AccScience Publishing / IMO / Online First / DOI: 10.36922/IMO025080014
ORIGINAL RESEARCH ARTICLE

Dominant and sustained mutations, deletions, and insertions in the Omicron coronavirus lineages JN.1, KP.3, LB.1, XEC, MC.1, and MV.1

Asit Kumar Chakraborty1*
Show Less
1 Department of Biochemistry and Biotechnology, Faculty of Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
Received: 21 February 2025 | Revised: 18 March 2025 | Accepted: 9 April 2025 | Published online: 18 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The JN.1 Omicron coronaviruses possess a unique 16MPLF spike insertion that compensates for deletions at positions 24LPP, 31S, 69HV, 145Y, 211N, and V483 in the spike protein. These viruses also exhibit a 3576SGF deletion in the open reading frame (ORF)1ab protein, 26–49 nucleotide deletions in the 3’-untranslated region (UTR), and a 31ERS amino acid deletion in the N protein. In an ongoing analysis of JN.1 lineages, an N30 deletion in the spike was detected. This N30 deletion was found in many subvariants, suggesting viral instability and low penetration. SWISS-MODEL analysis revealed that the 30N deletion mutants exhibit a more compact and symmetrical three-dimensional spike structure. The modeling was performed using templates 7nc8.1.A (88.8% similarity) and 8x4h.1.A (99.07% similarity). In the resulting models, His440 was positioned as the first amino acid to interact with the angiotensin-converting enzyme receptor (ACE). However, the JN.1-derived 8y5j.1.A template showed a flattened trimeric spike with protruding residues engaging the receptor. Moreover, a T44I mutation in the nsp2 ribonucleic acid topoisomerase (XLQ96433), a potential drug target, was identified. The T224I ORF1ab mutation occurred in ~300 subvariants. Further analysis identified several important mutations in the ORF1ab polyprotein. The mutations T19I, S50L, V127F, G339H, K356T, S371F, S373P, S375F, R403S, K417N, V455H, G446S, N460K, S477K, Q493E, and Y505H were identified in the spike protein of JN.1 lineages. Moreover, the mutations P13L, Q229K, and S413R in N protein, A63T in M protein, T223I in ORF3a, and F19L in ORF7b protein were observed within the newly studied JN.1 lineage. A 26-nucleotide deletion in the 3’-UTR was highly prevalent (99%), while a 49-nucleotide deletion was observed less frequently. In addition, mutations in the accessory proteins (A68V in XEC.2, H144Q in XEC.3, and G71R in XEC.5) were found, suggesting that recent mutations are clustered in the NH2-terminus of the spike protein.

Keywords
Sustained mutations
Omicron coronaviruses
KP.3.1.1
XEC.1
Spike insertion
Funding
None.
Conflict of interest
The author declares no conflicts of interest.
References
  1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395: 565-574. doi: 10.1016/S0140-6736(20)30251-8

 

  1. Zhu C, Pang S, Liu J, Duan Q. Current progress, challenges and prospects in the development of COVID-19 vaccines. Drugs. 2024;84(4):403-423. doi: 10.1007/s40265-024-02013-8

 

  1. Kesheh MM, Hosseini P, Soltani S, Zandi M. An overview on the seven pathogenic human coronaviruses. Rev Med Virol. 2022;32(2):e2282. doi: 10.1002/rmv.2282

 

  1. Chakraborty AK. Hyper-variable spike protein of omicron corona virus and its differences with Alpha and Delta variants: Prospects of RT-PCR and new vaccine. J Emerg Dis Virol. 2022;7(1):166. doi: 10.16966/2473-1846.166

 

  1. Kandeel M, Mohamed MEM, Abd El-Lateef HM, Venugopala KN, El-Beltagi HS. Omicron variant genome evolution and phylogenetics. J Med Virol. 2022;94(4):1627-1632. doi: 10.1002/jmv.27515

 

  1. Chakraborty AK. Coronavirus Nsp2 protein homologies to the bacterial DNA topoisomerase I and IV suggest Nsp2 protein is a unique RNA topoisomerase with novel target for drug and vaccine development. Virol Mycol. 2020;9:185. doi: 10.31219/osf.io/tc9us

 

  1. Chakraborty AK. Multi-alignment comparison of coronavirus non-structural proteins Nsp13-16 with ribosomal proteins and other DNA/RNA modifying enzymes suggested their roles in the regulation of host protein synthesis. Int J Clin Med Inform. 2020;3:7-19. doi: 10.35543/osf.io/qrxc5

 

  1. Chakraborty AK. Clinical, diagnostic and therapeutic implications of coronavirus ORFab polyprotein associated Nsp16 protein-a bioinformatics approach. Acta Sci Med Sci. 2020;4(5):97-103. doi: 10.31080/ASMS.2020.04.0629

 

  1. Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022;608(7923):603-608. doi: 10.1038/s41586-022-05053-w

 

  1. Xu C, Wang Y, Liu C, et al. Conformational dynamics of SARS‐CoV‐2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo‐EM. Sci Adv. 2021;7(1):eabe5575. doi: 10.1126/sciadv.abe5575

 

  1. Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812-827.e19 doi: 10.1016/j.cell.2020.06.043

 

  1. Liu Y, Liu J, Plante KS, et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature. 2022;602(7896):294-299. doi: 10.1038/s41586-021-04245-0

 

  1. Chakraborty AK. Coronaviruses have reached at pre-elimination stage with nine amino acid spike deletions and forty-nine nucleotide 3’-UTR deletions. Int J Clin Virol. 2024;8(2):31-44. doi: 10.29328/journal.ijcv.1001060

 

  1. Planas D, Staropoli I, Michel V, et al. Distinct Evolution of SARS-CoV-2 Omicron and BA.2.86 Lineages Combining Increased Fitness and Antibody Evasion. bioRxiv. [Preprint]; 2023. doi: 10.1101/2023.11.20.567873

 

  1. Chakraborty AK. Higher Omicron JN.1 and BA.2.86.1 coronavirus transmission due to unique 17MPLF spike insertion compensating 24LPP, 69HV, 145Y, 211N and 483V deletions in the spike. J Future Med Healthc Innov. 2024;2(1):1-20.

 

  1. Chakraborty AK. The G36S, M147I, G265S, T568I, N852S new mutations in the spike of Omicron JN.1 subvariants: New subvariants JN.1.1 to JN.1.5 nomenclature and oligonucleotides design for JN.1 subvariants detection. J Emerg Virol Infect Dis. 2024;1(1):1-21. doi: 10.21203/rs.3.rs-3879032/v1

 

  1. Chakraborty AK. Higher Omicron JN.1 Coronavirus Transmission Due to Unique 17MPLF Spike Insertion Compensating 24LPP, 69HV, 145Y, 211N and 483V Deletions in the Spike. United States: Research Square; 2024. doi: 10.21203/rs.3.rs-3830998/v1

 

  1. Roemer C, Sheward DJ, Hisner R, et al. SARS-CoV-2 evolution in the Omicron era. Nat Microbiol. 2023;8(11):1952-1959. doi: 10.1038/s41564-023-01504-w

 

  1. Chakraborty AK. Genesis of recombinant XEC variant and comparable SWISS-modelling of spike of LB.1.7 and KP.3.1.1 subvariants coronaviruses. SunText Rev Virol. 2024;5(1):152. doi: 10.51737/2766-5003.2024.052

 

  1. Sievers F, Wilm A, Dineen DG, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. doi: 10.1038/msb.2011.75

 

  1. Yang Y, Jiang XT, Zhang T. Evaluation of a hybrid approach using UBLAST and BLASTX for metagenomic sequences annotation of specific functional genes. PLoS One. 2014;9(10):e110947. doi: 10.1371/journal.pone.0110947

 

  1. Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3-A versatile homology modelling toolbox. PLoS Comput Biol. 2021;17(1):e1008667. doi: 10.1371/journal.pcbi.1008667

 

  1. Bienert S, Waterhouse A, De Beer TAP, et al. The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res. 2017;45:D313-D319. doi: 10.1093/nar/gkw1132

 

  1. Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high accuracy models. Nucleic Acids Res. 2022;50:D439-D444. doi: 10.1093/nar/gkab1061

 

  1. Liu J, Yu Y, Jian F, et al. Enhanced immune evasion of SARS-CoV-2 variants KP.3.1.1 and XEC through N-terminal domain mutations. Lancet Infect Dis. 2025;25(1):e6-e7. doi: 10.1016/S1473-3099(24)00738-2

 

  1. Feng Z, Huang J, Baboo S, et al. Structural and Functional Insights into the Evolution of SARS-CoV-2 KP.3.1.1 Spike Protein. bioRxiv [Preprint]; 2024. doi: 10.1101/2024.12.10.627775

 

  1. Li P, Faraone JN, Hsu CC, et al. Immune Evasion, Cell-Cell Fusion, and Spike Stability of the SARS-CoV-2 XEC Variant: Role of Glycosylation Mutations at the N-Terminal Domain. bioRxiv [Preprint]; 2024. doi: 10.1101/2024.11.12.623078

 

  1. Barton MI, MacGowan SA, Kutuzov MA, Dushek O, Barton GJ, Van Der Merwe PA. Effects of common mutations in the SARS-CoV-2 spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. ELife. 2021;10:e70658. doi: 10.7554/eLife.70658

 

  1. Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative study of the mutations observed in the SARS-CoV-2 RBD variants of concern and their impact on the interaction with the ACE2 protein. J Phys Chem B. 2023;127(40):8586-8602. doi: 10.1021/acs.jpcb.3c01467

 

  1. Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein Cell. 2024;15(6):403-418. doi: 10.1093/procel/pwae007

 

  1. Majchrzak M, Madej Ł, Łysek-Gładysińska M, et al. The RdRp genotyping of SARS-CoV-2 isolated from patients with different clinical spectrum of COVID-19. BMC Infect Dis. 2024;24(1):281. doi: 10.1186/s12879-024-09146-x

 

  1. Stevens LJ, Pruijssers AJ, Lee HW, et al. Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med. 2022;14:eabo0718. doi: 10.1126/scitranslmed.abo0718

 

  1. Li X, Song Y. Targeting SARS-CoV-2 nonstructural protein 3: Function, structure, inhibition, and perspective in drug discovery. Drug Discov Today. 2024;29(1):103832. doi: 10.1016/j.drudis.2023.103832

 

  1. Abbasian MH, Mahmanzar M, Rahimian K, et al. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med. 2023;21:152. doi: 10.1186/s12967-023-03996-w

 

  1. Taha TY, Suryawanshi RK, Chen IP, et al. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. PLoS Pathog. 2023;19(8):e1011614. doi: 10.1371/journal.ppat.1011614

 

  1. Kerr CM, Pfannenstiel JJ, Alhammad YM, et al. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol. 2024;98(11):e0131324. doi: 10.1128/jvi.01313-24

 

  1. Zhou Y, Gammeltoft KA, Ryberg LA, et al. Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system. Sci Adv. 2022;8(51):eadd7197. doi: 10.1126/sciadv.add7197

 

  1. Inniss NL, Rzhetskaya M, Ling-Hu T, et al. Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays. SLAS Discov. 2024;29(3):100145. doi: 10.1016/j.slasd.2024.01.006

 

  1. Grimes SL, Choi YJ, Banerjee A, et al. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio. 2023;14(4):e0106023. doi: 10.1128/mbio.01060-23

 

  1. Chakraborty AK. Multi-alignment comparison of Coronavirus non-structural proteins Nsp13-Nsp16 with ribosomal proteins and other DNA/RNA modifying enzymes suggested their roles in the regulation of host protein synthesis. Int J Clin Med Inform. 2020;3(1):7-19. doi: 10.46619/ijcmi.2020.1024

 

  1. Grimes SL, Denison MR. The coronavirus helicase in replication. Virus Res. 2024;346:199401. doi: 10.1016/j.virusres.2024.199401

 

  1. Russ A, Wittmann S, Tsukamoto Y, et al. Nsp16 shields SARS-CoV‐2 from efficient MDA5 sensing and IFIT1‐ mediated restriction. EMBO Rep. 2022;23:e55648. doi: 10.15252/embr.202255648

 

  1. Wang Z, Wang J, Jia Y, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun. 2021;12:4664. doi: 10.1038/s41467-021-25015-6

 

  1. Huang Y, Chen J, Chen S, et al. Molecular characterization of SARS-CoV-2 nucleocapsid protein. Front Cell Infect Microbiol. 2024;14:1415885. doi: 10.3389/fcimb.2024.1415885

 

  1. Walia K, Sharma A, Paul S, et al. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7GTPase cycle. Nat Commun. 2024;15:2053. doi: 10.1038/s41467.024-46417-2

 

  1. Azad GK, Khan PK. Variations in Orf3a protein of SARS-CoV-2 alter its structure and function. Biochem Biophys Rep. 2021;26:100933. doi: 10.1016/j.bbrep.2021.100933

 

  1. Zhang Z, Nomura N, Muramoto Y, et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun. 2022;13:4399. doi: 10.1038/s41467-022-32019-3

 

  1. Mahtarin R, Islam S, Isla MJ, Ullah MO, Ali MA, Halim MA. Structure and dynamics of membrane protein in SARS-CoV-2. J Biomol Struct Dyn. 2020;40:4725-4738. doi: 10.1080/07391102.2020.1861983

 

  1. Abulsoud AI, El-Husseiny HM, El-Husseiny AA, et al. Mutations in SARS-CoV-2: Insights on structure, variants, vaccine and biomedical interventions. Biomed Pharmacother. 2023;157:113977. doi: 10.1016/j.biopha.2022.113977

 

  1. Chakraborty AK. Dynamics of SARS-CoV-2 ORF7a gene deletions and fate of downstream ORF7b and ORF8 genes expression. SunText Rev Biotechnol. 2022;3(1):142. doi: 10.51737/2766-5097.2022.042

 

  1. Chakraborty AK. Highly Infectious, Less Pathogenic and Antibody Resistant Omicron XBB.1, XBB.1.5 and XBB.1.5.1- XBB.1.5.39 Subvariant Coronaviruses do not Produce ORF8 Protein due to 8th Codon GGA=TGA Termination Codon Mutation. Research Square, [Preprint]; 2023. doi: 10.21203/rs.3.rs-2990675/v1

 

  1. Chakraborty AK. SARS-CoV-2 ORF8 gene CAA=TAA and AAA=TAA termination codon mutations found mostly in B.1.1.7 variant was independent of popular L84S mutations. Int J Clin Med Educ Res. 2022;1(6):192-208. doi: 10.33140/IJCMER.01.06.01

 

  1. Cecchetto R, Tonon E, Medaina N, et al. Detection of SARS-CoV-2 Δ426 ORF8 deletion mutant cluster in NGS screening. Microorganisms. 2023;11(10):2378. doi: 10.3390/microorganisms11102378

 

  1. Wagner C, Kistler KE, Perchetti GA, et al. Positive selection underlies repeated knockout of ORF8 in SARS-CoV-2 evolution. Nat Commun. 2024;15:3207. doi: 10.1038/s41467-024-47599-5

 

  1. Suharsono H, Mahardika BK, Sudipa PH, Sari TK, Suardana IBK, Mahardika GN. Consensus insertion/ deletions and amino acid variations of all coding and noncoding regions of the SARS-CoV-2 Omicron clades, including the XBB and BQ.1 lineages. Arch Virol. 2023;168:156. doi: 10.1007/s00705-023-05787-6

 

  1. Baggen J, Jacquemyn M, Persoons L, et al. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 2023;186(16):3427-3442.e22. doi: 10.1016/j.cell.2023.06.005

 

  1. Zhao Z, Zhou J, Tian M, et al. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat Commun. 2022;13(1):4958. doi: 10.1038/s41467-022-32665-7
Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing