Early identification of cardiovascular health risks in pre-eclampsia: A biomarker-centric perspective

Pre-eclampsia is a complicated hypertensive pregnancy condition that has a major effect on the health of both the mother and the fetus and puts the affected women at risk for long-term cardiovascular (CV) problems. Despite advances in understanding its etiology, early detection of pre-eclampsia and its associated CV risks remains challenging. This mini-review emphasizes the critical role of biomarkers and advanced diagnostic techniques in addressing this gap. Emerging biomarkers, including angiogenic factors (soluble fms-like tyrosine kinase-1/placental growth factor ratio), metabolic and lipidomics markers, inflammatory cytokines, and exosomal components, provide promising pathways for early identification and risk stratification. Diagnostic techniques can be further improved by classifying these biomarkers according to their capacity to predict long-term CV risks. Technological advancements, such as omics platforms, molecular imaging, wearable health devices, and artificial intelligence (AI) and machine learning, further improve real-time detection and personalized management of pre-eclampsia. By focusing on biomarker-centric predictors of CV risks, this review highlights the integration of multi-biomarker panels and AI-driven algorithms to optimize risk prediction. The transition from association to action is explored, with an emphasis on translating knowledge into effective prevention strategies and improved risk assessment protocols. Structured postpartum follow-up is advocated to monitor and mitigate long-term CV risks in pre-eclamptic women. Practical applications, including targeted interventions and personalized risk management strategies, are discussed. By bridging cutting-edge research and clinical practice, this review aims to enhance maternal health outcomes and advance preventative measures for CV diseases in women with a history of pre-eclampsia.
- Booker WA. Hypertensive disorders of pregnancy. Clin Perinatol. 2020;47:817-833. doi: 10.1016/j.clp.2020.08.011
- Khedagi AM, Bello NA. Hypertensive disorders of pregnancy. Cardiol Clin. 2021;39:77-90. doi: 10.1016/j.ccl.2020.09.005
- Stuart JJ, Tanz LJ, Cook NR, et al. Hypertensive disorders of pregnancy and 10-year cardiovascular risk prediction. J Am Coll Cardiol. 2018;72:1252-1263. doi: 10.1016/j.jacc.2018.05.077
- Sutton ALM, Harper LM, Tita ATN. Hypertensive disorders in pregnancy. Obstet Gynecol Clin North Am. 2018;45:333-347. doi: 10.1016/j.ogc.2018.01.012
- Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9:8. doi: 10.1038/s41572-023-00417-6
- Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet. 2021;398:341-354. doi: 10.1016/S0140-6736(20)32335-7
- Hallum S, Basit S, Kamper-Jørgensen M, Sehested TSG, Boyd HA. Risk and trajectory of premature ischaemic cardiovascular disease in women with a history of pre-eclampsia: A nationwide register-based study. Eur J Prev Cardiol. 2023;30(6):506-516. doi: 10.1093/eurjpc/zwad003
- Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275-289. doi: 10.1038/s41581-019-0119-6. Erratum in: Nat Rev Nephrol. 2019;15(6):386. doi: 10.1038/s41581-019-0156-1
- Benschop L, Duvekot JJ, Roeters Van Lennep JE. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart. 2019;105(16):1273-1278. doi: 10.1136/heartjnl-2018-313453
- Lim S, Li W, Kemper J, Nguyen A, Mol BW, Reddy M. Biomarkers and the prediction of adverse outcomes in preeclampsia: A systematic review and meta-analysis. Obstet Gynecol. 2021;137:72-81. doi: 10.1097/AOG.0000000000004149
- Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13-22. doi: 10.1056/NEJMoa1414838
- Hauge MG, Damm P, Kofoed KF, et al. Early coronary atherosclerosis in women with previous preeclampsia. J Am Coll Cardiol. 2022;79(23):2310-2321. doi: 10.1016/j.jacc.2022.03.381
- MacDonald TM, Walker SP, Hannan NJ, Tong S, Kaitu’u-Lino TJ. Clinical tools and biomarkers to predict preeclampsia. EBioMedicine. 2022;75:103780. doi: 10.1016/j.ebiom.2021.103780
- Benny PA, Alakwaa FM, Schlueter RJ, Lassiter CB, Garmire LX. A review of omics approaches to study preeclampsia. Placenta. 2020;92:17-27. doi: 10.1016/j.placenta.2020.01.008
- Zhang B, Schmidlin T. Recent advances in cardiovascular disease research driven by metabolomics technologies in the context of systems biology. NPJ Metab Health Dis. 2024;2:25. doi: 10.1038/s44324-024-00028-z
- Magro D, Venezia M, Balistreri CR. The omics technologies and liquid biopsies: Advantages, limitations, applications. Med Omics. 2024;11:100039. doi: 10.1016/j.meomic.2024.100039
- Ahmed S, Jafri R. Point of care tests-the future of diagnostic medicine. EJIFCC. 2024;35(3):140-141.
- Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ. 2018;9:36. doi: 10.1186/s13293-018-0195-5
- Tomkiewicz J, Darmochwał-Kolarz DA. Biomarkers for early prediction and management of preeclampsia: A comprehensive review. Med Sci Monit. 2024;30:e944104. doi: 10.12659/MSM.944104
- Verlohren S, Brennecke SP, Galindo A, et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022;27:42-50. doi: 10.1016/j.preghy.2021.12.003
- Guan X, Fu Y, Liu Y, et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: A systematic review and meta-analysis. Front Immunol. 2023;14:1156039. doi: 10.3389/fimmu.2023.1156039
- Afrose D, Chen H, Ranashinghe A, et al. The diagnostic potential of oxidative stress biomarkers for preeclampsia: Systematic review and meta-analysis. Biol Sex Differ. 2022;13:26. doi: 10.1186/s13293-022-00436-0
- Mosquera-Heredia MI, Morales LC, Vidal OM, et al. Exosomes: Potential disease biomarkers and new therapeutic targets. Biomedicines. 2021;9(8):1061. doi: 10.3390/biomedicines9081061
- Oladipo AF, Jayade M. Review of laboratory testing and biomarker screening for preeclampsia. BioMed. 2024;4(2):122-135. doi: 10.3390/biomed4020010
- Fox R, Kitt J, Leeson P, Aye CYL, Lewandowski AJ. Preeclampsia: Risk factors, diagnosis, management, and the cardiovascular impact on the offspring. J Clin Med. 2019;8(10):1625. doi: 10.3390/jcm8101625
- Adedinsewo DA, Pollak AW, Phillips SD, et al. Cardiovascular disease screening in women: Leveraging artificial intelligence and digital tools. Circ Res. 2022;130(4):673-690. doi: 10.1161/CIRCRESAHA.121.319876
- Ng KW, Chaturvedi N, Coté GL, et al. Biomarkers and point of care screening approaches for the management of preeclampsia. Commun Med. 2024;4:208. doi: 10.1038/s43856-024-00642-4
- Sufriyana H, Wu YW, Su EC. Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia. EBioMedicine. 2020; 54:102710. doi: 10.1016/j.ebiom.2020.102710
- Ranjbar A, Montazeri F, Ghamsari SR, et al. Machine learning models for predicting preeclampsia: A systematic review. BMC Pregnancy Childbirth. 2024;24:6. doi: 10.1186/s12884-023-06220-1
- Melbourne A, Schabel MC, David AL, Roberts VHJ. Magnetic resonance imaging of placental intralobule structure and function in a preclinical nonhuman primate model. Biol Reprod. 2024;110(6):1065-1076. doi: 10.1093/biolre/ioae035
- Bhaltadak V, Ghewade B, Yelne S. A comprehensive review on advancements in wearable technologies: Revolutionizing cardiovascular medicine. Cureus. 2024;16(5):e61312. doi: 10.7759/cureus.61312