The physiology of artificial hibernation
Incomplete understanding of the mechanisms responsible for induction of hibernation prevent translation of natural hibernation to its artificial counterpart. To facilitate this translation, a model was developed that identifies the necessary physiological changes for induction of artificial hibernation. This model encompasses six essential components: metabolism (anabolism and catabolism), body temperature, thermoneutral zone, substrate, ambient temperature, and hibernation inducing agents. The individual components are interrelated and collectively govern the induction and sustenance of a hypometabolic state. To illustrate the potential validity of this model, various pharmacological agents (hibernation induction trigger, delta-opioid, hydrogen sulfide, 5’-adenosine monophosphate, thyronamine, 2-deoxyglucose, magnesium) are described in terms of their influence on specific components of the model and corollary effects on metabolism. The ultimate purpose of this model is to help expand the paradigm regarding the mechanisms of hibernation from a physiological perspective and to assist in translating this natural phenomenon to the clinical setting.
[1] Geiser F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 2004; 66: 239-274.
[2] Hudson JW, Scott IM. Daily torpor in the laboratory mouse, Musmusculus var. albino. Physiological Zoology 1979; 52: 205- 218.
[3] Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science 2005; 308: 518.
[4] Dark J, Miller DR, Zucker I. Reduced glucose availability induces torpor in Siberian hamsters. Am J Physiol 1994; 267: R496-R501.
[5] Horton ND, Kaftani DJ, Bruce DS, Bailey EC, Krober AS, Jones JR, Turker M, Khattar N, Su TP, Bolling SF, Oeltgen PR. Isolation and partial characterization of an opioid-like 88 kDa hibernation-related protein. Comp Biochem Physiol B Biochem Mol Biol 1998; 119: 787-805.
[6] Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 2004; 10: 638-642.
[7] Zhang H, Zhi L, Moore PK, Bhatia M. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am J Physiol Lung Cell Mol Physiol 2006; 290: L1193-L1201.
[8] Azoulay D, Eshkenazy R, Andreani P, Castaing D, Adam R, Ichai P, Naili S, Vinet E, Saliba F, Lemoine A, Gillon MC, Bismuth H. In situ hypothermic perfusion of the liver versus standard total vascular exclusion for complex liver resection. Ann Surg 2005; 241: 277- 285.
[9] Reiniers MJ, van Golen RF, Heger M, Mearadji B, Bennink RJ, Verheij J, van Gulik TM. In situ hypothermic perfusion with retrograde outflow during right hemihepatectomy: first experiences with a new technique. J Am Coll Surg 2014; 218: e7-16.
[10] Axelrod YK, Diringer MN. Temperature management in acute neurologic disorders. Neurol Clin 2008; 26: 585-603.
[11] Holzer M, Behringer W. Therapeutic hypothermia after cardiac arrest and myocardial infarction. Best Pract Res Clin Anaesthesiol 2008; 22: 711-728.
[12] Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-ofhospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557-563.
[13] Polderman KH. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality-Part 2: Practical aspects and side effects. Intensive Care Med 2004; 30: 757-769.
[14] Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 2009; 37: S186- S202.
[15] Frank SM, Higgins MS, Breslow MJ, Fleisher LA, Gorman RB, Sitzmann JV, Raff H, Beattie C. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. A randomized clinical trial. Anesthesiology 1995; 82: 83-93.
[16] Jurkovich GJ, Greiser WB, Luterman A, Curreri PW. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 1987; 27: 1019-1024.
[17] Sajid MS, Shakir AJ, Khatri K, Baig MK. The role of perioperative warming in surgery: a systematic review. Sao Paulo Med J 2009; 127: 231-237.
[18] Ivanov KP. Physiological blocking of the mechanisms of cold death: theoretical and experimental considerations. J Therm Biol 2000; 25: 467-479.
[19] Ananiadou OG, Bibou K, Drossos GE, Bai M, Haj-Yahia S, Charchardi A, Johnson EO. Hypothermia at 10 degrees C reduces neurologic injury after hypothermic circulatory arrest in the pig. J Card Surg 2008; 23: 31-38.
[20] Letsou GV, Breznock EM, Whitehair J, Kurtz RS, Jacobs R, Leavitt ML, Sternberg H, Shermer S, Kehrer S, Segall JM, Voelker MA, Waitz HD, Segall PE. Resuscitating hypothermic dogs after 2 hours of circulatory arrest below 6 degrees C. J Trauma 2003; 54: S177- S182.
[21] Nozari A, Safar P, Wu X, Stezoski WS, Henchir J, Kochanek P, Klain M, Radovsky A, Tisherman SA. Suspended animation can allow survival without brain damage after traumatic exsanguination cardiac arrest of 60 minutes in dogs. J Trauma 2004; 57: 1266- 1275.
[22] Sekaran P, Ehrlich MP, Hagl C, Leavitt ML, Jacobs R, McCullough JN, Bennett-Guerrero E. A comparison of complete blood replacement with varying hematocrit levels on neurological recovery in a porcine model of profound hypothermic (<5 degrees C) circulatory arrest. Anesth Analg 2001; 92: 329-334.
[23] Boulant JA. Role of the preoptic anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 2000; 31 Suppl 5: S157- S161.
[24] Heller HC. Hibernation: neural aspects. Annu Rev Physiol 1979; 41: 305-321.
[25] Fox RH, Davies TW, Marsh FP, Urich H. Hypothermia in a young man with an anterior hypothalamic lesion. Lancet 1970; 2: 185- 188.
[26] Lammens M, Lissoir F, Carton H. Hypothermia in three patients with multiple sclerosis. Clin Neurol Neurosurg 1989; 91: 117-121.
[27] Rudelli R, Deck JH. Selective traumatic infarction of the human anterior hypothalamus. Clinical anatomical correlation. J Neurosurg 1979; 50: 645-654.
[28] Sullivan F, Hutchinson M, Bahandeka S, Moore RE. Chronic hypothermia in multiple sclerosis. J Neurol Neurosurg Psychiatry 1987; 50: 813-815.
[29] White KD, Scoones DJ, Newman PK. Hypothermia in multiple sclerosis. J Neurol Neurosurg Psychiatry 1996; 61: 369-375.
[30] Griffiths AP, Henderson M, Penn ND, Tindall H. Haematological, neurological and psychiatric complications of chronic hypothermia following surgery for craniopharyngioma. Postgrad Med J 1988; 64: 617-620.
[31] He Z, Yamawaki T, Yang S, Day AL, Simpkins JW, Naritomi H. Experimental model of small deep infarcts involving the hypothalamus in rats: changes in body temperature and postural reflex. Stroke 1999; 30: 2743-2751.
[32] Luecke RH, Gray EW, South FE. Simulation of passive thermal behavior of a cooling biological system: entry into hibernation. Pflugers Arch 1971; 327: 37-52.
[33] Kleiber M. Body size and metabolism. J Agric Sci 1932; 11: 6.
[34] Geiser F, Ruf T. Hibernation versus daily torpor in mammals and birds-physiological variables and classification of torpor patterns. Physiological Zoology 1995; 68: 935-966.
[35] Aw TY, Jones DP. Secondary bioenergetic hypoxia. Inhibition of sulfation and glucuronidation reactions in isolated hepatocytes at low O2 concentration. J Biol Chem 1982; 257: 8997-9004.
[36] Hochachka PW, Buck LT, Doll CJ, Land SC. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 1996; 93: 9493-9498.
[37] Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77: 731-758.
[38] Gautier H, Bonora M, M'Barek SB, Sinclair JD. Effects of hypoxia and cold acclimation on thermoregulation in the rat. J Appl Physiol (1985) 1991; 71: 1355-1363.
[39] Hayden P, Lindberg RG. Hypoxia-induced torpor in pocket mice (genus: Perognathus). Comp Biochem Physiol 1970; 33: 167-179.
[40] Hill JR. The oxygen consumption of new-born and adult mammals. Its dependence on the oxygen tension in the inspired air and on the environmental temperature. J Physiol 1959; 149: 346- 373.
[41] Horstman DH, Banderet LE. Hypoxia-induced metabolic and core temperature changes in the squirrel monkey. J Appl Physiol Respir Environ Exerc Physiol 1977; 42: 273-278.
[42] Kottke FJ, Phalen JS. Effect of hypoxia upon temperature regulation of mice, dogs, and man. Am J Physiol 1948; 153: 10-15.
[43] Kuhnen G, Wloch B, Wunnenberg W. Effects of acute-hypoxia and or hypercapnia on body temperatures and cold induced thermogenesis in the golden-hamster. Journal of Thermal Biology 1987; 12: 103-107.
[44] Giesbrecht GG, Fewell JE, Megirian D, Brant R, Remmers JE. Hypoxia similarly impairs metabolic responses to cutaneous and core cold stimuli in conscious rats. J Appl Physiol (1985) 1994; 77: 726-730.
[45] Barnas GM, Rautenberg W. Shivering and cardiorespiratory responses during normocapnic hypoxia in the pigeon. J Appl Physiol (1985) 1990; 68: 84-87.
[46] Gleeson M, Barnas GM, Rautenberg W. The effects of hypoxia on the metabolic and cardiorespiratory responses to shivering produced by external and central cooling in the pigeon. Pflugers Arch 1986; 407: 312-319.
[47] Hemingway A, Nahas GG. Effect of varying degrees of hypoxia on temperature regulation. Am J Physiol 1952; 170: 426- 433.
[48] Mortola JP, Merazzi D, Naso L. Blood flow to the brown adipose tissue of conscious young rabbits during hypoxia in cold and warm conditions. Pflugers Arch 1999; 437: 255-260.
[49] Madden CJ, Morrison SF. Hypoxic activation of arterial chemoreceptors inhibits sympathetic outflow to brown adipose tissue in rats. J Physiol 2005; 566: 559-573.
[50] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277-359.
[51] Hsieh AC, Carlson LD. Role of adrenaline and noradrenaline in chemical regulation of heat production. Am J Physiol 1957; 190: 243-246.
[52] Beaudry JL, McClelland GB. Thermogenesis in CD-1 mice after combined chronic hypoxia and cold acclimation. Comp Biochem Physiol B Biochem Mol Biol 2010; 157: 301-309.
[53] Martinez D, Fiori CZ, Baronio D, Carissimi A, Kaminski RS, Kim LJ, Rosa DP, Bos A. Brown adipose tissue: is it affected by intermittent hypoxia? Lipids Health Dis 2010; 9: 121.
[54] Mortola JP, Naso L. Thermogenesis in newborn rats after prenatal or postnatal hypoxia. J Appl Physiol (1985) 1998; 85: 84-90.
[55] Mortola JP, Feher C. Hypoxia inhibits cold-induced huddling in rat pups. Respir Physiol 1998; 113: 213-222.
[56] Dupre RK, Owen TL. Behavioral thermoregulation by hypoxic rats. J Exp Zool 1992; 262: 230-235.
[57] Prabhakar NR. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol (1985) 2000; 88: 2287-2295.
[58] Steiner AA, Branco LG. Hypoxia-induced anapyrexia: implications and putative mediators. Annu Rev Physiol 2002; 64: 263-288.
[59] Dawe AR, Spurrier WA. Hibernation induced in ground squirrels by blood transfusion. Science 1969; 163: 298-299.
[60] Dawe AR, Spurrier WA, Armour JA. Summer hibernation induced by cryogenically preserved blood “trigger”. Science 1970; 168: 497- 498.
[61] Zhang F, Wang S, Luo Y, Ji X, Nemoto EM, Chen J. When hypothermia meets hypotension and hyperglycemia: the diverse effects of adenosine 5'-monophosphate on cerebral ischemia in rats. J Cereb Blood Flow Metab 2009; 29: 1022-1034.
[62] Aslami H, Heinen A, Roelofs JJ, Zuurbier CJ, Schultz MJ, Juffermans NP. Suspended animation inducer hydrogen sulfide is protective in an in vivo model of ventilator-induced lung injury. Intensive Care Med 2010; 36: 1946-1952.
[63] Blackstone E, Roth MB. Suspended animation-like state protects mice from lethal hypoxia. Shock 2007; 27: 370-372.
[64] Bos EM, Leuvenink HG, Snijder PM, Kloosterhuis NJ, Hillebrands JL, Leemans JC, Florquin S, van Goor H. Hydrogen sulfide-induced hypometabolism prevents renal ischemia/ reperfusion injury. J Am Soc Nephrol 2009; 20: 1901-1905.
[65] Haouzi P, Notet V, Chenuel B, Chalon B, Sponne I, Ogier V, Bihain B. H2S induced hypometabolism in mice is missing in sedated sheep. Respir Physiol Neurobiol 2008; 160: 109-115.
[66] Volpato GP, Searles R, Yu B, Scherrer-Crosbie M, Bloch KD, Ichinose F, Zapol WM. Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse. Anesthesiology 2008; 108: 659-668.
[67] Drabek T, Kochanek PM, Stezoski J, Wu X, Bayir H, Morhard RC, Stezoski SW, Tisherman SA. Intravenous hydrogen sulfide does not induce hypothermia or improve survival from hemorrhagic shock in pigs. Shock 2011; 35: 67-73.
[68] Li J, Zhang G, Cai S, Redington AN. Effect of inhaled hydrogen sulfide on metabolic responses in anesthetized, paralyzed, and mechanically ventilated piglets. Pediatr Crit Care Med 2008; 9: 110- 112.
[69] Osipov RM, Robich MP, Feng J, Liu Y, Clements RT, Glazer HP, Sodha NR, Szabo C, Bianchi C, Sellke FW. Effect of hydrogen sulfide in a porcine model of myocardial ischemia-reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol 2009; 54: 287-297.
[70] Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Stahl GL, Sellke FW. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 2009; 138: 977-984.
[71] Haouzi P, Bell HJ, Notet V, Bihain B. Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats. Respir Physiol Neurobiol 2009; 167: 316-322.
[72] Beauchamp RO, Jr., Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 1984; 13: 25-97.
[73] Cuevasanta E, Denicola A, Alvarez B, Moller MN. Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS One 2012; 7: e34562.
[74] Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 2010; 107: 10719- 10724.
[75] Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang LH, Rong W. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal 2010; 12: 1179-1189.
[76] Daniels IS, Zhang J, O'Brien WG, III, Tao Z, Miki T, Zhao Z, Blackburn MR, Lee CC. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals. J Biol Chem 2010; 285: 20716-20723. [77] Lee CC. Is human hibernation possible? Annu Rev Med 2008; 59: 177-186.
[78] Swoap SJ, Rathvon M, Gutilla M. AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol 2007; 293: R468-R473.
[79] Mathews WB, Nakamoto Y, Abraham EH, Scheffel U, Hilton J, Ravert HT, Tatsumi M, Rauseo PA, Traughber BJ, Salikhova AY, Dannals RF, Wahl RL. Synthesis and biodistribution of [11C] adenosine 5'-monophosphate ([11C]AMP). Mol Imaging Biol 2005; 7: 203-208.
[80] Muzzi M, Blasi F, Masi A, Coppi E, Traini C, Felici R, Pittelli M, Cavone L, Pugliese AM, Moroni F, Chiarugi A. Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia. J Cereb Blood Flow Metab 2013; 33: 183- 190.
[81] Tupone D, Madden CJ, Morrison SF. Highlights in basic autonomic neurosciences: central adenosine A1 receptor-the key to a hypometabolic state and therapeutic hypothermia? Auton Neurosci 2013; 176: 1-2.
[82] Jinka TR, Toien O, Drew KL. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors. J Neurosci 2011; 31: 10752-10758.
[83] Tupone D, Madden CJ, Morrison SF. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J Neurosci 2013; 33: 14512-14525.
[84] Olson JM, Jinka TR, Larson LK, Danielson JJ, Moore JT, Carpluck J, Drew KL. Circannual rhythm in body temperature, torpor, and sensitivity to A(1) adenosine receptor agonist in arctic ground squirrels. J Biol Rhythms 2013; 28: 201-207.
[85] Braulke LJ, Klingenspor M, DeBarber A, Tobias SC, Grandy DK, Scanlan TS, Heldmaier G. 3-Iodothyronamine: a novel hormone controlling the balance between glucose and lipid utilisation. J Comp Physiol B 2008; 178: 167-177.
[86] Doyle KP, Suchland KL, Ciesielski TM, Lessov NS, Grandy DK, Scanlan TS, Stenzel-Poore MP. Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke 2007; 38: 2569-2576.
[87] Hart ME, Suchland KL, Miyakawa M, Bunzow JR, Grandy DK, Scanlan TS. Trace amine-associated receptor agonists: synthesis and evaluation of thyronamines and related analogues. J Med Chem 2006; 49: 1101-1112.
[88] Panas HN, Lynch LJ, Vallender EJ, Xie Z, Chen GL, Lynn SK, Scanlan TS, Miller GM. Normal thermoregulatory responses to 3- iodothyronamine, trace amines and amphetamine-like psychostimulants in trace amine associated receptor 1 knockout mice. J Neurosci Res 2010; 88: 1962-1969.
[89] Petit L, Buu-Ho NP. A synthesis of thyronamine and its lower homolog. J Org Chem 1961; 26: 3832-3834.
[90] Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A, Brogioni S, Ronca-Testoni S, Cerbai E, Grandy DK, Scanlan TS, Zucchi R. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 2007; 21: 1597-1608.
[91] Myers JA, Millikan KW, Saclarides TJ. Common surgical diseases: An algorithmic approach to problem solving. 2nd ed, New York, Springer, 2008.
[92] Selzer A, Sudrann RB. Reliability of the determination of cardiac output in man by means of the Fick principle. Circ Res 1958; 6: 485- 490.
[93] Dark J, Miller DR, Licht P, Zucker I. Glucoprivation counteracts effects of testosterone on daily torpor in Siberian hamsters. Am J Physiol 1996; 270: R398-R403.
[94] Stamper JL, Dark J. Metabolic fuel availability influences thermoregulation in deer mice (Peromyscus maniculatus). Physiol Behav 1997; 61: 521-524.
[95] Walton JB, Andrews JF. Torpor Induced by Food-Deprivation in the Wood Mouse Apodemus-Sylvaticus. Journal of Zoology 1981; 194: 260-263.
[96] Mrosovsky N, Barnes DS. Anorexia, food deprivation and hibernation. Physiol Behav 1974; 12: 265-270.
[97] Oeltgen PR, Bergmann LC, Spurrier WA, Jones SB. Isolation of a hibernation inducing trigger(s) from the plasma of hibernating woodchucks. Prep Biochem 1978; 8: 171-188.
[98] Oeltgen PR, Nilekani SP, Nuchols PA, Spurrier WA, Su TP. Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 1988; 43: 1565-1574.
[99] Bruce DS, Bailey EC, Setran DP, Tramell MS, Jacobson D, Oeltgen PR, Horton ND, Hellgren EC. Circannual variations in bear plasma albumin and its opioid-like effects on guinea pig ileum. Pharmacol Biochem Behav 1996; 53: 885-889.
[100] Bruce DS, Cope GW, Elam TR, Ruit KA, Oeltgen PR, Su TP. Opioids and hibernation. I. Effects of naloxone on bear HIT'S depression of guinea pig ileum contractility and on induction of summer hibernation in the ground squirrel. Life Sci 1987; 41: 2107- 2113.
[101] Margules DL, Goldman B, Finck A. Hibernation: an opioiddependent state? Brain Res Bull 1979; 4: 721-724.
[102] Oeltgen PR, Walsh JW, Hamann SR, Randall DC, Spurrier WA, Myers RD. Hibernation “trigger”: opioid-like inhibitory action on brain function of the monkey. Pharmacol Biochem Behav 1982; 17: 1271-1274.
[103] Mayfield KP, D'Alecy LG. Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 1994; 268: 683-688.
[104] Mayfield KP, D'Alecy LG. Delta-1 opioid receptor dependence of acute hypoxic adaptation. J Pharmacol Exp Ther 1994; 268: 74-77.
[105] Mayfield KP, Hong EJ, Carney KM, D'Alecy LG. Potential adaptations to acute hypoxia: Hct, stress proteins, and set point for temperature regulation. Am J Physiol 1994; 266: R1615-R1622.
[106] Spencer RL, Hruby VJ, Burks TF. Alteration of thermoregulatory set point with opioid agonists. J Pharmacol Exp Ther 1990; 252: 696- 705.
[107] Benamar K, Rawls SM, Geller EB, Adler MW. Intrahypothalamic injection of deltorphin-II alters body temperature in rats. Brain Res 2004; 1019: 22-27.
[108] Broccardo M, Improta G. Hypothermic effect of D-Ala-deltorphin II, a selective delta opioid receptor agonist. Neurosci Lett 1992; 139: 209-212.
[109] Salmi P, Kela J, Arvidsson U, Wahlestedt C. Functional interactions between delta- and mu-opioid receptors in rat thermoregulation. Eur J Pharmacol 2003; 458: 101-106.
[110] Sharif NA, Hughes J. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autora- diography, species differences and comparison with kappa receptors. Peptides 1989; 10: 499-522.
[111] Tempel A, Zukin RS. Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci U S A 1987; 84: 4308- 4312.
[112] Platner WS. Effects of low temperature on magnesium content of blood, body fluids and tissues of goldfish and turtle. Am J Physiol 1950; 161: 399-405.
[113] Platner WS, Hosko MJ, Jr. Mobility of serum magnesium in hypothermia. Am J Physiol 1953; 174: 273-276.
[114] Clausen G, Storesund A. Electrolyte distribution and renal function in the hibernating hedgehog. Acta Physiol Scand 1971; 83: 4-12.
[115] Edwards BA, Munday KA. Electrolyte metabolism in the hibernating hedgehog (Erinaceus europaeus). Comp Biochem Physiol 1969; 31: 329-335.
[116] Suomalainen P. Magnesium and calcium content of hedgehog serum during hibernation. Nature 1938; 141: 471.
[117] Al-Badry KS, Taha HM. Hibernation-hypothermia and metabolism in hedgehogs. Changes in water and electrolytes. Comp Biochem Physiol A Comp Physiol 1983; 74: 435-441.
[118] Ferren LG, South FE, Jacobs HK. Calcium and magnesium levels in tissues and serum of hibernating and cold-acclimated hamsters. Cryobiology 1971; 8: 506-508.
[119] Tempel GE, Musacchia XJ. Renal function in the hibernating, and hypothermic hamster Mesocricetus auratus. Am J Physiol 1975; 228: 602-607.
[120] Tempel GE, Wolinsky I, Musacchia XJ. Bone and serum-calcium in normothermic, cold-acclimated and hibernating hamsters. Comp Biochem Physiol A Comp Physiol 1978; 61: 145-147.
[121] Willis JS, Goldman SS, Foster RF. Tissue K concentration in relation to the role of the kidney in hibernation and the cause of periodic arousal. Comp Biochem Physiol A Comp Physiol 1971; 39: 437-445.
[122] Riedesel ML, Folk GE, Jr. Serum magnesium changes in coldexposed mammals. J Mammal 1957; 38: 423-424.
[123] Hutton KE, Goodnight CJ. Variations in the blood chemistry of turtles under active and hibernating conditions. Physiological Zoology 1957; 3: 198-207.
[124] Ultsch GR, Hanley RW, Bauman TR. Responses to anoxia during simulated hibernation in northern and southern painted turtles. Ecology 1985; 66: 388-395.
[125] Jackson DC, Heisler N. Intracellular and extracellular acid-base and electrolyte status of submerged anoxic turtles at 3 degrees C. Respir Physiol 1983; 53: 187-201.
[126] Reese SA, Crocker CE, Jackson DC, Ultsch GR. The physiology of hibernation among painted turtles: the midland painted turtle (Chrysemys picta marginata). Respir Physiol 2001; 124: 43-50.
[127] Ultsch GR, Carwile ME, Crocker CE, Jackson DC. The physiology of hibernation among painted turtles: the Eastern painted turtle Chrysemys picta picta. Physiol Biochem Zool 1999; 72: 493-501.
[128] Pengelley ET, Kelly KH. Plasma potassium and sodium concentrations in active and hibernating golden-mantled ground squirrels, Citellus lateralis. Comp Biochem Physiol 1967; 20: 299- 305.
[129] Kenny AD, Musacchia XJ. Influence of season and hibernation on thyroid calcitonin content and plasma electrolytes in ground- squirrel. Comp Biochem Physiol A Comp Physiol 1977; 57: 485-489.
[130] Bito LZ, Roberts JC. The effects of hibernation on the chemical composition of cerebrospinal and intraocular fluids, blood plasma and brain tissue of the woodchuck (Marmota monax). Comp Biochem Physiol A Comp Physiol 1974; 47: 183-193.
[131] McBirnie JE, Pearson FG, Trusler GA, Karachi HH, Bigelow WG. Physiologic studies of the groundhog (Marmota monax). Can J Med Sci 1953; 31: 421-430.
[132] Zatzman ML, South FE. Renal function of the awake and hibernating marmot Marmota flaviventris. Am J Physiol 1972; 222: 1035-1039.
[133] Pratihar S, Kundu JK. Increased serum magnesium and calcium and their regulation during hibernation in the indian common toad, Duttaphrynus melanostictus (Schneider, 1799). S Am J Herpetol 2009; 4: 51-54.
[134] Riedesel ML. Serum magnesium levels in mammalian hibernation. Trans Kans Acad Sci 1957; 62: 99-141.
[135] Riedesel ML, Folk GE, Jr. Serum electrolyte levels in hibernating mammals. Am Nat 1958; 92: 307-312.
[136] Ultsch GR. Blood-Gases, Hematocrit, plasma ion concentrations, and acid-base status of musk turtles (Sternotherus-Odoratus) during simulated hibernation. Physiological Zoology 1988; 61: 78-94.
[137] Haggag G, Raheem KA, Khalil F. Hibernation in reptiles. I. Changes in blood electrolytes. Comp Biochem Physiol 1965; 16: 457-465.
[138] Ebel H, Gunther T. Magnesium metabolism: a review. J Clin Chem Clin Biochem 1980; 18: 257-270.
[139] Rochelle RH, Chaffee RR, Greenleaf JE, Walker CD. The effects of magnesium on state 3 respiration of liver mitochondria from control and cold-acclimated rats and hamsters. Comp Biochem Physiol B 1978; 60: 267-269.
[140] Pedemonte CH, Beauge L. Inhibition of (Na+,K+)-ATPase by magnesium ions and inorganic phosphate and release of these ligands in the cycles of ATP hydrolysis. Biochim Biophys Acta 1983; 748: 245-253.
[141] Frankenhaeuser B, Meves H. The effect of magnesium and calcium on the frog myelinated nerve fibre. J Physiol 1958; 142: 360-365.
[142] Hahin R, Campbell DT. Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations. J Gen Physiol 1983; 82: 785-805.
[143] Mayer ML, Westbrook GL. Permeation and block of N-methyl-Daspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 1987; 394: 501-527.
[144] Myers RD, Buckman JE. Deep hypothermia induced in the golden hamster by altering cerebral calcium levels. Am J Physiol 1972; 223: 1313-1318.
[145] Myers RD, Brophy PD. Temperature changes in the rat produced by altering the sodium-calcium ratio in the cerebral ventricles. Neuropharmacology 1972; 11: 351-361.
[146] Feldberg W, Myers RD, Veale WL. Perfusion from cerebral ventricle to cisterna magna in the unanaesthetized cat. Effect of calcium on body temperature. J Physiol 1970; 207: 403-416.
[147] Myers RD, Veale WL. The role of sodium and calcium ions in the hypothalamus in the control of body temperature of the unanaesthetized cat. J Physiol 1971; 212: 411-430.
[148] Myers RD, Simpson CW, Higgins D, Nattermann RA, Rice JC, Redgrave P, Metcalf G. Hypothalamic Na+ and Ca++ ions and temperature set-point: new mechanisms of action of a central or peripheral thermal challenge and intrahypothalamic 5-HT, NE, PGEi and pyrogen. Brain Res Bull 1976; 1: 301-327.
[149] Myers RD, Yaksh TL. Thermoregulation around a new set-point established in the monkey by altering the ratio of sodium to calcium ions within the hypothalamus. J Physiol 1971; 218: 609- 633.
[150] Myers RD, Veale WL, Yaksh TL. Changes in body temperature of the unanaesthetized monkey produced by sodium and calcium ions perfused through the cerebral ventricles. J Physiol 1971; 217: 381- 392.
[151] Saxena PN. Sodium and calcium ions in the control of temperature set-point in the pigeon. Br J Pharmacol 1976; 56: 187-192.
[152] Sadowski B, Szczepanska-Sadowska E. The effect of calcium ions chelation and sodium ions excess in the cerebrospinal fluid on body temperature in conscious dogs. Pflugers Arch 1974; 352: 61-68.
[153] Seoane JR, Baile CA. Ionic changes in cerebrospinal fluid and feeding, drinking and temperature of sheep. Physiol Behav 1973; 10: 915-923.
[154] Heagy FC, Burton AC. Effect of intravenous injection of magnesium chloride on the body temperature of the unanesthetized dog, with some observations on magnesium levels and body temperature in man. Am J Physiol 1948; 152: 407-416.
[155] Kizilirmak S, Karakas SE, Akca O, Ozkan T, Yavru A, Pembeci K, Sessler DI, Telci L. Magnesium sulfate stops postanesthetic shivering. Ann N Y Acad Sci 1997; 813: 799-806.
[156] Lysakowski C, Dumont L, Czarnetzki C, Tramer MR. Magnesium as an adjuvant to postoperative analgesia: a systematic review of randomized trials. Anesth Analg 2007; 104: 1532-9, table.
[157] Ryu JH, Kang MH, Park KS, Do SH. Effects of magnesium sulphate on intraoperative anaesthetic requirements and postoperative analgesia in gynaecology patients receiving total intravenous anaesthesia. Br J Anaesth 2008; 100: 397-403.
[158] Wadhwa A, Sengupta P, Durrani J, Akca O, Lenhardt R, Sessler DI, Doufas AG. Magnesium sulphate only slightly reduces the shivering threshold in humans. Br J Anaesth 2005; 94: 756-762.
[159] Zweifler RM, Voorhees ME, Mahmood MA, Parnell M. Magnesium sulfate increases the rate of hypothermia via surface cooling and improves comfort. Stroke 2004; 35: 2331-2334.
[160] Ros E. Nuts and novel biomarkers of cardiovascular disease. Am J Clin Nutr 2009; 89: 1649S-1656S.
[161] Del CJ, Engbaek L. The nature of the neuromuscular block produced by magnesium. J Physiol 1954; 124: 370-384.
[162] Stevens T. Managing postoperative hypothermia, rewarming, and its complications. Crit Care Nurs Q 1993; 16: 60-77.
[163] van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500-1508.
[164] Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-1525.