AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.4404
REVIEW ARTICLE

Emerging biomarkers in major depressive disorder: Diagnostic, prognostic, and therapeutic implications

Muhammad Kamran Ameer1,2† Muhammad Ikram3 Muhammad Imran Khan4 Fazal Wahab4 Muhammad Imran Naseer5 Najeeb Ullah2†*
Show Less
1 Department of Anatomy, Company Multan Medical and Dental College, Multan, Pakistan
2 Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
3 Institute of Pharmaceutical Sciences, Khyber Medical College, Peshawar, Pakistan
4 Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur, Pakistan
5 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
INNOSC Theranostics and Pharmacological Sciences, 4404 https://doi.org/10.36922/itps.4404
Submitted: 1 August 2024 | Revised: 19 November 2024 | Accepted: 16 December 2024 | Published: 10 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Recent advancements in biomarker research for the diagnosis, prognosis, and treatment strategies of major depressive disorder (MDD) have yielded significant findings that warrant documentation. The clinical demand for biomarkers persists due to the limited accuracy and efficiency of subjective diagnostic approaches. This review scrutinized research papers related to MDD biomarkers published between January 2011 and till July 2024, focusing exclusively on human studies with statistically significant results. The compiled biomarkers encompass cellular membrane receptors, cytoplasmic organelles, and genomic and epigenomic intranuclear markers. Cell surface molecular receptors implicated in MDD pathogenesis include brain-derived neurotrophic factor (BDNF) receptors, N-methyl D-aspartate receptors (NMDAR), and interleukin (IL) receptors. Endogenous compounds with diagnostic and prognostic potential, such as L-carnitine and alpha-L-carnitine, have also been identified. Transcriptomic biomarkers, including mRNA expression levels of the BDNF, IL-1β, macrophage migration inhibitory factor, and tumor necrosis factor-alpha (TNF-α), have demonstrated utility in MDD management. MicroRNAs (miRNAs), the endogenous molecules that alter the structure of mRNA, show potential for diagnosis and treatment outcome prediction, with miR-221-3p, miR-129-5p, miR-134, and miR-184 emerging as key candidates for MDD monitoring. Long non-coding RNAs (lncRNAs), such as GSK3βAS1, GSK3βAS2, and GSK3βAS3 have been investigated for the evaluation of disease severity and treatment response. Most recently, the pathological role of circular (circRNA) and DNA methylation in MDD has also been documented. The rs155979 polymorphism in the lncRNA NOTHSAT102891 was significantly associated with depression and risk of suicide. The data compiled in this review aim to guide further research in the quest for biomarkers that will improve the management of MDD.

Keywords
Biomarkers
Cell signaling markers
Intranuclear markers
Major depressive disorder
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Bruce DF. Major Depression (Clinical Depression) Symptoms, Treatments, and More 2022; 2024. Available from: https:// www.webmd.com/depression/major-depression#1 [Last accessed on 2024 Apr 20].

 

  1. Gaynes BN, Lux L, Gartlehner G, et al. Defining treatment-resistant depression. Depress Anxiety. 2020;37(2):134-145. doi: 10.1002/da.22968

 

  1. Saloni Dattani LRG. Hannah Ritchie and Max Roser. Mental Health Our World in Data-Online. Available from: https:// ourworldindata.org/mental-health [Last accessed on 2024 Mar 20].

 

  1. Ogbo FA, Mathsyaraja S, Koti RK, Perz J, Page A. The burden of depressive disorders in South Asia, 1990-2016: Findings from the global burden of disease study. BMC Psychiatry. 2018;18(1):333. doi: 10.1186/s12888-018-1918-1

 

  1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-1858. doi: 10.1016/S0140-6736(18)32279-7

 

  1. Redei EE, Mehta NS. Blood transcriptomic markers for major depression: From animal models to clinical settings. Ann N Y Acad Sci. 2015;1344:37-49. doi: 10.1111/nyas.12748

 

  1. Macaluso M, Preskorn SH. How biomarkers will change psychiatry: From clinical trials to practice. Part I: Introduction. J Psychiatr Pract. 2012;18(2):118-121. doi: 10.1097/01.pra.0000413277.11091.25

 

  1. Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. Am J Psychiatry. 2002;159(7):1133-1145. doi: 10.1176/appi.ajp.159.7.1133

 

  1. Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12:539-546.

 

  1. Keller MC, Fredrickson BL, Ybarra O, et al. A warm heart and a clear head the contingent effects of weather on mood and cognition. Psychol Sci. 2005;16(9):724-731. doi: 10.1111/j.1467-9280.2005.01602.x

 

  1. Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist. 2016;22(5):447-463. doi: 10.1177/1073858415608147

 

  1. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894-902. doi: 10.1038/nature07455

 

  1. Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31-41. doi: 10.1001/2013.jamapsychiatry.4

 

  1. Arteaga-Henríquez G, Simon MS, Burger B, et al. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: A systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME consortium. Front Psychiatry. 2019;10:458. doi: 10.3389/fpsyt.2019.00458

 

  1. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238-249. doi: 10.1038/nm.4050

 

  1. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238-258. doi: 10.1124/pr.111.005108

 

  1. Pariante CM, Lightman SL. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008;31(9):464-468. doi: 10.1016/j.tins.2008.06.006

 

  1. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Vives AH, Cleare A. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur Neuropsychopharmacol. 2015;25(10):1532-1543. doi: 10.1016/j.euroneuro.2015.06.007

 

  1. Lacono LL, Bussone S, Andolina D, Tambelli R, Troisi A, Carola V. Dissecting major depression: The role of blood biomarkers and adverse childhood experiences in distinguishing clinical subgroups. J Affect Disord. 2020;276:351-360. doi: 10.1016/j.jad.2020.07.034

 

  1. Kang HJ, Stewart R, Bae KY, et al. Predictive value of homocysteine for depression after acute coronary syndrome. Oncotarget. 2016;7(42):69032-6940. doi: 10.18632/oncotarget.11966

 

  1. Tolahunase MR, Sagar R, Faiq M, Dada R. Yoga-and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: A randomized controlled trial. Restor Neurol Neurosci. 2018;36(3):423-442. doi: 10.3233/RNN-170810

 

  1. Blugeot A, Rivat C, Bouvier E, et al. Vulnerability to depression: From brain neuroplasticity to identification of biomarkers. J Neurosci. 2011;31(36):12889-12899. doi: 10.1523/JNEUROSCI.1309-11.2011

 

  1. Ruland T, Chan MK, Stocki P, et al. Molecular serum signature of treatment resistant depression. Psychopharmacology (Berl). 2016;233(15-16):3051-3059. doi: 10.1007/s00213-016-4348-0

 

  1. Uher R, Tansey KE, Dew T, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry. 2014;171:1278-1286. doi: 10.1176/appi.ajp.2014.14010094

 

  1. Druzhkova T, Pochigaeva K, Kazimirova E, et al. Acute stress response to a cognitive task in patients with major depressive disorder: Potential metabolic and proinflammatory biomarkers. Metab Brain Dis. 2019;34:621-629. doi: 10.1007/s11011-018-0367-3

 

  1. Gadad BS Jha MK, Grannemann BD, Mayes TL, Trivedi MH. Proteomics profiling reveals inflammatory biomarkers of antidepressant treatment response: Findings from the CO-MED trial. J Psychiatr Res. 2017;94:1-6. doi: 10.1016/j.jpsychires.2017.05.012

 

  1. Bot M, Jansen R, Lamers F, et al. Serum proteomic profiling of major depressive disorder. Transl Psychiatry. 2015;5(7):e599-e599. doi: 10.1038/tp.2015.88

 

  1. Ramsey JM, Cooper JD, Bot M, et al. Sex differences in serum markers of major depressive disorder in the Netherlands study of depression and anxiety (NESDA). PLoS One. 2016;11(5):e0156624. doi: 10.1371/journal.pone.0156624

 

  1. Carboni L, McCarthy DJ, Delafont B, et al. Biomarkers for response in major depression: Comparing paroxetine and venlafaxine from two randomised placebo-controlled clinical studies. Transl Psychiatry. 2019;9(1):182. doi: 10.1038/s41398-019-0521-7

 

  1. Park MY, Kim HS, Lee M, et al. FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Sci Rep. 2017;7(1):15575. doi: 10.1038/s41598-017-15586-0

 

  1. Han KM, Tae WS, Kim A, et al. Serum FAM19A5 levels: A novel biomarker for neuroinflammation and neurodegeneration in major depressive disorder. Brain Behav Immun. 2020;87:852-859. doi: 10.1016/j.bbi.2020.03.021

 

  1. Yang CR, Liang R, Liu Y, et al. Upregulation of proBDNF/ p75NTR signaling in immune cells and its correlation with inflammatory markers in patients with major depression. FASEB J. 2024;38(1):e23312. doi: 10.1096/fj.202301140RR

 

  1. Li-Juan N, Feng S, Ya-Yun X, et al. L-Carnitine and Acetyl- L-Carnitine: Potential Novel Biomarkers for Major Depressive Disorder. Research Square [Preprint]; 2020. doi: 10.21203/rs.3.rs-60837/v1

 

  1. Nasca C, Lee FS, Young SP, et al. Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc Natl Acad Sci U S A. 2018;115(34):8627-8632. doi: 10.1073/pnas.1801609115

 

  1. Du F, Yu Q, Swerdlow RH, Waites CL. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology. Brain. 2023;146(10):4378-4394. doi: 10.1093/brain/awad127

 

  1. Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and scope in neurological disorders. Neurochem Res. 2023;48(7):2029-2058. doi: 10.1007/s11064-023-03873-4

 

  1. Cattaneo A, Ferrari C, Uher R, Bocchio-Chiavetto L, Riva MA, Pariante CM. Absolute measurements of macrophage migration inhibitory factor and interleukin- 1-β mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016;19(10):pyw045. doi: 10.1093/ijnp/pyw045

 

  1. Feng J, Wang M, Li M, et al. Serum miR-221-3p as a new potential biomarker for depressed mood in perioperative patients. Brain Res. 2019;1720:146296. doi: 10.1016/j.brainres.2019.06.015

 

  1. Liu Z, Li X, Chen C, et al. Identification of antisense lncRNAs targeting GSK3β as a regulator in major depressive disorder. Epigenomics. 2020;12(19):1725-1738. doi: 10.2217/epi-2019-0402

 

  1. Cui X, Niu W, Kong L, et al. Hsa_circRNA_103636: Potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomarker Med. 2016;10(9):943-952.

 

  1. Numata S, Ishii K, Tajima A, et al. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: Discovery and validation. Epigenetics. 2015;10(2):135-141. doi: 10.1080/15592294.2014.1003743

 

  1. Hicks EM, Seah C, Cote A, et al. Integrating genetics and transcriptomics to study major depressive disorder: A conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry. 2023;13(1):129. doi: 10.1038/s41398-023-02412-7

 

  1. Guo W, Tan J, Chan B, et al. Transcriptomic analysis of the tumor immune microenvironment (TIME) in patients with breast cancer with liver metastasis (BCLM). J Clin Oncol. 2024;42:e13045-e13045. doi: 10.1200/JCO.2024.42.16_suppl.e13045

 

  1. Cattaneo A, Gennarelli M, Uher R, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: Differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38(3):377-85. doi: 10.1038/npp.2012.191

 

  1. Lin CH, Huang MW, Lin CH, Huang CH, Lane HY. Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord. 2019;245:1119-1125. doi: 10.1016/j.jad.2018.12.016

 

  1. Chimienti F, Cavarec L, Vincent L, et al. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Transl Psychiatry. 2019;9(1):91. doi: 10.1038/s41398-018-0331-3

 

  1. Salvetat N, Van der Laan S, Vire B, et al. RNA editing blood biomarkers for predicting mood alterations in HCV patients. J Neurovirol. 2019;25(6):825-836. doi: 10.1007/s13365-019-00772-9

 

  1. Rotter A, Lenz B, Pitsch R, Richter-Schmidinger T, Kornhuber J, Rhein C. Alpha-synuclein RNA expression is increased in major depression. Int J Mol Sci. 2019;20(8):2029. doi: 10.3390/ijms20082029

 

  1. Villanueva-Charbonneau G, Potvin S, Marchand S, et al. Serotonin transporter mRNA expression is reduced in the peripheral blood mononuclear cells of subjects with major depression but normal in fibromyalgia. Brain Sci. 2023;13(10):1485. doi: 10.3390/brainsci13101485

 

  1. Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y. Exploiting circulating microRNAs as biomarkers in psychiatric disorders. Mol Diagn Ther. 2020;24(3):279-298. doi: 10.1007/s40291-020-00464-9

 

  1. Fan HM, Sun XY, Guo W, et al. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res. 2014;59:45-52. doi: 10.1016/j.jpsychires.2014.08.007

 

  1. Lopez JP, Fiori LM, Cruceanu C, et al. MicroRNAs 146a/ b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun. 2017;8:15497. doi: 10.1038/ncomms15497

 

  1. Qiao-Li Z, Xin-Yang S, Wei G, et al. A preliminary analysis of association between plasma microRNA expression alteration and symptomatology improvement in Major Depressive Disorder (MDD) patients before and after antidepressant treatment. Eur J Psychiatry. 2014;28(4):252-264.

 

  1. Wan Y, Liu Y, Wang X, et al. Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS One. 2015;10(3):e0121975. doi: 10.1371/journal.pone.0121975

 

  1. Song R, Bai Y, Li X, et al. Plasma circular RNA DYM related to major depressive disorder and rapid antidepressant effect treated by visual cortical repetitive transcranial magnetic stimulation. J Affect Disord. 2020;274:486-493. doi: 10.1016/j.jad.2020.05.109

 

  1. Maffioletti E, Cattaneo A, Rosso G, et al. Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J Affect Disord. 2016;200:250-258. doi: 10.1016/j.jad.2016.04.021

 

  1. Zhao L, Yang X, Cui L, et al. Increased expression of a novel miRNA in peripheral blood is negatively correlated with hippocampal volume in patients with major depressive disorder. J Affect Disord. 2019;245:205-212. doi: 10.1016/j.jad.2018.10.363

 

  1. Lou D, Wang J, Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Mol Cell Probes. 2019;48:101470. doi: 10.1016/j.mcp.2019.101470

 

  1. Hung YY, Wu MK, Tsai MC, Huang YL, Kang HY. Aberrant expression of intracellular let-7e, miR-146a, and miR-155 correlates with severity of depression in patients with major depressive disorder and is ameliorated after antidepressant treatment. Cells. 2019;8(7):647. doi: 10.3390/cells8070647

 

  1. Mendes-Silva AP, Fujimura PT, Silva J, et al. Brain-enriched microRNA-184 is downregulated in older adults with major depressive disorder: A translational study. J Psychiatr Res. 2019;111:110-120. doi: 10.1016/j.jpsychires.2019.01.019

 

  1. Zhang Y, Du L, Bai Y, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry. 2020;25(6):1175-1190. doi: 10.1038/s41380-018-0285-0

 

  1. Ibrahim P, Denniston R, Mitsuhashi H, et al. Profiling small RNA from brain extracellular vesicles in individuals with depression. Int J Neuropsychopharmacol. 2024;27(3):pyae013. doi: 10.1093/ijnp/pyae013

 

  1. Wang H, Liu L, Chen X, et al. MicroRNA-messenger RNA regulatory network mediates disrupted TH17 cell differentiation in depression. Front Psychiatry. 2022;13:824209. doi: 10.3389/fpsyt.2022.824209

 

  1. Homorogan C, Enatescu VR, Nitusca D, Marcu A, Seclaman E, Marian C. Distribution of microRNAs associated with major depressive disorder among blood compartments. J Int Med Res. 2021;49(4):3000605211006633. doi: 10.1177/03000605211006633

 

  1. Kim HK, Tyryshkin K, Elmi N, et al. Plasma microRNA expression levels and their targeted pathways in patients with major depressive disorder who are responsive to duloxetine treatment. J Psychiatr Res. 2019;110:38-44. doi: 10.1016/j.jpsychires.2018.12.007

 

  1. Qi B, Fiori LM, Turecki G, Trakadis YJ. Machine learning analysis of blood microRNA Data in major depression: A case-control study for biomarker discovery. Int J Neuropsychopharmacol. 2020;23(8):505-510. doi: 10.1093/ijnp/pyaa029

 

  1. Marshe VS, Islam F, Maciukiewicz M, et al. Validation study of microRNAs previously associated with antidepressant response in older adults treated for late-life depression with venlafaxine. Prog Neuropsychopharmacol Biol Psychiatry. 2020;100:109867. doi: 10.1016/j.pnpbp.2020.109867

 

  1. Torres-Berrio A, Nouel D, Cuesta S, et al. MiR-218: A molecular switch and potential biomarker of susceptibility to stress. Mol Psychiatry. 2020;25(5):951-964. doi: 10.1038/s41380-019-0421-5

 

  1. Bian Y, Yang L, Wang Z, et al. Integrated Analysis Profiles of Long Non-Coding RNAs Reveal Potential Biomarkers Across Brain Regions in Post-Traumatic Stress Disorder. Research Square [Preprint]; 2020. doi: 10.21203/rs.3.rs-15824/v1

 

  1. Liu Z, Li X, Sun N, et al. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One. 2014;9(3):e93388. doi: 10.1371/journal.pone.0093388

 

  1. Cui X, Sun X, Niu W, et al. Long non-coding RNA: Potential diagnostic and therapeutic biomarker for major depressive disorder. Med Sci Monit. 2016;22:5240-5248. doi: 10.12659/msm.899372

 

  1. Cui X, Niu W, Kong L, et al. Can lncRNAs be indicators for the diagnosis of early onset or acute schizophrenia and distinguish major depressive disorder and generalized anxiety disorder?-A cross validation analysis. Am J Med Genet B Neuropsychiatr Genet. 2017;174(4):335-341. doi: 10.1002/ajmg.b.32521

 

  1. Seki T, Yamagata H, Uchida S, et al. Altered expression of long noncoding RNAs in patients with major depressive disorder. J Psychiatr Res. 2019;117:92-99.doi: 10.1016/j.jpsychires.2019.07.004

 

  1. Zurawska A, Mycko MP, Selmaj KW. Circular RNAs as a novel layer of regulatory mechanism in multiple sclerosis. J Neuroimmunol. 2019;334:576971. doi: 10.1016/j.jneuroim.2019.576971

 

  1. Mehta SL, Dempsey RJ, Vemuganti R. Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 2020;186:101746. doi: 10.1016/j.pneurobio.2020.101746

 

  1. An T, Zhang J, Ma Y, et al. Relationships of Non-coding RNA with diabetes and depression. Sci Rep. 2019;9(1):10707. doi: 10.1038/s41598-019-47077-9

 

  1. Yu X, Fan Z, Yang T, et al. Plasma circRNA HIPK2 as a putative biomarker for the diagnosis and prediction of therapeutic effects in major depressive disorder. Clin Chim Acta. 2024;552:117694. doi: 10.1016/j.cca.2023.117694

 

  1. Clive ML, Boks MP, Vinkers CH, et al. Discovery and replication of a peripheral tissue DNA methylation biosignature to augment a suicide prediction model. Clin Epigenetics. 2016;8:113. doi: 10.1186/s13148-016-0279-1

 

  1. Powell TR, Smith RG, Hackinger S, et al. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry. 2013;3(9):e300. doi: 10.1038/tp.2013.73

 

  1. Kang HJ, Kim JM, Lee JY, et al. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013;151(2):679-685. doi: 10.1016/j.jad.2013.08.001

 

  1. Ju C, Fiori LM, Belzeaux R, et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatry. 2019;9(1):254. doi: 10.1038/s41398-019-0589-0

 

  1. Guilloux JP, Bassi S, Ding Y, et al. Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression. Neuropsychopharmacology. 2015;40(3):701-710. doi: 10.1038/npp.2014.226

 

  1. Iniesta R, Hodgson K, Stahl D, et al. Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables. Sci Rep. 2018;8(1):5530. doi: 10.1038/s41598-018-23584-z

 

  1. Pajer K, Andrus BM, Gardner W, et al. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl Psychiatry. 2012;2(4):e101. doi: 10.1038/tp.2012.26

 

  1. Redei EE, Andrus BM, Kwasny MJ, et al. Blood transcriptomic biomarkers in adult primary care patients with major depressive disorder undergoing cognitive behavioral therapy. Transl Psychiatry. 2014;4(9):e442. doi: 10.1038/tp.2014.66

 

  1. Wang H, Zhang M, Xie Q, Yu J, Qi Y, Yue Q. Identification of diagnostic markers for major depressive disorder by cross-validation of data from whole blood samples. PeerJ. 2019;7:e7171. doi: 10.7717/peerj.7171

 

  1. Liang PK, Sun Y, Li Y, Liang Y. Association between single nucleotide polymorphisms within lncRNA NONHSAT102891 and depression susceptibility in a Chinese population. Neuropsychiatr Dis Treat. 2023;19:293-302.

 

  1. Li Y, Wang YX, Tang XM, et al. Haplotype analysis of long-chain non-coding RNA NONHSAT102891 promoter polymorphisms and depression in Chinese individuals: A case-control association study. World J Psychiatry. 2023;13:1005-1015. doi: 10.5498/wjp.v13.i12.1005
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing