TEMPOL has limited protective effects on renal oxygenation and hemodynamics but reduces kidney damage and inflammation in a rat model of renal ischemia/reperfusion by aortic clamping
Background: Renal ischemia-reperfusion (I/R) is a common clinical complication in critically ill patients that is associated with considerable morbidity and mortality. Renal I/R is a major cause of acute kidney injury (AKI) resulting from I/R-induced oxidative stress, sterile inflammation, and microcirculatory perfusion defects, which can be ameliorated with the superoxide scavenger TEMPOL. The most common cause of AKI in the clinical setting is aortic surgery with suprarenal aortic clamping. The protective effect of TEMPOL in aortic clamping-induced renal I/R has not been studied before.
Aim: To evaluate the protective effects of TEMPOL on oxidative stress, inflammation, tissue injury, and renal hemodynamics and oxygenation in a clinically representative rat model of I/R using aortic cross-clamping.
Methods: Animals (N = 24) were either sham-operated or subjected to ischemia (30 min) and 90-min reperfusion, with or without TEMPOL treatment (15 min before ischemia and during entire reperfusion phase, 200 μmol/kg/h). Systemic and renal hemodynamics, renal oxygenation, and blood gas values were determined at 15min and 90min of reperfusion. At 90-min reperfusion, iNOS, inflammation (IL-6, MPO), oxidative stress (MPO), and tissue damage (NGAL, L-FABP) were determined in tissue biopsies.
Results: TEMPOL administration at a cumulative dose of 400 μmol/kg conferred a protective effect on AKI in terms of reducing renal damage, inflammation, and iNOS activation. With respect to renal hemodynam-ics and oxygenation, TEMPOL only reduced renal vascular resistance to near-baseline levels at both reperfusion time points and partially ameliorated the I/R-induced drop microvascular partial tension of oxygen at 90 min reperfusion. Also, TEMPOL alleviated the I/R-induced metabolic acidosis. However, TEMPOL exerted no restorative effect in terms of the severely reduced mean arterial pressure, renal blood flow, and renal oxygen delivery and consumption. The renal oxygen extraction ratio remained unchanged during the 90-min reperfusion phase. Kidneys in all groups were anuric throughout the experiment.
Conclusions: This clinically representative renal I/R model, which entails both renal I/R and hind limb I/R as opposed to the standardly used renal I/R model that employs renal artery clamping, resulted in relatively moderate direct AKI. The damage was exacerbated by the perturbed systemic hemodynamics and metabolic acidosis as a result of the hind limb I/R. TEMPOL partially intervened in the factors that lead to AKI as well as renal microvascular partial tension of oxygen and metabolic acidosis. However, more effective interventions should be devised for the mean arterial pressure drop (i.e., anuria) associated with aortic clamping and for restoring other critical renal hemodynamic and oxygenation parameters in order to improve post-I/R renal function.
Relevance for patients: TEMPOL is a promising compound that has been shown to protect kidneys from I/R damage, which is relevant in kidney transplantation, pancreas transplantation, and aortic aneurysm repair in kidney transplant patients. This study suggests that intervening with TEMPOL is not sufficient to ensure optimal clinical outcome in patients that have undergone aortic clamping and that more effective interventions should be investigated.
[1] Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med 1996; 334: 1448-1460.
[2] Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 2009;296: F1109-F1117.
[3] Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012; 2: 1303-1353.
[4] Schlosser FJ, Mojibian H, Verhagen HJ, Moll FL, Muhs BE. Open thoracic or thoracoabdominal aortic aneurysm repair after previous abdominal aortic aneurysm surgery. J Vasc Surg 2008; 48: 761- 768.
[5] Maeda T, Watanabe N, Muraki S. Abdominal aortic aneurysm repair in a renal transplant recipient using a femoral V-A bypass. Ann Thorac Cardiovasc Surg 2009; 15: 415-417.
[6] Miranda MP, Genzini T, Noujaim H, Mota LT, Branez JR, Ianhez LE, Azevedo R, Shiroma ET. Aortic clamping in pancreas transplantation: is there any harm to the transplanted kidney graft? Transplant Proc 2012; 44: 2397-2398.
[7] Min EK, Kim YH, Han DJ, Han Y, Kwon H, Choi BH, Park H, Choi JY, Kwon TW, Cho YP. Renal autotransplantation in open surgical repair of suprarenal abdominal aortic aneurysm. Ann Surg Treat Res 2015; 89: 48-50.
[8] Legrand M, Mik EG, Johannes T, Payen D, Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 2008; 14: 502-516.
[9] van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev 2012; 23: 69-84.
[10] van Golen RF, van Gulik TM, Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic Biol Med 2012; 52: 1382-1402.
[11] Legrand M, Kandil A, Payen D, Ince C. Effects of sepiapterin infusion on renal oxygenation and early acute renal injury after suprarenal aortic clamping in rats. J Cardiovasc Pharmacol 2011; 58: 192-198.
[12] Zhang JJ, Kelm RJ, Biswas P, Kashgarian M, Madri JA. PECAM-1 modulates thrombin-induced tissue factor expression on endothelial cells. J Cell Physiol 2007; 210: 527-537.
[13] Snoeijs MG, Vink H, Voesten N, Christiaans MH, Daemen JW, Peppelenbosch AG, Tordoir JH, Peutz-Kootstra CJ, Buurman WA, Schurink GW, van Heurn LW: Acute ischemic injury to the renal microvasculature in human kidney transplantation. Am J Physiol Renal Physiol 2010; 299: F1134-F1140.
[14] van Golen RF, Reiniers MJ, Vrisekoop N, Zuurbier CJ, Olthof PB, van Rheenen J, van Gulik TM, Parsons BJ, Heger M. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal 2014; 21: 1098-1118.
[15] De Vecchi E, Lubatti L, Beretta C, Ferrero S, Rinaldi P, Galli KM, Trazzi R, Paroni R. Protection from renal ischemia-reperfusion injury by the 2-methylaminochroman U83836E. Kidney Int 1998; 54: 857-863.
[16] Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F, Goligorsky MS. Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol 2002; 282: F1150-F1155.
[17] Hu L, Chen J, Yang X, Senpan A, Allen JS, Yanaba N, Caruthers SD, Lanza GM, Hammerman MR, Wickline SA. Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear (1) H/(19) F MRI and perfluorocarbon nanoparticles. Magn Reson Med 2014; 71: 2186-2196.
[18] Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, Goligorsky MS. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 2002; 282: F1140-F1149.
[19] Hattori R, Ono Y, Kato M, Komatsu T, Matsukawa Y, Yamamoto T. Direct visualization of cortical peritubular capillary of transplanted human kidney with reperfusion injury using a magnifying endoscopy. Transplantation 2005; 79: 1190-1194.
[20] Kwon O, Wang WW, Miller S. Renal organic anion transporter 1 is maldistributed and diminishes in proximal tubule cells but increases in vasculature after ischemia and reperfusion. Am J Physiol Renal Physiol 2008; 295: F1807-F1816.
[21] Kloek JJ, Marechal X, Roelofsen J, Houtkooper RH, van Kuilenburg AB, Kulik W, Bezemer R, Neviere R, van Gulik TM, Heger M. Cholestasis is associated with hepatic microvascular dysfunction and aberrant energy metabolism before and during ischemia-reperfusion. Antioxid Redox Signal 2012; 17: 1109- 1123.
[22] Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol 2012; 302: F853-F864.
[23] Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552: 335-344.
[24] Zulueta JJ, Sawhney R, Yu FS, Cote CC, Hassoun PM. Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am J Physiol 1997; 272: L897- L902.
[25] Plotnikov EY, Kazachenko AV, Vyssokikh MY, Vasileva AK, Tcvirkun DV, Isaev NK, Kirpatovsky VI, Zorov DB. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int 2007; 72: 1493- 1502.
[26] Teruya R, Ikejiri AT, Somaio NF, Chaves JC, Bertoletto PR, Taha MO, Fagundes DJ. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cir Bras 2013; 28: 848-855.
[27] Zhang G, Zou X, Miao S, Chen J, Du T, Zhong L, Ju G, Liu G, Zhu Y. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/ gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS One 2014; 9: e92129.
[28] Ben MS, Pedruzzi E, Werts C, Coant N, Bens M, Cluzeaud F, Goujon JM, Ogier-Denis E, Vandewalle A. Heat shock protein gp96 and NAD(P)H oxidase 4 play key roles in Toll-like receptor 4-activated apoptosis during renal ischemia/reperfusion injury. Cell Death Differ 2010; 17: 1474-1485.
[29] Reiniers MJ, van Golen RF, van Gulik TM, Heger M. Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid Redox Signal 2014; 21: 1119-1142.
[30] Fridovich I. Superoxide dismutases: defence against endogenous superoxide radical. Ciba Found Symp 1978; 77-93.
[31] Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97-112.
[32] Paller MS, Eaton JW. Hazards of antioxidant combinations containing superoxide dismutase. Free Radic Biol Med 1995; 18: 883-890.
[33] Collins JL, Vodovotz Y, Hierholzer C, Villavicencio RT, Liu S, Alber S, Gallo D, Stolz DB, Watkins SC, Godfrey A, Gooding W, Kelly E, Peitzman AB, Billiar TR. Characterization of the expression of inducible nitric oxide synthase in rat and human liver during hemorrhagic shock. Shock 2003; 19: 117-122.
[34] Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 1993; 18: 195-199.
[35] Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001; 30: 463-488.
[36] Szabo C, Modis K. Pathophysiological roles of peroxynitrite in circulatory shock. Shock 2010; 34 Suppl 1: 4-14.
[37] Huang L, Belousova T, Chen M, DiMattia G, Liu D, Sheikh- Hamad D. Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice. Kidney Int 2012; 82: 867-877.
[38] Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 2001; 53: 135- 159.
[39] Li W, Wu M, Tang L, Pan Y, Liu Z, Zeng C, Wang J, Wei T, Liang G. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol Appl Pharmacol 2015; 282: 175-183.
[40] van Golen RF, Reiniers MJ, Olthof PB, van Gulik TM, Heger M. Sterile inflammation in hepatic ischemia/reperfusion injury: present concepts and potential therapeutics. J Gastroenterol Hepatol 2013; 28: 394-400.
[41] Abd-Elsameea AA, Moustaf AA, Mohamed AM. Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion. Eur Rev Med Pharmacol Sci 2014; 18: 2387-2392.
[42] Li H, Wang Y, Feng D, Liu Y, Xu M, Gao A, Tian F, Zhang L, Cui Y, Wang Z, Chen G. Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin. J Pineal Res 2014; 57: 110-119.
[43] Flessas I, Bramis I, Menenakos E, Toutouzas K, Agrogiannis G, Patsouris E, Nonni A, Chrysikos D, Korontzi M, Gioxari A, Zografos G, Papalois A. Effects of lazaroid U-74389G on intestinal ischemia and reperfusion injury in porcine experimental model. Int J Surg 2015; 13: 42-48.
[44] Yang B, Ni YF, Wang WC, Du HY, Zhang H, Zhang L, Zhang WD, Jiang T. Melatonin attenuates intestinal ischemia--reperfusion- induced lung injury in rats by upregulating N-myc downstream-regulated gene 2. J Surg Res 2015; 194: 273-280.
[45] Bozkurt M, Kapi E, Kulahci Y, Gedik E, Ozekinci S, Isik FB, Celik Y, Selcuk CT, Kuvat SV. Antioxidant support in composite musculo-adipose-fasciocutaneous flap applications: an experimental study. J Plast Surg Hand Surg 2014; 48: 44-50.
[46] Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol 2015; 5: 163-168.
[47] Orban JC, Quintard H, Cassuto E, Jambou P, Samat-Long C, Ichai C. Effect of N-acetylcysteine pretreatment of deceased organ donors on renal allograft function: a randomized controlled trial. Transplantation 2015; 99: 746-753.
[48] Fujii T, Takaoka M, Ohkita M, Matsumura Y. Tempol protects against ischemic acute renal failure by inhibiting renal noradrenaline overflow and endothelin-1 overproduction. Biol Pharm Bull 2005; 28: 641-645.
[49] Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 1984; 74: 1156-1164.
[50] Baker GL, Corry RJ, Autor AP. Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase. Ann Surg 1985; 202: 628-641.
[51] Schnackenberg CG, Wilcox CS. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes. Kidney Int 2001; 59: 1859-1864.
[52] Zhang C, Xu X, Potter BJ, Wang W, Kuo L, Michael L, Bagby GJ, Chilian WM. TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2006; 26: 475-480.
[53] Hein TW, Ren Y, Potts LB, Yuan Z, Kuo E, Rosa RH, Jr., Kuo L. Acute retinal ischemia inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest Ophthalmol Vis Sci 2012; 53: 30-36.
[54] Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, Thiemermann C. Tempol, a membrane- permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 2000; 58: 658-673.
[55] Wilcox CS. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 2010; 126: 119-145.
[56] Gomez-Pinilla PJ, Camello PJ, Tresguerres JA, Pozo MJ. Tempol protects the gallbladder against ischemia/reperfusion. J Physiol Biochem 2010; 66: 161-172.
[57] Knight SF, Kundu K, Joseph G, Dikalov S, Weiss D, Murthy N, Taylor WR. Folate receptor-targeted antioxidant therapy ameliorates renal ischemia-reperfusion injury. J Am Soc Nephrol 2012; 23: 793-800.
[58] Aksu U, Ergin B, Bezemer R, Kandil A, Milstein DJ, Demirci- Tansel C, Ince C. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels. Intensive Care Med Exp 2015; 3: 21.
[59] Awad RW, Barham WJ, Taylor DN, Woodward DA, Bullen BR. The effect of infrarenal aortic reconstruction on glomerular filtration rate and effective renal plasma flow. Eur J Vasc Surg 1992; 6: 362-367.
[60] Yassin MM, Harkin DW, Barros D'Sa AA, Halliday MI, Rowlands BJ. Lower limb ischemia-reperfusion injury triggers a systemic inflammatory response and multiple organ dysfunction. World J Surg 2002; 26: 115-121.
[61] Johannes T, Mik EG, Ince C. Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney. J Appl Physiol (1985 ) 2006; 100: 1301-1310.
[62] Andreoli R, Manini P, Corradi M, Mutti A, Niessen WM. Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/ atmospheric chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2003; 17: 637-645.
[63] Sim AS, Salonikas C, Naidoo D, Wilcken DE. Improved method for plasma malondialdehyde measurement by high-performance liquid chromatography using methyl malondialdehyde as an internal standard. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 785: 337-344.
[64] Pilz J, Meineke I, Gleiter CH. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B Biomed Sci Appl 2000; 742: 315-325.
[65] Forman HJ, Augusto O, Brigelius-Flohe R, Dennery PA, Kalyanaraman B, Ischiropoulos H, Mann GE, Radi R, Roberts LJ, Vina J, Davies KJ. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med 2015; 78: 233-235.
[66] Demirci C, Gargili A, Kandil A, Cetinkaya H, Uyaner I, Boynuegri B, Gumustas MK. Inhibition of inducible nitric oxide synthase in murine visceral larva migrans: effects on lung and liver damage. Chin J Physiol 2006; 49: 326-334.
[67] Senturk LM, Seli E, Gutierrez LS, Mor G, Zeyneloglu HB, Arici A. Monocyte chemotactic protein-1 expression in human corpus luteum. Mol Hum Reprod 1999; 5: 697-702.
[68] Szeto HH, Liu S, Soong Y, Birk AV. Improving mitochondrial bioenergetics under ischemic conditions increases warm ischemia tolerance in the kidney. Am J Physiol Renal Physiol 2015; 308: F11- F21.
[69] Zhang J, Zou YR, Zhong X, Deng HD, Pu L, Peng K, Wang L. Erythropoietin pretreatment ameliorates renal ischaemia-reperfusion injury by activating PI3K/Akt signalling. Nephrology (Carlton) 2015; 20: 266-272.
[70] Tojo A, Welch WJ, Bremer V, Kimoto M, Kimura K, Omata M, Ogawa T, Vallance P, Wilcox CS. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int 1997; 52: 1593-1601.
[71] Cattell V, Smith J, Jansen A, Riveros-Moreno V, Moncada S. Localization of inducible nitric oxide synthase in acute renal allograft rejection in the rat. Transplantation 1994; 58: 1399-1402.
[72] Hur GM, Ryu YS, Yun HY, Jeon BH, Kim YM, Seok JH, Lee JH. Hepatic ischemia/reperfusion in rats induces iNOS gene transcription by activation of NF-kappaB. Biochem Biophys Res Commun 1999; 261: 917-922.
[73] Daemen MA, van't Veer C, Wolfs TG, Buurman WA. Ischemia/ reperfusion-induced IFN-gamma up-regulation: involvement of IL-12 and IL-18. J Immunol 1999; 162: 5506-5510.
[74] Spink J, Cohen J, Evans TJ. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor-kappa B. J Biol Chem 1995; 270: 29541-29547.
[75] Yu X, Kennedy RH, Liu SJ. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 2003; 278: 16304-16309.
[76] Freitas MC, Uchida Y, Lassman C, Danovitch GM, Busuttil RW, Kupiec-Weglinski JW. Type I interferon pathway mediates renal ischemia/reperfusion injury. Transplantation 2011; 92: 131-138.
[77] Pararajasingam R, Weight SC, Bell PR, Nicholson ML, Sayers RD. Endogenous renal nitric oxide metabolism following experimental infrarenal aortic cross-clamp-induced ischaemia-reperfusion injury. Br J Surg 1999; 86: 795-799.
[78] Kielar ML, John R, Bennett M, Richardson JA, Shelton JM, Chen L, Jeyarajah DR, Zhou XJ, Zhou H, Chiquett B, Nagami GT, Lu CY. Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol 2005; 16: 3315-3325.
[79] Schmidt KN, Amstad P, Cerutti P, Baeuerle PA. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-kappa B. Chem Biol 1995; 2: 13-22.
[80] Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011; 21: 103-115.
[81] Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376: 1-43.
[82] Kucuk HF, Kaptanoglu L, Ozalp F, Kurt N, Bingul S, Torlak OA, Colak E, Akyol H, Gul AE. Role of glyceryl trinitrate, a nitric oxide donor, in the renal ischemia-reperfusion injury of rats. Eur Surg Res 2006; 38: 431-437.
[83] Jeong GY, Chung KY, Lee WJ, Kim YS, Sung SH. The effect of a nitric oxide donor on endogenous endothelin-1 expression in renal ischemia/reperfusion injury. Transplant Proc 2004; 36: 1943-1945.
[84] Noiri E, Peresleni T, Miller F, Goligorsky MS. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 1996; 97: 2377-2383.
[85] Chatterjee PK, Patel NS, Kvale EO, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C. Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int 2002; 61: 862-871.
[86] Vinas JL, Sola A, Genesca M, Alfaro V, Pi F, Hotter G. NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Free Radic Biol Med 2006; 40: 992-1003.
[87] Zatz R, de Nucci G. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol 1991; 261: F360-F363.
[88] Rhoden EL, Rhoden CR, Lucas ML, Pereira-Lima L, Zettler C, Bello-Klein A. The role of nitric oxide pathway in the renal ischemia-reperfusion injury in rats. Transpl Immunol 2002; 10: 277- 284.
[89] van Golen RF, Reiniers MJ, Heger M, Verheij J. Solutions to the discrepancies in the extent of liver damage following ischemia/ reperfusion in standard mouse models. J Hepatol 2015; 62: 975- 977.
[90] Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C. Inhibitors of poly (ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J 2000; 14: 641-651.
[91] Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, Kimura K, Fujita T, Kinukawa T, Taniguchi H, Nakamura K, Goto M, Shinozaki N, Ohshima S, Sugaya T. Renal L-type fatty acid--binding protein in acute ischemic injury. J Am Soc Nephrol 2007;18: 2894-2902.
[92] Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P: Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 2006; 21: 856- 863.
[93] de Carvalho AL, Vital RB, Kakuda CM, Braz JR, Castiglia YM, Braz LG, Modolo MP, Ribeiro OR, Domingues MA, Modolo NS. Dexmedetomidine on renal ischemia-reperfusion injury in rats: assessment by means of NGAL and histology. Ren Fail 2015; 37: 526-530.
[94] Chen X, Liu X, Wan X, Wu Y, Chen Y, Cao C. Ischemic preconditioning attenuates renal ischemia-reperfusion injury by inhibiting activation of IKKbeta and inflammatory response. Am J Nephrol 2009; 30: 287-294.
[95] Negishi K, Noiri E, Doi K, Maeda-Mamiya R, Sugaya T, Portilla D, Fujita T. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 2009; 174: 1154-1159.
[96] Fall PJ, Szerlip HM. Lactic acidosis: from sour milk to septic shock. J Intensive Care Med 2005; 20: 255-271.
[97] Bellomo R. Bench-to-bedside review: lactate and the kidney. Crit Care 2002; 6: 322-326.
[98] James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999; 354: 505-508.
[99] Hruby Z, Rosinski M, Tyran B. Parenchymal injury in remnant- kidney model may be linked to apoptosis of renal cells mediated by nitric oxide. J Nephrol 2008; 21: 686-693.
[100] Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, Willam C. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl 2005; S46-S51.
[101] Goligorsky MS, Brodsky SV, Noiri E. NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin Nephrol 2004; 24: 316-323.
[102] Gunnett CA, Lund DD, McDowell AK, Faraci FM, Heistad DD. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arterioscler Thromb Vasc Biol 2005; 25: 1617-1622.
[103] Tanner GA. Kidney function; in Rhoades RA, Bell DR, (eds). Medical Phisiology: Principles for Clinical Medicine. Baltimore, MD, Lippincott, Williams & Wilkins, 2013, pp 399-427.
[104] Brezis M, Heyman SN, Epstein FH. Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am J Physiol 1994; 267: F1063-F1068.
[105] Rosen S, Epstein FH, Brezis M. Determinants of intrarenal oxygenation: factors in acute renal failure. Ren Fail 1992; 14: 321- 325.
[106] Saba H, Batinic-Haberle I, Munusamy S, Mitchell T, Lichti C, Megyesi J, MacMillan-Crow LA. Manganese porphyrin reduces renal injury and mitochondrial damage during ischemia/reperfusion. Free Radic Biol Med 2007; 42: 1571-1578.
[107] Bezemer R, Klijn E, Khalilzada M, Lima A, Heger M, van Bommel J, Ince C. Validation of near-infrared laser speckle imaging for assessing microvascular (re) perfusion. Microvasc Res 2010; 79: 139-143.
[108] Levy MN. Effect of variations of blood flow on renal oxygen extraction. Am J Physiol 1960; 199: 13-18.