Carbohydrate polymer derivatives as gastrointestinal pH-responsive oral drug delivery systems: A review
PH-responsive carbohydrate polymers have gained significant attention as promising candidates for next-generation oral drug delivery systems. This review focuses on the use of pH-sensitive carbohydrate polymers as a platform for controlled drug delivery. The unique ability of these polymers to undergo a conformational or structural change in response to specific pH ranges makes them ideal for targeted drug release. The gastrointestinal tract, with its distinct pH environments ranging from the highly acidic stomach to the neutral small intestine, presents a perfect scenario for these intelligent delivery systems. The design principles of these systems, including the chemical modification of natural carbohydrate polymers and the synthesis of new pH-sensitive materials, are explored. Furthermore, this review summarizes recent advancements and challenges in the application of carbohydrate polymers for oral drug delivery, particularly in enhancing drug bioavailability, protecting acid-labile drugs, and enabling site-specific release in the colon. The review concludes by highlighting the immense potential of these biocompatible and biodegradable materials in developing advanced, patient-friendly pharmaceutical formulations. In addition, the primary limitations of these materials are discussed with respect to enzymatic degradation, scaling up, cost-effectiveness, and regulatory approval.
- Shukla RK, Tiwari A. Carbohydrate polymers: Applications and recent advances in delivering drugs to the colon. Carbohydr Polym. 2012;88(2):399-416. doi: 10.1016/j.carbpol.2011.12.043
- Di X, Liang X, Shen C, Pei Y, Wu B, He Z. Carbohydrates used in polymeric systems for drug delivery: From structures to applications. Pharmaceutics (Basel). 2022;14(4):739. doi: 10.3390/pharmaceutics14040739
- Bruschi, ML. Strategies to Modify the Drug Release from Pharmaceutical Systems. United Kingdom: Woodhead Publishing; 2015.
- Boldrini DE. Starch-based materials for drug delivery in the gastrointestinal tract-A review. Carbohydr Polym. 2023;320:121258. doi: 10.1016/j.carbpol.2023.121258
- Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH‐sensitive polymers: Classification and some fine potential applications. Polym Adv Technol. 2021;32(4):1455-1484. doi: 10.1002/pat.5186
- Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-sensitive biomaterials for drug delivery. Molecules. 2020;25(23):5649. doi: 10.3390/molecules25235649
- Balamuralidhara V, Pramodkumar TM, Srujana N, et al. pH sensitive drug delivery systems: A review. Am J Drug Discov Dev. 2011;1(1):24-48. doi: 10.3923/ajddad.2011.24.48
- Zhu YJ, Chen F. pH‐responsive drug‐delivery systems. Chem Asian J. 2015;10(2):284-305. doi: 10.1002/asia.201402867
- Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front Bioeng Biotechnol. 2023;11:1270364. doi: 10.3389/fbioe.2023.1270364
- Abbasi YF, Bera H, Cun D, Yang M. Recent advances in pH/enzyme-responsive polysaccharide-small-molecule drug conjugates as nanotherapeutics. Carbohydr Polym. 2023;312:120797. doi: 10.1016/j.carbpol.2023.120797
- FDA. Drug Products, Including Biological Products, that Contain Nanomaterials: Guidance for Industry. United States: U.S. Food and Drug Administration; 2022.
- EMA. Reflection Paper on Nanotechnology-based Medicinal Products for Human Use. Netherlands: European Medicines Agency; 2021.
- Singh J, Nayak P. pH‐responsive polymers for drug delivery: Trends and opportunities. J Polym Sci. 2023;61(22): 2828-2850. doi: 10.1002/pol.20230214
- Humphrey SP, Williamson RT. A review of saliva: Normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162-169. doi: 10.1067/mpd.2001.113991
- Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165. doi: 10.1007/s11095-006-8311-2
- Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756-761. doi: 10.1023/a:1015941724040
- Koziolek M, Grimm M, Becker D, et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J Pharm Sci. 2015;104(9):2855-2863. doi: 10.1002/jps.24474
- Nugent SG, Kumar D, Rampton DS, Evans DF. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571-577. doi: 10.1136/gut.48.4.571
- Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29(8): 1035-1041. doi: 10.1136/gut.29.8.1035
- Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. doi: 10.3389/fphar.2020.00524
- Klein S. Polysaccharides in oral drug delivery-recent applications and future perspectives. Expert Opin Drug Deliv. 2009;6(10):1037-1052. doi: 10.1517/17425240903173429
- Madni A, Kanwal R, Tariq M, et al. Devising interactive dissolution experiment for pharmacy students (part I): Use of USP type II apparatus for comparison of immediate release and enteric coated tablets in time varying pH conditions. PSM Biol Res. 2016;1(2):83-87.
- Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull. 1999;46(3):183-196.
- Koziolek M. Gastrointestinal transit and hydrodynamics under fasting and fed conditions. In: Kerc J, editor. Oral Drug Delivery for Modified Release Formulations. Berlin: Springer; 2022. p. 25-38. doi: 10.1007/978-3-030-97771-3_2
- Nandhra GK, Chaichanavichkij P, Birch M, Scott SM. Gastrointestinal transit times in health as determined using ingestible capsule systems: A systematic review. J Clin Med. 2023;12(16):5272. doi: 10.3390/jcm12165272
- Damiri F, Fatimi A, Santos ACP, Varma RS, Berrada M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: A review. J Mater Chem B. 2023;11(44): 10538-10565. doi: 10.1039/d3tb01426k
- Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017;24(1):569-581. doi: 10.1080/10717544.2017.1309858
- Ghitman J, Voicu SI. Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. Carbohydr Polym Technol Appl. 2023;5:100266. doi: 10.1016/j.carpta.2023.100266
- Udaipuria N, Bhattacharya S. Novel carbohydrate polymer‐based systems for precise drug delivery in colon cancer: Improving treatment effectiveness with intelligent biodegradable materials. Biopolymers. 2025;116(1):e23632. doi: 10.1002/bip.23632
- Çetintaş HC, Tonbul H, Şahin A, Çapan Y. Regulatory guidelines of the US food and drug administration and the european medicines agency for actively targeted nanomedicines. In: Drug Delivery with Targeted Nanoparticles. United States: Academic Press; 2021. p. 725-741. doi: 10.1016/B978-0-12-818274-1.00017-9
- Bhavyasri K, Vishnumurthy KM, Rambabu D, Sumakanth M. ICH guidelines-“Q” series (quality guidelines)-A review. GSC Biol Pharm Sci. 2019;6(3):89-106. doi: 10.30574/gscbps.2019.6.3.0033
- Northup SJ. Safety evaluation of medical devices: US food and drug administration and international standards organization guidelines. Int J Toxicol. 1999;18(4):275-283. doi: 10.1080/109158199225721
- Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res. 2020;10(3): 721-725. doi: 10.1007/s13346-020-00727-x
- Peng C. Nanomedicine development and clinical translation. Front Chem. 2024;12:1458690. doi: 10.3389/fchem.2024.1458690
- Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjug Chem. 2010;21(12):2205-2212. doi: 10.1021/bc100269x
- Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693-710. doi: 10.1016/j.biotechadv.2014.02.008
- Joseph X, Akhil V, Arathi A, Mohanan PV. Nanobiomaterials in support of drug delivery related issues. Mater Sci Eng B. 2022;279:115680. doi: 10.1016/j.mseb.2022.115680
- Kocak G, Tuncer C, Bütün V. pH-Responsive polymers. Polym Chem. 2017;8(1):144-176. doi: 10.1039/C6PY01671A
- Titration P. Ionization equilibrium and potentiometric titration of weak polyelectrolytes. Phys Chem Polyelectrolyte Solut. 2015;158:67. doi: 10.1016/B978-0-12-800188-2.00004-9
- Saeidi M, Khasreji SN. Spectrophotometric determination of the pKa, isosbestic point and equation of absorbance vs. pH of methyl red indicator. J Chem. 2015;2015:1-6. doi: 10.1155/2015/347621
- Settimo L, Bellman K, Knegtel RM. Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm Res. 2014;31(4):1082-1095. doi: 10.1007/s11095-013-1200-4
- Dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics. 2021;13(9):1424. doi: 10.3390/pharmaceutics13091424
- European Medicines Agency. Guideline on Excipients in the Dossier for Application for Marketing Authorisation of a Medicinal Product for Human Use (Revision 2). Amsterdam: European Medicines Agency; 2006.
- Food and Drug Administration. GRN 710 Amendments - Basic Methacrylate Copolymer (Eudragit®) Monograph. United States: Food and Drug Administration; 2017.
- Thakral S, Thakral NK, Majumdar DK. Eudragit®: A technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131-149. doi: 10.1517/17425247.2013.737604
- Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D printing for drug delivery applications. Pharmaceutics. 2022;14(1):145. doi: 10.3390/pharmaceutics14010145
- Peppas NA, Bures P, Leobandung WS, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27-46. doi: 10.1016/S0939-6411(00)00090-4
- Meng Y, Qiu C, Li X, et al. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr. 2024;64(1):187-201. doi: 10.1080/10408398.2022.2081510
- Dragan ES, Apopei DF. Multiresponsive macroporous semi- IPN composite hydrogels based on native or anionically modified potato starch. Carbohydr Polym. 2013;92(1):23-32. doi: 10.1016/j.carbpol.2012.08.064
- Sadeghi M, Hosseinzadeh H. Synthesis of starch-Poly (sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym. 2008;23(4):381-404. doi: 10.1177/0883911508093122
- Ghaffar AA, Radwan RR, Ali HE. Radiation synthesis of poly (starch/acrylic acid) pH sensitive hydrogel for rutin controlled release. Int J Biol Macromol. 2016;92:957-964. doi: 10.1016/j.ijbiomac.2016.08.026
- Kumar P, Ganure AL, Subudhi BB, Shukla S. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: In vitro and in vivo study on release of esomeprazole magnesium. Drug Deliv Transl Res. 2015;5(3):243-256. doi: 10.1007/s13346-014-0238-7
- Liu C, Gan X, Chen Y. A novel pH‐sensitive hydrogels for potential colon‐specific drug delivery: Characterization and in vitro release studies. Starch‐Stärke. 2011;63(8):503-511. doi: 10.1002/star.201000155
- Tan HL, Wong YY, Muniyandy S, Hashim K, Pushpamalar J. Carboxymethyl sago pulp/carboxymethyl sago starch hydrogel: Effect of polymer mixing ratio and study of controlled drug release. J Appl Polym Sci. 2016;133(28):43697. doi: 10.1002/app.43697
- Clara I, Natchimuthu N. Hydrogels based on starch‐g‐poly (sodium‐2‐acrylamido‐2‐methyl‐1‐propane sulfonate‐co‐methacrylic acid) as controlled drug delivery systems. Starch‐Stärke. 2017;69(7-8):1600177. doi: 10.1002/star.201600177
- Mahkam M. Modified chitosan cross-linked starch polymers for oral insulin delivery. J Bioact Compat Polym. 2010;25(4):406-418. doi: 10.1177/0883911510373204
- Saboktakin MR, Maharramov A, Ramazanov MA, Mahkam M. Modification of carboxymethyl starch as nano carriers for oral drug delivery. Nat Sci. 2007;5(3):67.
- Saboktakin MR, Maharramov A, Ramazanov MA. pH-sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties. Carbohydr Polym. 2009;77(3):634-638. doi: 10.1016/j.carbpol.2009.02.016
- Gils PS, Ray D, Mohanta GP, Manavalan R, Sahoo PK. Designing of new acrylic based macroporous superabsorbent polymer hydrogel and its suitability for drug delivery. Int J Pharm Pharm Sci. 2009;1:43-54.
- Elvira C, Mano JF, San Roman J, Reis RL. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials. 2002;23(9):1955-1966. doi: 10.1016/S0142-9612(01)00331-5
- Shaikh MMM, Gramopadhye NS, Wardole AA, Lonikar SV. Starch-acrylic acid hydrogel: Synthesis, characterization and drug release study. World J Pharm Pharm Sci. 2015;4:942-954.
- Soares GA, Carbinatto FM, Cury BS, Evangelista RC. Effect of drying technique on some physical properties of cross-linked high amylose/pectin mixtures. Drug Dev Ind Pharm. 2013;39(2):284-289. doi: 10.3109/03639045.2012.673895
- Pereira AG, Fajardo AR, Nocchi S, Nakamura CV, Rubira AF, Muniz EC. Starch-based microspheres for sustained-release of curcumin: Preparation and cytotoxic effect on tumor cells. Carbohydr Polym. 2013;98(1):711-720. doi: 10.1016/j.carbpol.2013.06.079
- Chan AW, Whitney RA, Neufeld RJ. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules. 2009;10(3):609-616. doi: 10.1021/bm801047v
- Sethi S, Saruchi S, Kaith BS, Kaur M, Sharma N, Kumar V. Cross-linked xanthan gum-starch hydrogels as promising materials for controlled drug delivery. Cellulose. 2020;27(8):4565-4589. doi: 10.1007/s10570-020-03079-y
- Akar E, Altınışık A, Seki Y. Preparation of pH-and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym. 2012;90(4): 1634-1641. doi: 10.1016/j.carbpol.2012.07.034
- Chang C, He M, Zhou J, Zhang L. Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules. 2011;44(6):1642-1648. doi: 10.1021/ma1027137
- Yao KD, Peng T, Feng HB, He YY. Swelling kinetics and release characteristic of crosslinked chitosan: Polyether polymer network (semi‐IPN) hydrogels. J Polym Sci Part A Polym Chem. 1994;32(7):1213-1223. doi: 10.1002/pola.1994.080320703
- Shu XZ, Zhu KJ, Song W. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int J Pharm. 2001;212(1):19-28. doi: 10.1016/S0378-5173(00)00574-6
- Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445-451. doi: 10.1016/j.ejps.2011.01.012
- Ata S, Rasool A, Islam A, et al. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int J Biol Macromol. 2020;155:1236-1244. doi: 10.1016/j.ijbiomac.2020.04.053
- Aycan D, Alemdar N. Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydr Polym. 2018;184:401-407. doi: 10.1016/j.carbpol.2017.12.052
- Liu L, Zhang Y, Yu S, et al. pH-and amylase-responsive carboxymethyl starch/poly (2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules. 2018;19(6):2123-2136. doi: 10.1021/acs.biomac.8b00288
- Zhang Z, Shan H, Chen L, He C, Zhuang X, Chen X. Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. Eur Polym J. 2013;49(8):2082-2091. doi: 10.1016/j.eurpolymj.2013.05.008
- Desai KGH. Preparation and characteristics of high-amylose corn starch/pectin blend microparticles: A technical note. AAPS PharmSciTech. 2005;6(2):30. doi: 10.1208/pt060230
- Desai KG. Properties of tableted high-amylose corn starch-pectin blend microparticles intended for controlled delivery of diclofenac sodium. J Biomater Appl. 2007;21(3):217-233. doi: 10.1177/0885328206064503
- Kim SW, Oh KT, Youn YS, Lee ES. Hyaluronated nanoparticles with pH-and enzyme-responsive drug release properties. Colloids Surf B Biointerfaces. 2014;116:359-364. doi: 10.1016/j.colsurfb.2014.01.026
- Liu H, Rong L, Wang B, et al. Facile fabrication of redox/ pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym. 2017;176:299-306. doi: 10.1016/j.carbpol.2017.08.106
- Woraphatphadung T, Sajomsang W, Rojanarata T, Ngawhirunpat T, Tonglairoum P, Opanasopit P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech. 2018;19(3):991-1000. doi: 10.1208/s12249-017-0941-0
- Gaware SA, Rokade KA, Kale SN. Silica-chitosan nanocomposite mediated pH-sensitive drug delivery. J Drug Deliv Sci Technol. 2019;49:345-351. doi: 10.1016/j.jddst.2018.11.029
- Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: From mechanism to therapeutic applications. Acc Chem Res. 2012;45(4):619-629. doi: 10.1021/ar200231h
- Chandran S, Asghar LF, Mantha N. Design and evaluation of ethyl cellulose based matrix tablets of ibuprofen with pH modulated release kinetics. Indian J Pharm Sci. 2008;70(5):596. doi: 10.4103/0250-474X.45970
- Feng C, Wang Z, Jiang C, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. Int J Pharm. 2013;457(1):158-167. doi: 10.1016/j.ijpharm.2013.08.058
- Hillery A, Park K. Drug Delivery: Fundamentals and Applications. United States: CRC Press; 2016.
- Li J, Shin GH, Lee IW, Chen X, Park HJ. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll. 2016;56:41-49. doi: 10.1016/j.foodhyd.2015.12.001
- Dutta S, Samanta P, Dhara D. Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int J Biol Macromol. 2016;87:92-100. doi: 10.1016/j.ijbiomac.2016.02.049
- Wang Q, Hu X, Du Y, Kennedy JF. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr Polym. 2010;82(3):842-847. doi: 10.1016/j.carbpol.2010.06.014
- Huo W, Xie G, Zhang W, et al. Preparation of a novel chitosan-microcapsules/starch blend film and the study of its drug-release mechanism. Int J Biol Macromol. 2016;87:114-122. doi: 10.1016/j.ijbiomac.2016.02.056
- Verkhovskii RA, Ivanov AN, Lengert EV, et al. Current principles, challenges, and new metrics in pH-responsive drug delivery systems for systemic cancer therapy. Pharmaceutics. 2023;15(5):1566. doi: 10.3390/pharmaceutics15051566
- Wang Z, Wang X, Xu W, et al. Translational challenges and prospective solutions in the implementation of biomimetic delivery systems. Pharmaceutics. 2023;15(11):2623. doi: 10.3390/pharmaceutics15112623
- Ghodratı AD, Çomoğlu T. Mucoadhesive polymers in colon targeted drug delivery systems: A comprehensive review. J Fac Pharm Ankara Univ. 2023;48(2):696-713. doi: 10.33483/jfpau.1206584
- Jain A, Gupta Y, Jain SK. Azo chemistry and its potential for colonic delivery. Crit Rev Ther Drug Carr Syst. 2006;23(5):373-401. doi: 10.1615/critrevtherdrugcarriersyst.v23.i5.30
- Kumari A, Singh B. Emerging trends in designing polysaccharide based mucoadhesive network hydrogels as versatile platforms for innovative delivery of therapeutic agents: A review. Int J Biol Macromol. 2025;293(Pt 2):140229. doi: 10.1016/j.ijbiomac.2024.140229
