AccScience Publishing / JCBP / Volume 2 / Issue 2 / DOI: 10.36922/jcbp.2248
Cite this article
14
Download
217
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH ARTICLE

Mental workload modulates the effects of baroreceptor afferents on sensorimotor processing

Xiao Yang1* Katie Heberlein1 Anthony Reid1 Dongfang Jiao1 Fang Fang2
Show Less
1 Department of Psychology, College of Sciences, Old Dominion University, Norfolk, Virginia, United States of America
2 Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
Submitted: 15 November 2023 | Accepted: 14 March 2024 | Published: 1 April 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The heart–brain interaction is the main mechanism for maintaining normative physiological processes, and its dysregulation underlies the somatic symptoms of various mental disorders. Cortical inhibition, triggered by afferent signals from baroreceptor activation, induces systematic variations in sensorimotor responses within a cardiac cycle, with reaction times (RTs) slower at cardiac systole compared to diastole (known as cardiac cycle time effects). However, recent data suggest that baroreceptor afferents not only inhibit simple responses but also facilitate complex sensorimotor responses during cardiac systole. The mental workload that is implicated in complex responses may modulate the cardiac cycle time effects. The current study aimed to examine whether concurrent mental workloads influenced cardiac cycle time effects on sensorimotor processing. Using a dual-task paradigm, 47 participants (32 female; age = 21.9 ± 2.1 years) performed a choice RT task and a working memory (WM) task. Stimuli were presented during either cardiac systole or diastole. RT data were fitted using the ex-Gaussian distribution, and the parameters, mu and tau, were derived to indicate response speed and high-order attentional processes, respectively. The behavioral data were submitted to 2 (WM load) × 2 (cardiac timing) repeated measures analyses of variances. The results indicated that RT metrics were longer during cardiac systole than diastole under the no-load condition. However, WM load reversed the cardiac timing effects on response speed while inducing more attentional lapses. These findings suggest that concurrent WM load influences cardiac cycle time effects on sensorimotor processing via top-down resources.

Keywords
Baroreceptor afferents
Cardiac timing
Mental workload
Ex-Gaussian modelling
Funding
None.
References
  1. Cortese MD, Vatrano M, Tonin P, Cerasa A, Riganello F. Inhibitory control and brain-heart interaction: An HRV-EEG study. Brain Sci. 2022;12(6):740. doi: 10.3390/brainsci12060740

 

  1. Thayer JF, Åhs F, Fredrikson M, Sollers JJ 3rd, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36(2):747-756. doi: 10.1016/j.neubiorev.2011.11.009

 

  1. Yasumasu T, Reyes del Paso GA, Takahara K, Nakashima Y. Reduced baroreflex cardiac sensitivity predicts increased cognitive performance. Psychophysiology. 2006;43(1):41-45. doi: 10.1111/j.1469-8986.2006.00377.x

 

  1. Del Paso G. A between-subjects comparison of respiratory sinus arrhythmia and baroreceptor cardiac reflex sensitivity as non-invasive measures of tonic parasympathetic cardiac control. Int J Psychophysiol. 1996;22(3):163-171. doi: 10.1016/0167-8760(96)00020-7

 

  1. Gianaros PJ, Jennings JR, Olafsson GB, et al. Greater intima-media thickness in the carotid bulb is associated with reduced baroreflex sensitivity. Am J Hypertens. 2002;15(6):486-491. doi: 10.1016/s0895-7061(02)02923-0

 

  1. Sabino-Carvalho JL, Falquetto B, Takakura AC, Vianna LC. Baroreflex dysfunction in Parkinson’s disease: Integration of central and peripheral mechanisms. J Neurophysiol. 2021;125:1425-1439. doi: 10.1152/jn.00548.2020

 

  1. Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex function after spinal cord injury. J Neurotrauma. 2012;29(15):2431-2445. doi: 10.1089/neu.2012.2507

 

  1. Broadley AJ, Frenneaux MP, Moskvina V, Jones CJ, Korszun A. Baroreflex sensitivity is reduced in depression. Psychosom Med. 2005;67(4):648-651. doi: 10.1097/01.psy.0000170829.91643.24

 

  1. Barinas-Mitchell E, Yang X, Matthews KA, et al. Childhood-onset depression and arterial stiffness in young adulthood. J Psychosom Res. 2021;148:110551. doi: 10.1016/j.jpsychores.2021.110551

 

  1. Yang X, Daches S, Yaroslavsky I, George CJ, Kovacs M. Cardiac vagal control mediates the relation between past depression and blood pressure several years later among young adults. Psychophysiology. 2020;57(5):e13535. doi: 10.1111/psyp.13535

 

  1. Lacey BC, Lacey JI. Two-way communication between the heart and the brain. Significance of time within the cardiac cycle. Am Psychol. 1978;33(2):99-113. doi: 10.1037/0003-066x.33.2.99

 

  1. Henderson LA, Richard CA, Macey PM, et al. Functional magnetic resonance signal changes in neural structures to baroreceptor reflex activation. J Appl Physiol (1985). 2004;96(2):693-703. doi: 10.1152/japplphysiol.00852.2003

 

  1. Duschek S, Werner NS, Reyes del Paso GA. The behavioral impact of baroreflex function: A review. Psychophysiology. 2013;50(12):1183-1193. doi: 10.1111/psyp.12136

 

  1. Birren JE, Cardon PV Jr., Phillips SL. Reaction time as a function of the cardiac cycle in young adults. Science. 1963;140(3563):195-196. doi: 10.1126/science.140.3563.195.b

 

  1. Callaway E, Layne RS. Interaction between the visual evoked response and two spontaneous biological rhythms: The EEG alpha cycle and the cardiac arousal cycle. Ann N Y Acad Sci. 1964;112(1):421-431. doi: 10.1111/j.1749-6632.1964.tb26762.x

 

  1. Edwards L, Ring C, McIntyre D, Carroll D, Martin U. Psychomotor speed in hypertension: Effects of reaction time components, stimulus modality, and phase of the cardiac cycle. Psychophysiology. 2007;44(3):459-468. doi: 10.1111/j.1469-8986.2007.00521.x

 

  1. Stewart JC, France CR, Suhr JA. The effect of cardiac cycle phase on reaction time among individuals at varying risk for hypertension. J Psychophysiol. 2006;20(1):1-8. doi: 10.1027/0269-8803.20.1.1

 

  1. Rae CL, Botan VE, Gould van Praag CD, et al. Response inhibition on the stop signal task improves during cardiac contraction. Sci Rep. 2018;8(1):9136. doi: 10.1038/s41598-018-27513-y

 

  1. Schulz A, Lass-Hennemann J, Nees F, Blumenthal TD, Berger W, Schachinger H. Cardiac modulation of startle eye blink. Psychophysiology. 2009;46(2):234-240. doi: 10.1111/j.1469-8986.2008.00768.x

 

  1. Carroll D, Anastasiades P. The behavioural significance of heart rate: The Laceys’ hypothesis. Biol Psychol. 1978;7(4):249-275. doi: 10.1016/0301-0511(78)90059-5

 

  1. Salzman LF, Jaques N. Heart rate and cardiac cycle effects on reaction time. Percept Mot Skills. 1976;42(3 Suppl):1315-1321. doi: 10.2466/pms.1976.42.3c.1315

 

  1. Thompson LW, Botwinick J. Stimulation in different phases of the cardiac cycle and reaction time. Psychophysiology. 1970;7(1):57-65. doi: 10.1111/j.1469-8986.1970.tb02276.x

 

  1. Weisz J, Ádám G. The influence of cardiac phase on reaction time depending on heart period length and on stimulus and response laterality. Psychobiology. 1996;24(2):169-175. doi: 10.3758/bf03331969

 

  1. Adelhöfer N, Schreiter ML, Beste C. Cardiac cycle gated cognitive-emotional control in superior frontal cortices. Neuroimage. 2020;222:117275. doi: 10.1016/j.neuroimage.2020.117275

 

  1. Larra MF, Finke JB, Wascher E, Schächinger H. Disentangling sensorimotor and cognitive cardioafferent effects: A cardiac-cycle-time study on spatial stimulus-response compatibility. Sci Rep. 2020;10(1):4059. doi: 10.1038/s41598-020-61068-1

 

  1. Ochsner KN, Gross JJ. Cognitive emotion regulation. Curr Dir Psychol Sci. 2008;17(2):153-158. doi: 10.1111/j.1467-8721.2008.00566.x

 

  1. Seidman AJ, Yang X, Westbrook A, George CJ, Kovacs M. Effects of current and past depressive episodes on behavioral performance and subjective experience during an N-back task. J Behav Ther Exp Psychiatry. 2023;81:101852. doi: 10.1016/j.jbtep.2023.101852

 

  1. Baddeley AD, Hitch GJ. Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch models be merged? J Exp Child Psychol. 2000;77(2):128-137. doi: 10.1006/jecp.2000.2592

 

  1. Engle R. Working memory capacity as executive attention. Curr Dir Psychol Sci. 2002;11(1):19-23. doi: 10.1111/1467-8721.00160

 

  1. King R, Schaefer A. The emotional startle effect is disrupted by a concurrent working memory task. Psychophysiology. 2011;48(2):269-272. doi: 10.1111/j.1469-8986.2010.01062.x

 

  1. Yang X, Spangler DP, Thayer JF, Friedman BH. Resting heart rate variability modulates the effects of concurrent working memory load on affective startle modification. Psychophysiology. 2021;58(8):e13833. doi: 10.1111/psyp.13833

 

  1. Drevets WC, Raichle ME. Suppression of regional cerebral blood during emotional versus higher cognitive implications for interactions between emotion and cognition. Cogn Emot. 1998;12(3):353-385. doi: 10.1080/026999398379646

 

  1. Spangler DP, Williams DP, Speller LF, Brooks JR, Thayer JF. Resting heart rate variability is associated with ex-Gaussian metrics of intra-individual reaction time variability. Int J Psychophysiol. 2018;125:10-16. doi: 10.1016/j.ijpsycho.2018.01.009

 

  1. Williams DP, Thayer JF, Koenig J. Resting cardiac vagal tone predicts intraindividual reaction time variability during an attention task in a sample of young and healthy adults. Psychophysiology. 2016;53(12):1843-1851. doi: 10.1111/psyp.12739

 

  1. Yang X, Spangler DP, Jennings JR, Friedman BH. Cardiac timing and threatening stimuli influence response inhibition and ex‐Gaussian parameters of reaction time in a Go/No‐go task. Psychophysiology. 2023;60(6):e14260. doi: 10.1111/psyp.14260

 

  1. Hohle RH. Inferred components of reaction times as functions of foreperiod duration. J Exp Psychol. 1965;69(4):382-386. doi: 10.1037/h0021740

 

  1. Luce RD. Response Times and their Role in Inferring Elementary Mental Organization. Oxford: Oxford University Press; 1986.

 

  1. Gmehlin D, Fuermaier ABM, Walther S, et al. Attentional lapses of adults with attention deficit hyperactivity disorder in tasks of sustained attention. Arch Clin Neuropsychol. 2016;31(4):343-357. doi: 10.1093/arclin/acw016

 

  1. Leth-Steensen C, King Elbaz Z, Douglas VI. Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach. Acta Psychol (Amst). 2000;104(2):167-190. doi: 10.1016/s0001-6918(00)00019-6

 

  1. Tarantino V, Cutini S, Mogentale C, Bisiacchi PS. Time-on-task in children with ADHD: An ex-Gaussian analysis. J Int Neuropsychol Soc. 2013;19(7):820-828. doi: 10.1017/s1355617713000623

 

  1. Galloway-Long H, Huang-Pollock C. Using inspection time and ex-Gaussian parameters of reaction time to predict executive functions in children with ADHD. Intelligence. 2018;69:186-194. doi: 10.1016/j.intell.2018.06.005

 

  1. Vaurio RG, Simmonds DJ, Mostofsky SH. Increased intra-individual reaction time variability in attention-deficit/ hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia. 2009;47(12):2389-2396. doi: 10.1016/j.neuropsychologia.2009.01.022

 

  1. Yang X, Jennings JR, Friedman BH. Exteroceptive stimuli override interoceptive state in reaction time control. Psychophysiology. 2017;54(12):1940-1950. doi: 10.1111/psyp.12958

 

  1. Wawrzyniak AJ, Hamer M, Steptoe A, Endrighi R. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress. Psychophysiology. 2016;53(5):739-748. doi: 10.1111/psyp.12617

 

  1. Spangler DP, Cox KR, Thayer JF, Brooks JR, Friedman BH. Interplay between state anxiety, heart rate variability, and cognition: An ex-Gaussian analysis of response times. Int J Psychophysiol. 2021;159:60-70. doi: 10.1016/j.ijpsycho.2020.08.018

 

  1. Kimura K, Kanayama N, Toyama A, Katahira K. Cardiac cycle affects the asymmetric value updating in instrumental reward learning. Front Neurol. 2022;16:889440. doi: 10.3389/fnins.2022.889440

 

  1. Sternberg S. High-speed scanning in human memory. Science. 1966;153(3736):652-654. doi: 10.1126/science.153.3736.652

 

  1. Lavie N, Hirst A, De Fockert JW, Viding E. Load theory of selective attention and cognitive control. J Exp Psychol Gen. 2004;133(3):339-354. doi: 10.1037/0096-3445.133.3.339

 

  1. Yang X, Friedman BH. Individual differences in behavioral activation and cardiac vagal control influence affective startle modification. Physiol Behav. 2017;172:3-11. doi: 10.1016/j.physbeh.2016.06.004

 

  1. Li X, Swallow K, Chiu M, De Rosa E, Anderson AK. Does the body give the brain an attentional boost? Examining the relationship between attentional and cardiac gating. Biol Psychol. 2018;139:124-130. doi: 10.1016/j.biopsycho.2018.10.008

 

  1. Massidda D, Massidda MD. Package ‘Retimes’: Reaction Time Analysis. R Package Version0.1-2; 2013. Available from: https://cran.r-project.org/packag-retimes [Last accessed on 2023 Oct 12].

 

  1. Ratcliff R. Methods for dealing with reaction time outliers. Psychol Bull. 1993;114(3):510-532. doi: 10.1037/0033-2909.114.3.510

 

  1. Neumann O, Sanders AF. Handbook of Perception and Action. United States: Academic Press; 1996.

 

  1. Mulder G, Gloerich AB, Brookhuis KA, Van Dellen HJ, Mulder LJ. Stage analysis of the reaction process using brain-evoked potentials and reaction time. Psychol Res. 1984;46(1- 2):15-32. doi: 10.1007/bf00308590

 

  1. Simon JR, Craft JL. Effects of an irrelevant auditory stimulus on visual choice reaction time. J Exp Psychol. 1970;86(2):272-274. doi: 10.1037/h0029961

 

  1. Stoffels EJ, Van Der Molen MW, Keuss PJ. Intersensory facilitation and inhibition: Immediate arousal and location effects of auditory noise on visual choice reaction time. Acta Psychol (Amst). 1985;58(1):45-62. doi: 10.1016/0001-6918(85)90033-2

 

  1. Edwards L, Ring C, McIntyre D, Winer JB, Martin U. Sensory detection thresholds are modulated across the cardiac cycle: Evidence that cutaneous sensibility is greatest for systolic stimulation. Psychophysiology. 2009;46(2):252-256. doi: 10.1111/j.1469-8986.2008.00769.x

 

  1. Ring C, Liu X, Brener J. Cardiac stimulus intensity and heartbeat detection: Effects of tilt-induced changes in stroke volume. Psychophysiology. 1994;31(6):553-564. doi: 10.1111/j.1469-8986.1994.tb02348.x

 

  1. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804-1814. doi: 10.1161/circresaha.114.302524

 

  1. Kimura K, Kanayama N, Katahira K. Cardiac cycle affects risky decision-making. Biol Psychol. 2022;176:108471. doi: 10.1016/j.biopsycho.2022.108471

 

  1. Fiacconi CM, Peter EL, Owais S, Köhler S. Knowing by heart: Visceral feedback shapes recognition memory judgments. J Exp Psychol Gen. 2016;145(5):559-572. doi: 10.1037/xge0000164

 

  1. Garfinkel SN, Barrett AB, Minati L, Dolan RJ, Seth AK, Critchley HD. What the heart forgets: Cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiol. 2013;50(6):505-512. doi: 10.1111/psyp.12039

 

  1. Pfeifer G, Garfinkel SN, Gould van Praag CD, Sahota K, Betka S, Critchley HD. Feedback from the heart: Emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality. Biol Psychol. 2017;126:19-29. doi: 10.1016/j.biopsycho.2017.04.001

 

  1. Azevedo RT, Garfinkel SN, Critchley HD, Tsakiris M. Cardiac afferent activity modulates the expression of racial stereotypes. Nat Commun. 2017;8(1):13854. doi: 10.1038/ncomms13854

 

  1. Garfinkel SN, Critchley HD. Threat and the body: How the heart supports fear processing. Trends Cogn Sci. 2016;20(1):34-46. doi: 10.1016/j.tics.2015.10.005

 

  1. Garfinkel SN, Minati L, Gray MA, Seth AK, Dolan RJ, Critchley HD. Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. J Neurosci. 2014;34(19):6573-6582. doi: 10.1523/JNEUROSCI.3507-13.2014

 

  1. Gray MA, Rylander K, Harrison NA, Wallin BG, Critchley HD. Following one’s heart: Cardiac rhythms gate central initiation of sympathetic reflexes. J Neurosci. 2009;29(6):1817-1825. doi: 10.1523/JNEUROSCI.3363-08.2009

 

  1. Critchley HD. Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. Int J Psychophysiol. 2009;73(2):88-94. doi: 10.1016/j.ijpsycho.2009.01.012

 

  1. Folkow B, Lisander B, Tuttle RS, Wang SC. Changes in cardiac output upon stimulation of the hypothalamic defence area and the medullary depressor area in the cat. Acta Physiol Scand. 1968;72(1-2):220-233. doi: 10.1111/j.1365-201X.1968.tb10829.x

 

  1. Coote JH, Hilton SM, Perez-Gonzalez JF. Inhibition of the baroreceptor reflex on stimulation in the brain stem defence centre. J Physiol. 1979;288(1):549-560. doi: 10.1113/jphysiol.1979.sp012712

 

  1. Del Paso GA, Mata JL, Martín‐Vázquez M. Relationships between baroreceptor cardiac reflex sensitivity and cognitive performance: Modulations by gender and blood pressure. Psychophysiology. 2011;49(1):138-144. doi: 10.1111/j.1469-8986.2011.01276.x

 

  1. Schulz A, Plein DE, Richter S, Blumenthal TD, Schächinger H. Cold pressor stress affects cardiac attenuation of startle. Int J Psychophysiol. 2011;79(3):385-391. doi: 10.1016/j.ijpsycho.2010.12.008

 

  1. Vytal K, Cornwell B, Arkin N, Grillon C. Describing the interplay between anxiety and cognition: From impaired performance under low cognitive load to reduced anxiety under high load. Psychophysiology. 2012;49(6):842-852. doi: 10.1111/j.1469-8986.2012.01358.x

 

  1. Hayes JP, Vanelzakker MB, Shin LM. Emotion and cognition interactions in PTSD: A review of neurocognitive and neuroimaging studies. Front Integr Neurosci. 2012;6:89. doi: 10.3389/fnint.2012.00089
Conflict of interest
The authors have no conflicts of interest to declare.
Share
Back to top
Journal of Clinical and Basic Psychosomatics, Electronic ISSN: 2972-4414 Published by AccScience Publishing