AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.4795
ORIGINAL RESEARCH ARTICLE

Antioxidant effects of curcumin in unilateral spinal cord injury model in adult male rats

Babak Ebrahimi1 Atousa Yarahmadi1 Neda Ghaffari1 Gholamreza Hassanzadeh1,2*
Show Less
1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
INNOSC Theranostics and Pharmacological Sciences, 4795 https://doi.org/10.36922/itps.4795
Submitted: 9 September 2024 | Revised: 25 October 2024 | Accepted: 13 November 2024 | Published: 4 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Inflammatory responses and oxidative stress (OS) play a significant role in the development of spinal cord injury (SCI), as evidenced by both pre-clinical and clinical studies. This research aimed to assess the potential antioxidant and anti-inflammatory properties of curcumin (CuC) as a therapeutic approach in a unilateral SCI model using male rats. We used 40 adult male Wistar rats (each weighing 220 – 250 g) that were randomly assigned to one of the five experimental groups: (1) Control (Con), (2) Model (SCI animals), (3) Model+CuC20, (4) Model+CuC40, and (5) Model+CuC80. Accordingly, the SCI animals in Model+CuC20, Model+CuC40, and Model+CuC80 groups received 20, 40, and 80 mg/kg/day of CuC through the intraperitoneal route, respectively. We assessed functional recovery, measured OS indicators, including malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (TAC) in the blood, and evaluated protein levels of caspase 1, NOD-like receptor family pyrin domain-containing 3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) in the spinal cord tissue. The CuC treatment groups showed a significant enhancement in functional recovery, a marked decrease in MDA levels, and a notable elevation in SOD activity relative to the SCI animals. Model+CuC40 and Model+CuC80 animals exhibited a significant improvement in GSH activity and TAC level as compared to the SCI animals. The results also showed a dramatic decrease in the protein concentration of NLRP3, ASC, and Casp1 in the Model+CuC40 and Model+CuC80 groups relative to the Model group (P < 0.0001). In conclusion, the treatment with CuC significantly enhanced functional recovery in SCI rats by effectively mitigating OS and reducing inflammatory markers.

Keywords
Curcumin
Spinal cord injury
Neuroinflammation
Oxidative stress
Funding
We would like to thank the TUMS for financial support (grant number: 52980).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Mokhtari T, Uludag K. Role of NLRP3 inflammasome in post-spinal-cord-injury anxiety and depression: Molecular mechanisms and therapeutic implications. ACS Chem Neurosci. 2023;15(1):56-70. doi: 10.1021/acschemneuro.3c00596

 

  1. Ebrahimi B, Mokhtari T, Ghaffari N, Adabi M, Hassanzadeh G. Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats. Inflammopharmacology. 2024;32:2505-2524. doi: 10.1007/s10787-024-01478-z

 

  1. Ghaffari N, Mokhtari T, Adabi M, et al. Neurological recovery and neurogenesis by curcumin sustained‐release system cross‐linked with an acellular spinal cord scaffold in rat spinal cord injury: Targeting NLRP3 inflammasome pathway. Phytother Res. 2024;38(6):2669-2686. doi: 10.1002/ptr.8179

 

  1. Yarahmadi A, Malek F, Poorhassan M, et al. Curcumin attenuates development of depressive-like behavior in male rats after spinal cord injury: Involvement of NLRP3 inflammasome. J Contemp Med Sci. 2022;8(3):176-183. doi: 10.22317/jcms.v8i3.1230

 

  1. Mokhtari T, Lu M, El-Kenawy AEM. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors. Int Immunopharmacol. 2023;122:110520. doi: 10.1016/j.intimp.2023.110520

 

  1. Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689-709. doi: 10.1038/s41573-021-00233-1

 

  1. Sies H. Oxidative eustress: On constant alert for redox homeostasis. Redox Biol. 2021;41:101867. doi: 10.1016/j.redox.2021.101867

 

  1. Amo-Aparicio J, Garcia-Garcia J, Puigdomenech M, et al. Inhibition of the NLRP3 inflammasome by OLT1177 induces functional protection and myelin preservation after spinal cord injury. Exp Neurol. 2022;347:113889. doi: 10.1016/j.expneurol.2021.113889

 

  1. Al Mamun A, Wu Y, Monalisa I, et al. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res. 2021;28:97-109. doi: 10.1016/j.jare.2020.08.004

 

  1. Gholaminejhad M, Forouzesh M, Ebrahimi B, et al. Formation and activity of NLRP3 inflammasome and histopathological changes in the lung of corpses with COVID-19. J Mol Histol. 2022;53(6):883-890. doi: 10.1007/s10735-022-10101-w

 

  1. Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674. doi: 10.1016/j.redox.2020.101674

 

  1. Nukolova NV, Aleksashkin AD, Abakumova TO, et al. Multilayer polyion complex nanoformulations of superoxide dismutase 1 for acute spinal cord injury. J Control Release. 2018;270:226-236. doi: 10.1016/j.jconrel.2017.11.044

 

  1. Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxid Med Cell Longev. 2022;2022(1):8100195. doi: 10.1155/2022/8100195

 

  1. Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J Neurosci Res. 2023;101(10):1538-1554. doi: 10.1002/jnr.25221

 

  1. Ji ZS, Gao GB, Ma YM, et al. Highly bioactive iridium metal-complex alleviates spinal cord injury via ROS scavenging and inflammation reduction. Biomaterials. 2022;284:121481. doi: 10.1016/j.biomaterials.2022.121481

 

  1. Andrabi SS, Yang J, Gao Y, Kuang Y, Labhasetwar V. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release. 2020;317:300-311. doi: 10.1016/j.jconrel.2019.12.001

 

  1. Moradi F, Dashti N, Farahvash A, Naeini FB, Zarebavani M. Curcumin ameliorates chronic Toxoplasma gondii infection-induced affective disorders through modulation of proinflammatory cytokines and oxidative stress. Iran J Basic Med Sci. 2023;26(4):461-467. doi: 10.22038/IJBMS.2023.68487.14937

 

  1. Surguchov A, Bernal L, Surguchev AA. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules. 2021;11(5):624. doi: 10.3390/biom11050624

 

  1. Lavoie S, Chen Y, Dalton TP, et al. Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: Importance of the glutamate cysteine ligase modifier subunit. J Neurochem. 2009;108(6):1410-1422. doi: 10.1111/j.1471-4159.2009.05908.x

 

  1. Pan Y, Wang Y, Cai L, et al. Inhibition of high glucose‐induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol. 2012;166(3):1169-1182. doi: 10.1111/j.1476-5381.2012.01854.x

 

  1. Reyes-Fermín LM, González-Reyes S, Tarco-Álvarez NG, Hernández-Nava M, Orozco-Ibarra M, Pedraza-Chaverri J. Neuroprotective effect of α-mangostin and curcumin against iodoacetate-induced cell death. Nutr Neurosci. 2012;15(5):34-41. doi: 10.1179/1476830512Y.0000000011

 

  1. Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother. 2023;159:114224. doi: 10.1016/j.biopha.2023.114224

 

  1. Panknin TM, Howe CL, Hauer M, Bucchireddigari B, Rossi AM, Funk JL. Curcumin supplementation and human disease: A scoping review of clinical trials. Int J Mol Sci. 2023;24(5):4476. doi: 10.3390/ijms24054476

 

  1. Gholami M, Hozuri F, Abdolkarimi S, et al. Pharmacological and molecular evidence of neuroprotective curcumin effects against biochemical and behavioral sequels caused by methamphetamine: Possible function of CREB-BDNF signaling pathway. Basic Clin Neurosci. 2021;12(3):325-388. doi: 10.32598/bcn.2021.1176.3

 

  1. Post M, Noreau L. Quality of life after spinal cord injury. J Neurol Phys Ther. 2005;29(3):139-146. doi: 10.1097/01.npt.0000282246.08288.67

 

  1. Mohammed I, Ijaz S, Mokhtari T, et al. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis. 2020;35(5):809-188. doi: 10.1007/s11011-020-00563-w

 

  1. Noori L, Arabzadeh S, Mohamadi Y, et al. Intrathecal administration of the extracellular vesicles derived from human Wharton’s jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neurosci Res. 2021;170:87-98. doi: 10.1016/j.neures.2020.07.011

 

  1. Schwab JM, Maas AI, Hsieh JT, Curt A. Raising awareness for spinal cord injury research. Lancet Neurol. 2018;17(7):581-582. doi: 10.1016/S1474-4422(18)30206-0

 

  1. Mokhtari T, Yue LP, Hu L. Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/NLRP3 pathway and apoptosis. Sci Rep. 2023;13(1):2111. doi: 10.1038/s41598-023-28418-1

 

  1. Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation. 2017;14:207. doi: 10.1186/s12974-017-0980-9

 

  1. Kim KT, Kim MJ, Cho DC, et al. The neuroprotective effect of treatment with curcumin in acute spinal cord injury. Neurol Med Chir (Tokyo). 2014;54(5):387-394. doi: 10.2176/nmc.oa.2013-0251

 

  1. Gao Y, Li J, Wu L, et al. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: Autophagy and the PI3K/AKT pathways as a potential mechanism. J Surg Res. 2016;206(1):67-76. doi: 10.1016/j.jss.2016.07.014

 

  1. Dong W, Yang B, Wang L, et al. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol Appl Pharmacol. 2018;346:28-36. doi: 10.1016/j.taap.2018.03.020

 

  1. Caillaud M, Chantemargue B, Richard L, et al. Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology. 2018;139:98-116. doi: 10.1016/j.neuropharm.2018.07.001

 

  1. Alvarado-Sanchez BG, Salgado-Ceballos H, Torres-Castillo S, et al. Electroacupuncture and curcumin promote oxidative balance and motor function recovery in rats following traumatic spinal cord injury. Neurochem Res. 2019;44:498-506. doi: 10.1007/s11064-018-02704-1

 

  1. Lee Y, Park HR, Lee JY, et al. Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice. Arch Pharm Res. 2023;46(5):423-437. doi: 10.1007/s12272-023-01440-7

 

  1. Kim SJ, Son TG, Park HR, et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283(21):14497-14505. doi: 10.1074/jbc.M708373200

 

  1. Barati Dowom P, Darvishi M, Jabbarian M, Babakhani A, Roshanaei K. Effect of curcumin on astrogliosis and improvement of behavioral movement in acute phase of spinal cord injury in a contusion model of rat. Neurosci J Shefaye Khatam. 2017;5(1):18-28. doi: 10.18869/acadpub.shefa.5.1.18

 

  1. Guo J, Li Z, Yao Y, Fang L, Yu M, Wang Z. Curcumin in the treatment of inflammation and oxidative stress responses in traumatic brain injury: A systematic review and meta-analysis. Front Neurol. 2024;15:1380353. doi: 10.3389/fneur.2024.1380353

 

  1. Sharma S, Ying Z, Gomez-Pinilla F. A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol. 2010;226(1):191-199. doi: 10.1016/j.expneurol.2010.08.027

 

  1. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004;74(8):969-985. doi: 10.1016/j.lfs.2003.06.042
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing