In silico analysis for drug repurposing in cholesteatoma: A novel approach to address an unmet medical need

Cholesteatoma presents a significant clinical challenge with limited pharmaceutical treatment options. This paper aims to explore the potential of drug repurposing for managing cholesteatoma through advanced bioinformatics analysis of high-throughput genetic data. For this purpose, we conducted a systematic search of published high-throughput genetic studies related to cholesteatoma and used functional and literature enrichment analysis of multiple sets, a validated web-based bioinformatics platform, for analysis. We employed common pathway enrichment analysis and cross-referenced data from DrugBank and gene list automatically derived for you drug annotations to identify potential medical treatments. Our analysis covered eight high-throughput genetic studies, with extended gene lists available for five of them. Enrichment analysis identified common pathways, including matrix metalloproteinases, interleukins, apoptosis, and the phosphoinositide 3-kinase-AKT pathway, shedding light on both expected and less-studied aspects of cholesteatoma pathogenesis. In addition, the analysis proposed several medications, including anti-tumor necrosis factor-α (TNF-α), zinc, and marimastat, as potential treatments. In conclusion, drug repurposing is a potential cost-effective approach to address the unmet medical need for cholesteatoma management. The identified medications, especially anti-TNFα and zinc, offer promising options. Given the limited research funding in this field, this bioinformatic approach holds great promise, highlighting specific molecular pathways that hold the greatest potential to be implicated in the pathogenesis of cholesteatoma and offering a faster route for future trials to reduce cholesteatoma recurrence.
- Bovi C, Luchena A, Bivona R, Borsetto D, Creber N, Danesi G. Recurrence in cholesteatoma surgery: What have we learnt and where are we going? A narrative review. Acta Otorhinolaryngol Ital. 2023;43(Suppl 1):S48-S55. doi: 10.14639/0392-100X-suppl.1-43-2023-06
- Yung M, Tono T, Olszewska E, et al. EAONO/JOS joint consensus statements on the definitions, classification and staging of middle ear cholesteatoma. J Int Adv Otol. 2017;13(1):1-8. doi: 10.5152/iao.2017.3363
- Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal. 2022;20(1):148. doi: 10.1186/s12964-022-00953-w
- Nosengo N. Can you teach old drugs new tricks? Nature. 2016;534(7607):314-316. doi: 10.1038/534314a
- Jovanovic I, Zivkovic M, Jesic S, Stankovic A. Non-coding RNA and cholesteatoma. Laryngoscope Investig Otolaryngol. 2022;7(1):60-66. doi: 10.1002/lio2.728
- Karatzas E, Baltoumas FA, Aplakidou E, et al. Flame (v2.0): Advanced integration and interpretation of functional enrichment results from multiple sources. Bioinformatics. 2023;39(1):btad490. doi: 10.1093/bioinformatics/btad490
- Grammatikopoulou MG, Skoufas E, Kanellakis S, et al. Ageotypes revisited: The brain and central nervous system dysfunction as a major nutritional and lifestyle target for healthy aging. Maturitas. 2023;170:51-57. doi: 10.1016/j.maturitas.2023.01.013
- Yoshikawa M, Kojima H, Wada K, et al. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma. Arch Otolaryngol Head Neck Surg. 2006;132(7):734-742. doi: 10.1001/archotol.132.7.734
- Cardenas R, Prinsley P, Philpott C, et al. Whole exome sequencing study identifies candidate loss of function variants and locus heterogeneity in familial cholesteatoma. PLoS One. 2023;18(7):e0272174. doi: 10.1371/journal.pone.0272174
- Tokuriki M, Noda I, Saito T, et al. Gene expression analysis of human middle ear cholesteatoma using complementary DNA arrays. Laryngoscope. 2003;113(5):808-814. doi: 10.1097/00005537-200305000-00008
- Macias JD, Gerkin RD, Locke D, Macias MP. Differential gene expression in cholesteatoma by DNA chip analysis. Laryngoscope. 2013;123(7):S1-S21. doi: 10.1002/lary.24176
- Lee NK, Cass SP, Gubbels SP, et al. Novel candidate genes for cholesteatoma in chronic otitis media. Front Genet. 2023;13:1033965. doi: 10.3389/fgene.2022.1033965
- Klenke C, Janowski S, Borck D, et al. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One. 2012;7(12):e52718. doi: 10.1371/journal.pone.0052718
- Gao J, Tang Q, Zhu X, et al. Long noncoding RNAs show differential expression profiles and display ceRNA potential in cholesteatoma pathogenesis. Oncol Rep. 2018;39(2):2091-2100. doi: 10.3892/or.2018.6320
- Kwon KH, Kim SJ, Kim HJ, Jung HH. Analysis of gene expression profiles in cholesteatoma using oligonucleotide microarray. Acta Otolaryngol. 2006;126(7):691-697. doi: 10.1080/00016480500475633
- Jovanovic I, Zivkovic M, Djuric T, Stojkovic L, Jesic S, Stankovic A. Perimatrix of middle ear cholesteatoma: A granulation tissue with a specific transcriptomic signature. Laryngoscope. 2020;130(8):E220-E227. doi: 10.1002/lary.28084
- Schönermark M, Mester B, Kempf HG, Bläser J, Tschesche H, Lenarz T. Expression of matrix-metalloproteinases and their inhibitors in human cholesteatomas. Acta Otolaryngol. 1996;116(3):451-456. doi: 10.3109/00016489609137872
- Jiang H, Si Y, Li Z, et al. TREM-2 promotes acquired cholesteatoma-induced bone destruction by modulating TLR4 signaling pathway and osteoclasts activation. Sci Rep. 2016;6:38761. doi: 10.1038/srep38761
- Laeeq S, Faust R. Modeling the cholesteatoma microenvironment: Coculture of HaCaT keratinocytes with WS1 fibroblasts induces MMP-2 activation, invasive phenotype, and proteolysis of the extracellular matrix. Laryngoscope. 2007;117(2):313-318. doi: 10.1097/01.mlg.0000251164.26405.1a
- Lei Y, An J, Ren Q, Wang M, Gao M. Expression of MMP-14 and its role in bone destruction in middle ear cholesteatoma: A prospective observational study. Medicine (Baltimore). 2023;102(44):e35538. doi: 10.1097/MD.0000000000035538
- Kan T, Ueda H, Takahara T, et al. Association of matrix metalloproteinase-2 mRNA expression with subtypes of pediatric cholesteatoma. Biomed Res Int. 2021;2021:6644897. doi: 10.1155/2021/6644897
- Erbek S, Erinanc H, Hizal E, Ozluoglu LN. Expression of disintegrin and metalloproteinase family proteins 10, 12 and 17 in cholesteatoma. J Laryngol Otol. 2013;127(2):153-158. doi: 10.1017/S0022215112003106
- Juhász A, Sziklai I, Rákosy Z, Ecsedi S, Ádány R, Balázs M. Elevated level of tenascin and matrix metalloproteinase 9 correlates with the bone destruction capacity of cholesteatomas. Otol Neurotol. 2009;30(4):559-565. doi: 10.1097/MAO.0b013e31819fe6ed
- Yetiser S, Satar B, Aydin N. Expression of epidermal growth factor, tumor necrosis factor-alpha, and interleukin-1alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol. 2002;23(5):647-652. doi: 10.1097/00129492-200209000-00007
- Dambergs K, Sumeraga G, Pilmane M. Morphopathogenesis of adult acquired cholesteatoma. Medicina (Kaunas). 2023;59(2):306. doi: 10.3390/medicina59020306
- Imai R, Sato T, Iwamoto Y, et al. Osteoclasts modulate bone erosion in cholesteatoma via RANKL signaling. J Assoc Res Otolaryngol. 2019;20(5):449-459. doi: 10.1007/s10162-019-00727-1
- Heo KW, Noh MH, Hur DY, Hong TU, Park SY, Kim WJ. Bone destruction in chronic otitis media is not mediated by the RANKL pathway or estrogen receptor-alpha. Sci Prog. 2023;106(3):368504231199204. doi: 10.1177/00368504231199204
- Liu W, Ren H, Ren J, et al. The role of EGFR/PI3K/Akt/ cyclinD1 signaling pathway in acquired middle ear cholesteatoma. Mediators Inflamm. 2013;2013:651207. doi: 10.1155/2013/651207
- Huisman MA, De Heer E, Grote JJ. Survival signaling and terminal differentiation in cholesteatoma epithelium. Acta Otolaryngol. 2007;127(4):424-429. doi: 10.1080/00016480600868430
- Yune TY, Byun JY. Expression of PTEN and phosphorylated Akt in human cholesteatoma epithelium. Acta Otolaryngol. 2009;129(5):501-506. doi: 10.1080/00016480802258802
- Schürmann M, Oppel F, Shao S, et al. Chronic inflammation of middle ear cholesteatoma promotes its recurrence via a paracrine mechanism. Cell Commun Signal. 2021;19(1):25. doi: 10.1186/s12964-020-00690-y
- Chao J, Dewyer N, McKenna MJ. Spontaneous resolution of cholesteatoma in a patient on long-term infliximab. Ann Otol Rhinol Laryngol. 2019;128(4):365-368. doi: 10.1177/0003489418823790