AccScience Publishing / IMO / Online First / DOI: 10.36922/imo.7520
REVIEW ARTICLE

Diabetes mellitus: An updated overview and role of medicinal plants in modern treatment

Ashish Vishwakarma1 Vasudev Biswas1 Faizul Hasan2 Asma Praveen1 Divya Sharma1*
Show Less
1 Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Science and Research University, New Delhi, India
2 Department of Pharmacy, Metro College of Health Sciences and Research, Greater Noida, Uttar Pradesh, India
Submitted: 13 December 2024 | Revised: 23 February 2025 | Accepted: 3 March 2025 | Published: 27 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inadequate insulin production or peripheral insulin resistance, leading to persistent hyperglycemia. Prolonged hyperglycemia levels can cause severe complications, including nephropathy, neuropathy, retinopathy, and cardiovascular diseases. Diabetes is classified into four main types: Type 1 DM, type 2 DM, gestational DM, and maturity-onset diabetes of the young, each with distinct etiologies and clinical manifestations. Present therapeutic strategies encompass pharmacological interventions and lifestyle modifications; however, these approaches have limitations, such as adverse effects and reduced efficacy over time. Cutting-edge treatments, including stem cell therapy, gene therapy, nanotechnology, and medicinal plant-based therapies, offer promising avenues for improved diabetes management and potential cure. Several medicinal plants, including gudmar, bitter melon, and fenugreek, contain natural compounds that regulate blood glucose levels, boost insulin secretion, and mitigate oxidative stress, positioning them as valuable adjuncts in diabetes management. This review provides a comprehensive analysis of diabetes pathophysiology, classification, and present management strategies, highlighting the necessity for novel treatment approaches in response to the global diabetes epidemic.

Keywords
Diabetes mellitus
Pathophysiology
Treatment
Medicinal plants
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References
  1. Srivastava SP. Editorial: Current understanding of complications associated with diabetes. Front Clin Diabetes Healthc. 2023;4:1-3. doi: 10.3389/fcdhc.2023.1338656

 

  1. Kharroubi AT. Diabetes mellitus: The epidemic of the century. World J Diabetes. 2015;6(6):850. doi: 10.4239/wjd.v6.i6.850

 

  1. Diabetes DOF. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(SUPPL 1):S62-S69. doi: 10.2337/dc10-S062

 

  1. Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed. 2012;2(5):411-420. doi: 10.1016/S2221-1691(12)60067-7

 

  1. International Diabetes Federation. Five questions on the IDF Diabetes Atlas. Diabetes Res Clin Pract. 2013;102(2):147-148. doi: 10.1016/j.diabres.2013.10.013

 

  1. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Supplement 1):S15-S33. doi: 10.2337/dc21-S002

 

  1. Sims EK, Bundy BN, Stier K. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care. 2021;44(9):2182. doi: 10.2337/dc21-ad09

 

  1. Patel DK, Kumar R, Laloo D, Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pacific J Trop Dis. 2012;2(3):239-250. doi: 10.1016/S2222-1808(12)60054-1

 

  1. Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev. 2011;5(9):19-29. doi: 10.4103/0973-7847.79096

 

  1. Sitobo Z, Tinotenda Navhaya L, Henry Makhoba X. Medicinal plants as a source of natural remedies in the management of diabetes. INNOSC Theranostics Pharmacol Sci. 2024;7(3):1885. doi: 10.36922/itps.1885

 

  1. Salleh NH, Zulkipli IN, Mohd Yasin H, et al. Systematic review of medicinal plants used for treatment of diabetes in human clinical trials: An ASEAN perspective. Evid Based Complement Altern Med. 2021;2021:5570939. doi: 10.1155/2021/5570939

 

  1. Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne). 2023;14:1149239. doi: 10.3389/fendo.2023.1149239

 

  1. Webber S. Diabetes Research and Clinical Practice. Vol 102. Belgium: International Diabetes Federation; 2013. doi: 10.1016/j.diabres.2013.10.013

 

  1. Mathur P, Leburu S, Kulothungan V. Prevalence, awareness, treatment and control of diabetes in India from the countrywide national NCD monitoring survey. Front Public Heal. 2022;10:748157. doi: 10.3389/fpubh.2022.748157

 

  1. Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(04):174-188. doi: 10.4103/ajm.ajm_53_20

 

  1. Gábor W, Tibor KJ, László S. Is there a need for a revised classification in diabetes mellitus? Orv Hetil. 2022;163(48):1909-1916. doi: 10.1556/650.2022.32639

 

  1. Ordoñez-Guillen NE, Gonzalez-Compean JL, Lopez- Arevalo I, Contreras-Murillo M, Aldana-Bobadilla E. Machine learning based study for the classification of Type 2 diabetes mellitus subtypes. BioData Min. 2023;16(1):24. doi: 10.1186/s13040-023-00340-2

 

  1. Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev. 2016;15(7):644-648. doi: 10.1016/j.autrev.2016.02.017

 

  1. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-2251. doi: 10.1016/S0140-6736(17)30058-2

 

  1. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Prim. 2019;5(1):47. doi: 10.1038/s41572-019-0098-8

 

  1. Hoffman LS, Fox TJ, Anastasopoulou C, Jialal I. Maturity onset diabetes in the young. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024.

 

  1. Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev. 2008;7(7):550-557. doi: 10.1016/j.autrev.2008.04.008

 

  1. Taplin C, Barker J. Autoantibodies in type 1 diabetes. Autoimmunity. 2008;41(1):11-18. doi: 10.1080/08916930701619169

 

  1. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333-1346. doi: 10.1016/S0140-6736(05)61032-X

 

  1. Shinde S, Surwade S, Sharma R. Costus ignus: insulin plant and it’s preparations as remedial approach for diabetes mellitus. Int J Pharma Sci Res. 2022;13:1551-8.

 

  1. Catalano PM, Tyzbir ED, Sims EA. Incidence and significance of islet cell antibodies in women with previous gestational diabetes. Diabetes Care. 1990;13(5):478-482. doi: 10.2337/diacare.13.5.478

 

  1. Catalano PM, Huston L, Amini SB, Kalhan SC. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am J Obstet Gynecol. 1999;180(4):903-916. doi: 10.1016/S0002-9378(99)70662-9

 

  1. Buchanan TA. Pancreatic B-cell defects in gestational diabetes: Implications for the pathogenesis and prevention of type 2 diabetes. J Clin Endocrinol Metab.2001;86(3):989-993. doi: 10.1210/jcem.86.3.7339

 

  1. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: Results from the SEARCH for diabetes in youth. J Clin Endocrinol Metab. 2013;98(10):4055-4062. doi: 10.1210/jc.2013-1279

 

  1. Anık A, Çatlı G, Abacı A, Böber E. Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab. 2015;28(3-4):251-263. doi: 10.1515/jpem-2014-0384

 

  1. Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology. 2021;2(2):36-50. doi: 10.3390/diabetology2020004

 

  1. Stene LC, Norris JM, Rewers MJ. Risk factors for type 1 diabetes. In: Diabetes in America. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); 2023.

 

  1. Ismail L, Materwala H, Al Kaabi J. Association of risk factors with type 2 diabetes: A systematic review. Comput Struct Biotechnol J. 2021;19:1759-1785. doi: 10.1016/j.csbj.2021.03.003

 

  1. Petry CJ. Gestational diabetes: Risk factors and recent advances in its genetics and treatment. Br J Nutr. 2010;104(6):775-787. doi: 10.1017/S0007114510001741

 

  1. Balaji R, Duraisamy RK. Complications of diabetes mellitus: A review. Drug Invent Today. 2019;12(1):98-103.

 

  1. DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1(1):15019. doi: 10.1038/nrdp.2015.19

 

  1. Cooper M, Warren AM. A promising outlook for diabetic kidney disease. Nat Rev Nephrol. 2019;15(2):68-70. doi: 10.1038/s41581-018-0092-5

 

  1. Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21(9):998-1009. doi: 10.1038/nm.3902

 

  1. Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15(6):327-345. doi: 10.1038/s41581-019-0135-6

 

  1. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J diabetes Metab Disord. 2013;12(1):43. doi: 10.1186/2251-6581-12-4.

 

  1. Viswanathan V, Krishnan D, Kalra S, et al. Insights on medical nutrition therapy for type 2 diabetes mellitus: An Indian perspective. Adv Ther. 2019;36(3):520-547. doi: 10.1007/s12325-019-0872-8

 

  1. Moreno-Castilla C, Mauricio D, Hernandez M. Role of medical nutrition therapy in the management of gestational diabetes mellitus. Curr Diab Rep. 2016;16(4):22. doi: 10.1007/s11892-016-0717-7

 

  1. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet. 2014;383(9933):1999-2007. doi: 10.1016/S0140-6736(14)60613-9

 

  1. McCall MD, Toso C, Baetge EE, Shapiro AM. Are stem cells a cure for diabetes? Clin Sci. 2010;118(2):87-97. doi: 10.1042/CS20090072

 

  1. Sheik Abdulazeez S. Diabetes treatment: A rapid review of the current and future scope of stem cell research. Saudi Pharm J. 2015;23(4):333-340. doi: 10.1016/j.jsps.2013.12.012

 

  1. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A Second pathway for regeneration of adult exocrine and endocrine pancreas: A possible recapitulation of embryonic development. Diabetes. 1993;42(12):1715-1720. doi: 10.2337/diab.42.12.1715

 

  1. Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of actionoral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharmaceuticals. 2010;3(9):3005-3020. doi: 10.3390/ph3093005

 

  1. Donnor T, Sarkar S. Insulin-pharmacology, therapeutic regimens and principles of intensive insulin therapy. In: Endotext. South Dartmouth, MA: MDText.com, Inc.; 2000.

 

  1. Thota S, Akbar A. Insulin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.

 

  1. Inzucchi S, Rosenstock J, Umpierrez GE. Type 2 Diabetes and insulin secretagogues. J Clin Endocrinol Metab. 2012;97(3):37A-37A. doi: 10.1210/jcem.97.3.zeg37a

 

  1. Garber AJ. Long-acting glucagon-like peptide 1 receptor agonists. Diabetes Care. 2011;34(Supplement_2):S279-S284. doi: 10.2337/dc11-s231

 

  1. Filippatos TD, Panagiotopoulou T V., Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabet Stud. 2014;11(3-4):202-230. doi: 10.1900/RDS.2014.11.202

 

  1. Kalra S, Bhutani J. Alpha-glucosidase inhibitors. In: Diabetology: Type 2 Diabetes Mellitus. India: Jaypee Brothers Medical Publishers Pvt Ltd.; 2014. p. 55-55. doi: 10.5005/jp/books/12165_5

 

  1. Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):73-79. doi: 10.1097/MED.0000000000000311

 

  1. Sebokova E, Christ A, Boehringer M, Mizrahi J. Dipeptidyl peptidase IV inhibitors: The next generation of new promising therapies for the management of type 2 diabetes. Curr Top Med Chem. 2007;7(6):547-555. doi: 10.2174/156802607780091019

 

  1. Pathak R, Bridgeman MB. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P T. 2010;35(9):509-513.

 

  1. Strack T. Metformin: A review. Drugs Today. 2008;44(4):303. doi: 10.1358/dot.2008.44.4.1138124

 

  1. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJ. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548-567. doi: 10.1016/j.bioorg.2018.02.009

 

  1. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science, 2018;359:eaan4672. doi: 10.1126/science.aan4672

 

  1. Mali S. Delivery systems for gene therapy. Indian J Hum Genet. 2013;19(1):3. doi: 10.4103/0971-6866.112870

 

  1. Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013;5(11):1642-1661. doi: 10.1002/emmm.201202287

 

  1. Tsokos GC, Nepom GT. Gene therapy in the treatment of autoimmune diseases. J Clin Invest. 2000;106(2):181-183. doi: 10.1172/JCI10575

 

  1. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov. 2015;14(1):45-57. doi: 10.1038/nrd4477

 

  1. DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. WIREs Nanomedicine and Nanobiotechnology. 2015;7(4):548-564. doi: 10.1002/wnan.1329

 

  1. Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-based strategies for diabetes: Diagnostics, monitoring, and treatment. Trends Endocrinol Metab. 2020;31(6):448-458. doi: 10.1016/j.tem.2020.02.001

 

  1. Franz MJ. Lifestyle modifications for diabetes management. Endocrinol Metab Clin North Am. 1997;26(3):499-510. doi: 10.1016/S0889-8529(05)70263-2

 

  1. Chong S, Ding D, Byun R, Comino E, Bauman A, Jalaludin B. Lifestyle changes after a diagnosis of type 2 diabetes. Diabetes Spectr. 2017;30(1):43-50. doi: 10.2337/ds15-0044

 

  1. Cotter AP, Durant N, Agne AA, Cherrington AL. Internet interventions to support lifestyle modification for diabetes management: A systematic review of the evidence. J Diabetes Complications. 2014;28(2):243-251. doi: 10.1016/j.jdiacomp.2013.07.003

 

  1. Schreck K, Melzig MF. Traditionally used plants in the treatment of diabetes mellitus: Screening for uptake inhibition of glucose and fructose in the Caco2-cell model. Front Pharmacol. 2021;12:692566. doi: 10.3389/fphar.2021.692566

 

  1. Alam MA, Uddin R, Subhan N, Rahman MM, Jain P, Reza HM. Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipids. 2015;2015:496169. doi: 10.1155/2015/496169

 

  1. Kwatra D, Dandawate P, Padhye S, Anant S. Bitter melon as a therapy for diabetes, inflammation, and cancer: A panacea? Curr Pharmacol Reports. 2016;2(1):34-44. doi: 10.1007/s40495-016-0045-2

 

  1. Yedjou CG, Grigsby J, Mbemi A, et al. The Management of diabetes mellitus using medicinal plants and vitamins. Int J Mol Sci. 2023;24(10):9085. doi: 10.3390/ijms24109085

 

  1. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis. 2013;3(2):93-102. doi: 10.1016/S2222-1808(13)60052-3

 

  1. Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246. doi: 10.3390/foods8070246

 

  1. Parham M, Bagherzadeh M, Asghari M, et al. Evaluating the effect of a herb on the control of blood glucose and insulin-resistance in patients with advanced type 2 diabetes (a double-blind clinical trial). Casp J Intern Med. 2020;11(1):12-20. doi: 10.22088/cjim.11.1.12

 

  1. El-Saber Batiha G, Magdy Beshbishy A, Wasef LG, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020;12(3):872. doi: 10.3390/nu12030872

 

  1. Przeor M. Some common medicinal plants with antidiabetic activity, known and available in Europe (a mini-review). Pharmaceuticals. 2022;15(1):65. doi: 10.3390/ph15010065

 

  1. Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet-and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol. 2017;199:119-127. doi: 10.1016/j.jep.2017.02.003.

 

  1. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008;46(2):409-420. doi: 10.1016/j.fct.2007.09.085

 

  1. Rani MP, Krishna MS, Padmakumari KP, Raghu KG, Sundaresan A. Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: An in vitro study. J Sci Food Agric. 2012;92(9):1948-1955. doi: 10.1002/jsfa.5567

 

  1. Akash MS, Rehman K, Tariq M, Chen S. Zingiber officinale and type 2 diabetes mellitus: Evidence from experimental studies. Crit Rev Eukaryot Gene Expr. 2015;25(2):90-112. doi: 10.1615/critreveukaryotgeneexpr.2015013358

 

  1. Hasimun P, Adnyana IK. Zingiberaceae family effects on alpha-glucosidase activity: Implication for diabetes. In: Bioactive Food as Dietary Interventions for Diabetes. Netherlands: Elsevier; 2019. p. 387-393.

 

  1. Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol Res. 2018;130:241-258. doi: 10.1016/j.phrs.2017.12.011

 

  1. Silva ML, Bernardo MA, Singh J, de Mesquita MF. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review. Nutrients. 2022;14(13):2773. doi: 10.3390/nu14132773

 

  1. Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. J Ginseng Res. 2012;36(3):225-241. doi: 10.5142/jgr.2012.36.3.225

 

  1. Jeon WJ, Oh JS, Park MS, Ji GE. Anti‐hyperglycemic effect of fermented ginseng in type 2 diabetes mellitus mouse model. Phyther Res. 2013;27(2):166-172. doi: 10.1002/ptr.4706

 

  1. Kumar S, Brooks MS. Use of red beet (Beta vulgaris L.) for antimicrobial applications-a critical review. Food Bioprocess Technol. 2018;11(1):17-42. doi: 10.1007/s11947-017-1942-z

 

  1. Cherrada N, Elkhalifa Chemsa A, Gheraissa N, et al. Antidiabetic medicinal plants from the Chenopodiaceae family: A comprehensive overview. Int J Food Prop. 2024;27(1):194-213. doi: 10.1080/10942912.2023.2301576

 

  1. Abd El-Ghffar EA, Hegazi NM, Saad HH, et al. HPLC-ESI-MS/MS analysis of beet (Beta vulgaris) leaves and its beneficial properties in type 1 diabetic rats. Biomed Pharmacother. 2019;120:109541. doi: 10.1016/j.biopha.2019.109541

 

  1. Kasali FM, Tusiimire J, Kadima JN, Agaba AG. Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: extensive overview. Futur J Pharm Sci. 2021;7(1):153. doi: 10.1186/s43094-021-00306-3

 

  1. Kasali FM, Kadima JN, Tusiimire J, Ajayi CO, Agaba AG. Effects of the oral administration of aqueous and methanolic leaf extracts of Chenopodium ambrosioides L.(Amaranthaceae) on blood glucose levels in Wistar rats. J Exp Pharmacol. 2022;14:139-148. doi: 10.2147/JEP.S356564

 

Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing