AccScience Publishing / IMO / Online First / DOI: 10.36922/IMO025240026
REVIEW ARTICLE

Advancements in antivenom therapy: Historical perspectives, current challenges, and ongoing clinical trials

Luis A. Roque1*
Show Less
1 Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
Received: 9 June 2025 | Revised: 14 June 2025 | Accepted: 30 June 2025 | Published online: 13 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Snakebite envenomation remains a severe global health burden, particularly in impoverished, rural, and tropical regions where healthcare resources are sparse. Despite over 125 years of progress in antivenom therapy, numerous obstacles persist related to efficacy, specificity, cost, and availability. Conventional antivenoms, although life-saving, are associated with significant drawbacks, including species specificity and adverse immunologic reactions. This review explores the historical milestones in antivenom development, discusses present therapeutic limitations, highlights novel innovations through biotechnological approaches, and presents a list of ongoing clinical trials that aim to revolutionize the field. It emphasizes the pressing need for improved therapeutics and the critical role of translational research in mitigating the global impact of snakebite envenomation.

Keywords
Snakebite envenomation
Antivenom therapy
Recombinant antivenom
Monoclonal antibodies
Venom immunology
Neglected tropical diseases
Clinical trials
Toxicology
Funding
None.
Conflict of interest
The author declares no conflicts of interest.
References
  1. World Health Organization. Snakebite Envenoming: A Strategy for Prevention and Control. Switzerland: World Health Organization; 2019.

 

  1. Kasturiratne A, Wickremasinghe AR, De Silva N, et al. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218. doi: 10.1371/journal.pmed.0050218

 

  1. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers. 2017;3(1):17063. doi: 10.1038/nrdp.2017.63

 

  1. World Health Organization. Snakebite Envenoming: A Strategy for Prevention and Control. World Health Organization; 2019. https://www.who.int/publications/i/ item/9789241515641 [Last accessed 2025 Aug 12].

 

  1. Institut Pasteur. Annales de l’Institut Pasteur. Institut Pasteur; 1891. Available from: https://archive.org/details/ annalesdelinstit03inst [Last accessed 2025 Aug 12].

 

  1. Calmette A. Calmette contribution à l’étude du venin des serpents. Inmunisation des animaux et traitement de l’envenimation. Bull L’institut Pasteur. 1894;8:275-291.

 

  1. Brazil V. La Défense Contre L’ophidisme. 2nd ed. São Paulo, Brazil: Pocai-Weiss; 1901.

 

  1. Instituto Butantan. Memórias do Instituto Butantan. Instituto Butantan; 1901. Available from: https://bibliotecadigital. butantan.gov.br/index.php/colecao/memorias-do-instituto-butantan [Last accessed 2025 Aug 12].

 

  1. Commonwealth Serum Laboratories. Annual Report of the Commonwealth Serum Laboratories. Commonwealth of Australia; 1916. Available from: https://www.eoas.info/ biogs/A000214b.htm [Last accessed 2025 Aug 12].

 

  1. Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological trends in spider and scorpion antivenom development. Toxins (Basel). 2016;8(8):226. doi: 10.3390/toxins8080226

 

  1. Lewin M, Samuel S, Merkel J, Bickler P. Varespladib (LY315920) appears to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a possible pre-referral treatment for envenomation. Toxins (Basel). 2016;8(9):248. doi: 10.3390/toxins8090248

 

  1. O’Brien J, Lee SH, Gutiérrez JM, Shea KJ. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. Plos Negl Trop Dis. 2018;12(10):e0006736. doi: 10.1371/journal.pntd.0006736

 

  1. Williams DJ, Faiz MA, Abela-Ridder B, et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis. 2019;13(2):e0007059. doi: 10.1371/journal.pntd.0007059

 

  1. ClinicalTrials.gov. A Study of Varespladib-Methyl in Snakebite Envenoming. U.S. National Library of Medicine; 2021. Available from: https://clinicaltrials.gov [Last accessed 2025 Aug 12].

 

  1. ClinicalTrials.gov. Cryotherapy as Adjunctive Treatment for Bothrops Envenomation. U.S. National Library of Medicine; 2020. Available from: https://clinicaltrials.gov [Last accessed 2025 Aug 12].

 

  1. ClinicalTrials.gov. Hemostatic Parameter Monitoring in Venom-Induced Consumption Coagulopathy. U.S. National Library of Medicine; 2020. Available from: https:// clinicaltrials.gov [Last accessed 2025 Aug 12].

 

  1. ClinicalTrials.gov. Non-Invasive Waveform Analysis for Hematotoxic Envenomation Detection. U.S. National Library of Medicine; 2019. Available from: https://clinicaltrials.gov [Last accessed 2025 Aug 12].

 

  1. ClinicalTrials.gov. Crofab® Efficacy in Copperhead Envenomation. U.S. National Library of Medicine; 2006. Available from: https://clinicaltrials.gov [Last accessed 2025 Aug 12].

 

  1. ClinicalTrials.gov. Specific Antivenom for Bungarus Multicinctus Envenomation. U.S. National Library of Medicine; 2008. Available from: https://ichgcp.net/clinical-trials-registry/NCT00811239 [Last accessed 2025 Aug 12].

 

  1. Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis. 2017;23(1):38. doi: 10.1186/s40409-017-0127-6
Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing