstr Microsurg 1998; 14: 23-29.

[63] Ren Z, Xie H, Lagerquist KA, Burke A, Prahl S, Gregory KW, Furnary AP. Optimal dye concentration and irradiance for laser-assisted vascular anastomosis. J Clin Laser Med Surg 2004; 22: 81-86.

[64] Sica GS, Di LN, Sileri P, Gaspari AL. Experimental microvascular anastomoses performed with CO2, Argon and Nd.YAG lasers. Ann Ital Chir 1996; 67: 571-573.

[65] Small W, Heredia NJ, Maitland DJ, Da Silva LB, Matthews DL. Dye-enhanced protein solders and patches in laser-assisted tissue welding. J Clin Laser Med Surg 1997; 15: 205-208.

[66] Wang S, Grubbs PE, Jr., Basu S, Robertazzi RR, Thomsen S, Rose DM, Jacobowitz IJ, Cunningham JN Jr. Effect of blood bonding on bursting strength of laser-assisted microvascular anastomoses. Microsurgery 1988; 9: 10-13.

[67] Wolf-de Jonge IC, Heger M, van Marle J, Balm R, Beek JF. Suture-free laser-assisted vessel repair using CO2 laser and liquid albumin solder. J Biomed Opt 2008; 13: 044032.

[68] Burger RA, Gerharz CD, Draws J, Engelmann UH, Hohenfellner R. Sutureless laser-welded anastomosis of the femoral artery and vein in rats using CO2 and Nd:YAG lasers. J Reconstr Microsurg 1993; 9: 213-218.

[69] Nakamura T, Fukui A, Maeda M, Kugai M, Inada Y, Teramoto N, Ishida A, Tamai S. Microvascular anastomoses using an Nd-YAG laser. J Reconstr Microsurg 2000; 16: 577-584.

[70] Fried MP, Moll ER. Microvascular anastomoses. An evaluation of laser-assisted technique. Arch Otolaryngol Head Neck Surg 1987; 

[71] Pribil S, Powers SK. Carotid artery end-to-end anastomosis in the rat using the argon laser. J Neurosurg 1985; 63: 771-775.

[72] Quigley MR, Bailes JE, Kwaan HC, Cerullo LJ, Brown JT. Aneurysm formation after low power carbon dioxide laser-assisted vascular anastomosis. Neurosurgery 1986; 18: 292-299.

[73] Chikamatsu E, Sakurai T, Nishikimi N, Yano T, Nimura Y. Comparison of laser vascular welding, interrupted sutures, and continuous sutures in growing vascular anastomoses. Lasers Surg Med 1995; 16: 34-40.

[74] Ott B, Zuger BJ, Erni D, Banic A, Schaffner T, Weber HP, Frenz M. Comparative in vitro study of tissue welding using a 808 nm diode laser and a Ho:YAG laser. Lasers Med Sci 2001; 16: 260-266.

[75] Tang J, Godlewski G, Rouy S, Dauzat M, Juan JM, Chambettaz F, Salathe R. Microarterial anastomosis using a noncontact diode laser versus a control study. Lasers Surg Med 1994; 14: 229-237.

[76] Niemz MH. Laser-tissue interactions: fundamentals and applications. Springer-Verlag Berlin Heidelberg 2002.

[77] Guthrie CR, Murray LW, Kopchok GE, Rosenbaum D, White RA. Biochemical mechanisms of laser vascular tissue fusion. J Invest Surg 1991; 4: 3-12.

[78] Fujita M, Morimoto Y, Ohmori S, Usami N, Arai T, Maehara T, Kikuchi M. Preliminary study of laser welding for aortic dissection in a porcine model using a diode laser with indocyanine green. Lasers Surg Med 2003; 32: 341-345.

[79] Theodossiou T, Rapti GS, Hovhannisyan V, Georgiou E, Politopoulos K, Yova D. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence. Lasers Med Sci 2002; 17: 34-41.

[80] Burger RA, Gerharz CD, Rothe H, Engelmann UH, Hohenfellner R. CO2 and Nd:YAG laser systems in microsurgical venous anastomoses. Urol Res 1991; 19: 253-257.

[81] Cooley BC. Heat-induced tissue fusion for microvascular anastomosis. Microsurgery 1996; 17: 198-208.

[82] Okada M, Shimizu K, Ikuta H, Horii H, Nakamura K. A new method of vascular anastomosis by low energy CO2 laser: experimental and clinical study. Kobe J Med Sci 1985; 31: 151-168.

[83] Massicotte JM, Stewart RB, Poppas DP. Effects of endogenous absorption in human albumin solder for acute laser wound closure. Lasers Surg Med 1998; 23: 18-24.

[84] McNally KM, Sorg BS, Bhavaraju NC, Ducros MG, Welch AJ, Dawes JM. Optical and thermal characterization of albumin protein solders. Appl Opt 1999; 38: 6661-6672.

[85] Hoffman GT, Byrd BD, Soller EC, Heintzelman DL, McNally-Heintzelman KM. Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs. Biomed Sci Instrum 2003; 39: 12-17.

[86] Pabittei DR, Heger M, Simonet M, van Tuijl S, van der Wal AC, van Bavel E, Balm R, de Mol BA. In vitro laser-assisted vascular welding: optimization of acute and post-hydration welding strength. Journal of Clinical and Translational Research 2015; 1: 31-47.

[87] Lauto A, Hamawy AH, Phillips AB, Petratos PB, Raman J, Felsen D, Ko W, Poppas DP. Carotid artery anastomosis with albumin solder and near infrared lasers: a comparative study. Lasers Surg Med 2001; 28: 50-55.

[88] Cooper CS, Schwartz IP, Suh D, Kirsch AJ. Optimal solder and power density for diode laser tissue soldering (LTS). Lasers Surg Med 2001; 29: 53-61.

[89] Kirsch AJ, Miller MI, Hensle TW, Chang DT, Shabsigh R, Olsson CA, Connor JP. Laser tissue soldering in urinary tract reconstruction: first human experience. Urology 1995; 46: 261-266.

[90] Wright B, Vicaretti M, Schwaiger N, Wu J, Trickett R, Morrissey L, Rohanizadeh R, Fletcher J, Maitz P, Harris M. Laser-assisted end-to-end BioWeld anastomosis in an ovine model. Lasers Surg Med 2007; 39: 667-673.

[91] Gilmour TM, Riley JN, Moser DL, McNally-Heintzelman KM. Solubility studies of albumin protein solders used for laser-assisted tissue repair. Biomed Sci Instrum 2002; 38: 345-350.

[92] Lauto A, Stewart R, Ohebshalom M, Nikkoi ND, Felsen D, Poppas DP. Impact of solubility on laser tissue-welding with albumin solid solders. Lasers Surg Med 2001; 28: 44-49.

[93] Alfieri A, Bregy A, Constantinescu M, Stuker F, Schaffner T, Frenz M, Banic A, Reinert M. Tight contact technique during side-to-side laser tissue soldering of rabbit aortas improves tensile strength. Acta Neurochir Suppl 2008; 103: 87-92.

[94] Bregy A, Bogni S, Bernau VJ, Vajtai I, Vollbach F, Petri-Fink A, Constantinescu M, Hofmann H, Frenz M, Reinert M. Solder doped polycaprolactone scaffold enables reproducible laser tissue soldering. Lasers Surg Med 2008; 40: 716-725.

[95] McNally KM, Sorg BS, Hammer DX, Heintzelman DL, Hodges DE, Welch AJ. Improved vascular tissue fusion using new light-activated surgical adhesive on a canine model. J Biomed Opt 2001; 6: 68-73.

[96] Pabittei DR, Heger M, Beek JF, van Tuijl S, Simonet M, van der Wal AC, de Mol BA, Balm R. Optimization of suture-free laser-assisted vessel repair by solder-doped electrospun poly (epsilon-caprolactone) scaffold. Ann Biomed Eng 2011; 39: 223- 234.

[97] Pabittei DR, Heger M, Balm R, Meijer HE, de mol BA, Beek JF. Electrospun poly(ɛ-caprolactone) scaffold for suture-free solder-mediated laser-assisted vessel repair. Photomed Laser Surg 2011; 29: 19-25.

[98] Pabittei DR, Heger M, Simonet M, van Tuijl S, van der Wal AC, Beek JF, Balm R, de Mol BA. Biodegradable polymer scaffold, semi-solid solder, and single-spot lasing for increasing solder-tissue bonding in suture-free laser-assisted vascular repair. J Tissue Eng Regen Med 2012; 6: 803-812.

[99] Riley JN, Dickson TJ, Hou DM, Rogers P, March KL, McNally-Heintzelman KM. Improved laser-assisted vascular tissue fusion using light-activated surgical adhesive in a porcine model. Biomed Sci Instrum 2001; 37: 451-456.

[100] Schoni DS, Bogni S, Bregy A, Wirth A, Raabe A, Vajtai I, Pieles U, Reinert M, Frenz M. Nanoshell assisted laser soldering of vascular tissue. Lasers Surg Med 2011; 43: 975-983.

[101] Soller EC, Hoffman GT, McNally-Heintzelman KM. Use of an infrared temperature monitoring system to determine optimal temperature for laser-solder tissue repair. Biomed Sci Instrum 2002; 38: 339-344.

[102] Sorg BS, McNally KM, Welch AJ. Biodegradable polymer film reinforcement of an indocyanine green-doped liquid albumin solder for laser-assisted incision closure. Lasers Surg Med 2000; 27: 73-81.

[103] Sorg BS, Welch AJ. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects. Lasers Surg Med 2001; 28: 297-306.

[104] McNally-Heintzelman KM, Riley JN, Heintzelman DL. Scaffold-enhanced albumin and n-butyl-cyanoacrylate adhesives for tissue repair: ex vivo evaluation in a porcine model. Biomed Sci Instrum 2003; 39: 312-317.

[105] Hoffman GT, Soller EC, McNally-Heintzelman KM. Biodegradable synthetic polymer scaffolds for reinforcement of albumin protein solders used for laser-assisted tissue repair. Biomed Sci Instrum 2002; 38: 53-58.

[106] Bleustein CB, Walker CN, Felsen D, Poppas DP. Semi-solid albumin solder improved mechanical properties for laser tissue welding. Lasers Surg Med 2000; 27: 140-146.

[107] Lauto A, Foster LJ, Ferris L, Avolio A, Zwaneveld N, Poole-Warren LA. Albumin-genipin solder for laser tissue repair. Lasers Surg Med 2004; 35: 140-145.

[108] Pabittei DR, Heger M, van Tuijl S, Simonet M, de Boon W, van der Wal AC, Balm R, de Mol BA. Ex vivo proof-of-concept of end-to-end scaffold-enhanced laser-assisted vascular anastomosis of porcine arteries. J Vasc Surg 2015; 62: 200-209.

[109] Guo Z, Kim K. Ultrafast-laser-radiation transfer in heterogeneous tissues with the discrete-ordinates method. Appl Opt 2003; 42: 2897-2905.

[110] Li WJ, Cooper JA, Jr., Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2006; 2: 377-385.

[111] Lima EG, Tan AR, Tai T, Marra KG, DeFail A, Ateshian GA, Hung CT. Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J Biomed Mater Res A 2009; 91: 692-700.

[112] Lauto A, Stoodley M, Marcel H, Avolio A, Sarris M, McKenzie G, Sampson DD, Foster LJ. In vitro and in vivo tissue repair with laser-activated chitosan adhesive. Lasers Surg Med 2007; 39: 19-27.

[113] Lauto A, Mawad D, Barton M, Gupta A, Piller SC, Hook J. Photochemical tissue bonding with chitosan adhesive films. Biomed Eng Online 2010; 9: 47.

[114] Givens RS, Timberlake GT, Conrad PG 2nd, Yousef AL, Weber JF, Amslinger S. A photoactivated diazopyruvoyl cross-linking agent for bonding tissue containing type-I collagen. Photochem Photobiol 2003; 78: 23-29.

[115] Lauto A, Mawad D, Barton M, Gupta A, Piller SC, Hook J. Photochemical tissue bonding with chitosan adhesive films. Biomed Eng Online 2010; 9: 47.

[116] Weijer R, Broekgaarden M, Kos M, van Vught R, Rauws EA, Breukink E, van Gulik TM, Storm G, Heger M. Enhancing photodynamic therapy of refractory solid cancers: combining second-generation photosensitizers with multi-targeted liposomal delivery. J of Photochem Photobiol C: Photochemistry Reviews, 2015; 23: 103-131.

[117] Yao M, Yaroslavsky A, Henry FP, Redmond RW, Kochevar IE. Phototoxicity is not associated with photochemical tissue bonding of skin. Lasers Surg Med 2010; 42: 123-131.

[118] Murayama Y, Satoh S, Oka T, Imanishi J, Noishiki Y. Reduction of the antigenicity and immunogenicity of xenografts by a new cross-linking reagent. ASAIO Trans 1988; 34: 546-549.

[119] Poppas DP, Massicotte JM, Stewart RB, Roberts AB, Atala A, Retik AB, Freeman MR. Human albumin solder supplemented with TGF-beta 1 accelerates healing following laser welded wound closure. Lasers Surg Med 1996; 19: 360-368.

[120] Stewart RB, Bleustein CB, Petratos PB, Chin KC, Poppas DP, Kung RT. Concentrated autologous plasma protein: a biochemically neutral solder for tissue welding. Lasers Surg Med 2001; 29: 336-342.

[121] Stewart RB, Bass LS, Thompson JK, Nikoi ND, Becker G, Kung RT. Improved microvessel repair: laser welding with an anti-thrombotic solder. Lasers Surg Med 2002; 31: 36-40.

[122] Lauto A, Hook J, Doran M, Camacho F, Poole-Warren LA, Avolio A, Foster LJ. Chitosan adhesive for laser tissue repair: in vitro characterization. Lasers Surg Med 2005; 36: 93-201.

[123] Vaz CM, van Tuijl S, Bouten CV, Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 2005; 1: 575-582.

[124] Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 2004; 9: 1422-1432.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing