AccScience Publishing / IMO / Online First / DOI: 10.36922/imo.4911
REVIEW ARTICLE

Incretin mimetics for the management of diabetes and associated comorbidities: An overview

Faryal Haider1 Syed M. Imam2 Orien L. Tulp3 Syed A. A. Rizvi4,5*
Show Less
1 The Wright Center for Graduate Medical Education, Scranton, Pennsylvania, United States of America
2 HCA Florida Northside Hospital–USF Morsani College of Medicine, St. Petersburg, Florida, United States of America
3 Colleges of Medicine and Graduate Studies, University of Science, Arts and Technology, Montserrat, British West Indies
4 College of Biomedical Sciences, Larkin University, Miami, Florida, United States of America
5 Division of Clinical and Translational Research, Larkin Community Hospital, Miami, Florida, United States of America
Submitted: 23 September 2024 | Accepted: 30 October 2024 | Published: 22 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Type 2 diabetes mellitus is commonly associated with various comorbidities that aggravate the disease’s overall impact on health. The most prevalent comorbidities of diabetes include obesity, dyslipidemia, hypertension, cardiovascular conditions, and kidney diseases. Incretin mimetics, also known as glucagon-like peptide-1 receptor agonists, mimic incretin hormones to stimulate insulin release in response to food intake. These medications help lower blood glucose by increasing insulin production, reducing glucagon secretion, slowing stomach emptying, and promoting satiety. A key advantage of incretin mimetics is their ability to reduce blood glucose levels without causing hypoglycemia, making them a safer option for many patients. They also promote weight loss, which is particularly beneficial for patients with both obesity and diabetes. Incretin mimetics are typically administered once or twice daily and are often used in combination with other treatments such as metformin or insulin. Evidence suggests that these drugs may reduce the risk of heart attack and stroke, an important consideration given the heightened cardiovascular risk in patients with diabetes. Additionally, incretin mimetics may help preserve pancreatic beta-cell function, potentially slowing the progression of diabetes. However, these drugs are costly and may be unaffordable for low-income individuals. Commonly reported side effects include nausea, vomiting, and diarrhea, which tend to decrease over time. While there have been reports of pancreatitis, current research indicates that incretin mimetics do not increase the risk of pancreatic cancer. Educating patients on proper use and potential side effects is crucial to ensure safe and effective treatment with incretin mimetics.

Keywords
Diabetes
Obesity
Cardiovascular and kidney diseases
Incretin hormones
Glucagon-like peptide-1 receptor agonist
Gastric inhibitory peptide
Incretin mimetics
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400(10365):1803-1820. doi: 10.1016/S0140-6736(22)01655-5

 

  1. Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes. 2014;5(4):444-470. doi: 10.4239/wjd.v5.i4.444

 

  1. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. doi: 10.3390/ijms21176275

 

  1. Bodke H, Wagh V, Kakar G. Diabetes mellitus and prevalence of other comorbid conditions: A systematic review. Cureus. 2023;15(11):e49374.doi: 10.7759/cureus.49374

 

  1. Powers MA, Bardsley J, Cypress M, et al. Diabetes self-management education and support in type 2 diabetes: A joint position statement of the American diabetes association, the American association of diabetes educators, and the academy of nutrition and dietetics. Clin Diabetes. 2016;34(2):70-80. doi: 10.2337/diaclin.34.2.70

 

  1. Lu Y, Wang W, Liu J, Xie M, Liu Q, Li S. Vascular complications of diabetes: A narrative review. Medicine (Baltimore). 2023;102(40):e35285. doi: 10.1097/MD.0000000000035285

 

  1. Chandrasekaran P, Weiskirchen R. The role of obesity in type 2 diabetes mellitus-an overview. Int J Mol Sci. 2024;25(3):1882. doi: 10.3390/ijms25031882

 

  1. Yashi K, Daley SF. Obesity and type 2 diabetes. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2023.

 

  1. Vieira R, Souto SB, Sánchez-López E, et al. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome-review of classical and new compounds: Part-I. Pharmaceuticals (Basel). 2019;12(4):152. doi: 10.3390/ph12040152

 

  1. Kumar A, Mazumder R, Rani A, Pandey P, Khurana N. Novel approaches for the management of type 2 diabetes mellitus: An update. Curr Diabetes Rev. 2024;20(4):e051023221768. doi: 10.2174/0115733998261903230921102620

 

  1. Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8:6. doi: 10.3389/fendo.2017.00006

 

  1. Al Musaimi O. Exploring FDA-approved frontiers: Insights into natural and engineered peptide analogues in the GLP-1, GIP, GHRH, CCK, ACTH, and α-MSH realms. Biomolecules. 2024;14(3):264. doi: 10.3390/biom14030264

 

  1. Nauck MA, Müller TD. Incretin hormones and type 2 diabetes. Diabetologia. 2023;66(10):1780-1795. doi: 10.1007/s00125-023-05956-x

 

  1. Jinnouchi H, Sugiyama S, Yoshida A, et al. Liraglutide, a glucagon-like peptide-1 analog, increased insulin sensitivity assessed by hyperinsulinemic-euglycemic clamp examination in patients with uncontrolled type 2 diabetes mellitus. J Diabetes Res. 2015;2015:706416. doi: 10.1155/2015/706416

 

  1. Boer GA, Holst JJ. Incretin hormones and type 2 diabetes-mechanistic insights and therapeutic approaches. Biology (Basel). 2020;9(12):473. doi: 10.3390/biology9120473

 

  1. Kuhre RE, Deacon CF, Holst JJ, Petersen N. What is an L-cell and how do we study the secretory mechanisms of the L-cell? Front Endocrinol. 2021;12:694284. doi: 10.3389/fendo.2021.694284

 

  1. El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides. 2020;125:170213. doi: 10.1016/j.peptides.2019.170213

 

  1. Salvatore T, Nevola R, Pafundi PC, et al. Incretin hormones: The Link between glycemic index and cardiometabolic diseases. Nutrients. 2019;11(8):1878. doi: 10.3390/nu11081878

 

  1. Deacon CF. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16(11):642-653. doi: 10.1038/s41574-020-0399-8

 

  1. Lee S, Lee DY. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Ann Pediatr Endocrinol Metab. 2017;22(1):15-26. doi: 10.6065/apem.2017.22.1.15

 

  1. Zheng Z, Zong Y, Ma Y, et al. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9(1):234. doi: 10.1038/s41392-024-01931-z

 

  1. Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. doi: 10.1016/j.molmet.2019.09.010

 

  1. Collins L, Costello RA. Glucagon-like peptide-1 receptor agonists. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih. gov/books/NBK551568 [Last accessed on 2024 Aug 23].

 

  1. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45:2753-2786. doi:10.2337/dci22-0034

 

  1. Latif W, Lambrinos KJ, Patel P, et al. Compare and contrast the glucagon-like peptide-1 receptor agonists (GLP1RAs). In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK572151 [Last accessed on 2024 Aug 23].

 

  1. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes-state-of-the-art. Mol Metab. 2021;46:101102. doi: 10.1016/j.molmet.2020.101102

 

  1. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S111-S124. doi: 10.2337/dc21-S009

 

  1. Michałowska J, Miller-Kasprzak E, Bogdański P. Incretin hormones in obesity and related cardiometabolic disorders: The clinical perspective. Nutrients. 2021;13(2):351. doi: 10.3390/nu13020351

 

  1. Zhong J, Chen H, Liu Q, Zhou S, Liu Z, Xiao Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J Pharm Anal. 2024;14(5):100917. doi: 10.1016/j.jpha.2023.12.007

 

  1. Bettge K, Kahle M, Abd El Aziz MS, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: A systematic analysis of published clinical trials. Diabetes Obes Metab. 2017;19(3):336-347. doi: 10.1111/dom.12824

 

  1. Gilbert MP, Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front Endocrinol (Lausanne). 2020;11:178. doi: 10.3389/fendo.2020.00178

 

  1. Ma X, Liu Z, Ilyas I, et al. GLP-1 receptor agonists (GLP- 1RAs): Cardiovascular actions and therapeutic potential. Int J Biol Sci. 2021;17(8):2050-2068. doi: 10.7150/ijbs.59965

 

  1. Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and oxidative stress in diabetic kidney disease: The targets for SGLT2 inhibitors and GLP-1 receptor agonists. Int J Mol Sci. 2021;22(19):10822. doi: 10.3390/ijms221910822

 

  1. Jensen JK, Binderup T, Grandjean CE, Bentsen S, Ripa RS, Kjaer A. Semaglutide reduces vascular inflammation investigated by PET in a rabbit model of advanced atherosclerosis. Atherosclerosis. 2022;352:88-95. doi: 10.1016/j.atherosclerosis.2022.03.032

 

  1. Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 receptor agonists and kidney protection. Medicina (Kaunas). 2019;55(6):233. doi: 10.3390/medicina55060233

 

  1. Rolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, Gąsecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J Cardiovasc Dev Dis. 2023;10(8):322. doi: 10.3390/jcdd10080322

 

  1. Mariam Z, Niazi SK. Glucagon-like peptide agonists: A prospective review. Endocrinol Diabetes Metab. 2024;7(1):e462. doi: 10.1002/edm2.462

 

  1. Teague M, Martinez A, Walker E, El-Rifai M, Carris NW. Use and interchange of incretin mimetics in the treatment of metabolic diseases: A narrative review. Clin Ther. 2023;45(3):248-261. doi: 10.1016/j.clinthera.2023.02.003

 

  1. Dalle S, Abderrahmani A. Receptors and signaling pathways controlling beta-cell function and survival as targets for anti-diabetic therapeutic strategies. Cells. 2024;13(15):1244. doi: 10.3390/cells13151244

 

  1. Furman BL. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon. 2012;59(4):464-471. doi: 10.1016/j.toxicon.2010.12.016

 

  1. Mann KV, Raskin P. Exenatide extended-release: A once weekly treatment for patients with type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:229-239. doi: 10.2147/DMSO.S35331

 

  1. van der Aart-van der Beek AB, van Raalte DH, Guja C, et al. Exenatide once weekly decreases urinary albumin excretion in patients with type 2 diabetes and elevated albuminuria: Pooled analysis of randomized active controlled clinical trials. Diabetes Obes Metab. 2020;22(9):1556-1566. doi: 10.1111/dom.14067

 

  1. Mehta A, Marso SP, Neeland IJ. Liraglutide for weight management: A critical review of the evidence. Obes Sci Pract. 2017;3(1):3-14. doi: 10.1002/osp4.84

 

  1. Li Z, Ni CL, Yao Z, Chen LM, Niu WY. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism. 2014;63(8):1022-1030. doi: 10.1016/j.metabol.2014.05.008

 

  1. Zobel EH, Ripa RS, Von Scholten BJ, et al. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes. Sci Rep. 11(1):18522. doi: 10.1038/s41598-021-97967-0

 

  1. Wronka M, Krzemińska J, Młynarska E, Rysz J, Franczyk B. New insights into the use of liraglutide-impact on cardiovascular risk and microvascular outcomes. Biomedicines. 2023;11(4):1159. doi: 10.3390/biomedicines1104115

 

  1. Frandsen CS, Dejgaard TF, Andersen HU, et al. Liraglutide as adjunct to insulin treatment in type 1 diabetes does not interfere with glycaemic recovery or gastric emptying rate during hypoglycaemia: A randomized, placebo-controlled, double-blind, parallel-group study. Diabetes Obes Metab. 2017;19(6):773-782. doi: 10.1111/dom.12830

 

  1. Jackson SH, Martin TS, Jones JD, Seal D, Emanuel F. Liraglutide (victoza): The first once-daily incretin mimetic injection for type-2 diabetes. P T. 2010;35(9):498-529.

 

  1. Liraglutide (Saxenda): CADTH Reimbursement Review: Therapeutic Area: Chronic Weight Management in Adults. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2021 Dec. Clinical Review. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK594336 [Last accessed on 2024 Aug 23].

 

  1. Scott LJ. Dulaglutide: A review in type 2 diabetes. Drugs. 2020;80(2):197-208. doi: 10.1007/s40265-020-01260-9

 

  1. Gao X, Di Y, Lv Y, et al. A pharmacokinetic study comparing the biosimilar HEC14028 and Dulaglutide (Trulicity®) in healthy Chinese subjects. Clin Transl Sci. 2024;17(4):e13775. doi: 10.1111/cts.13775

 

  1. Arslanian SA, Hannon T, Zeitler P, et al. Once-weekly dulaglutide for the treatment of youths with type 2 diabetes. N Engl J Med. 2022;387(5):433-443. doi: 10.1056/NEJMoa2204601

 

  1. Wang Y, Deng F, Zhong X, et al. Dulaglutide provides protection against sepsis-induced lung injury in mice by inhibiting inflammation and apoptosis. Eur J Pharmacol. 2023;949:175730. doi: 10.1016/j.ejphar.2023.175730

 

  1. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669-684.

 

  1. Wang R, Wang N, Han Y, Xu J, Xu Z. Dulaglutide alleviates LPS-induced injury in cardiomyocytes. ACS Omega. 2021;6(12):8271-8278. doi: 10.1021/acsomega.0c06326

 

  1. Xie D, Li Y, Xu M, Zhao X, Chen M. Effects of dulaglutide on endothelial progenitor cells and arterial elasticity in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2022;21(1):200. doi: 10.1186/s12933-022-01634-1

 

  1. Kommu S, Whitfield P. Semaglutide. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024. Available from : https://www.ncbi.nlm.nih.gov/books/NBK603723 [Last accessed on 2024 Aug 26].

 

  1. Seidu S, Mellbin L, Kaiser M, Khunti K. Will oral semaglutide be a game-changer in the management of type 2 diabetes in primary care? Prim Care Diabetes. 2021;15(1):59-68. doi: 10.1016/j.pcd.2020.07.011

 

  1. Singh G, Krauthamer M, Bjalme-Evans M. Wegovy (semaglutide): A new weight loss drug for chronic weight management. J Investig Med. 2022;70(1):5-13. doi: 10.1136/jim-2021-001952

 

  1. Ryan DH, Lingvay I, Deanfield J, et al. Long-term weight loss effects of semaglutide in obesity without diabetes in the SELECT trial. Nat Med. 2024;30(7):2049-2057. doi: 10.1038/s41591-024-02996-7

 

  1. Gabery S, Salinas CG, Paulsen SJ, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight. 2020;5(6):e133429. doi: 10.1172/jci.insight.133429

 

  1. Okamoto A, Yokokawa H, Nagamine T, Fukuda H, Hisaoka T, Naito T. Efficacy and safety of semaglutide in glycemic control, body weight management, lipid profiles and other biomarkers among obese type 2 diabetes patients initiated or switched to semaglutide from other GLP-1 receptor agonists. J Diabetes Metab Disord. 2021;20:2121-2128. doi: 10.1007/s40200-021-00899-9

 

  1. Tulp OL, Einstein GP. Review: Obesity and its associated inflammatory cytokines pose significant risk factors for COVID-19 outcomes. Adv Obes Weight Manag Control. 2022;12(1):14-20. doi: 10.15406/aowmc.2022.12.00358

 

  1. Andersen A, Knop FK, Vilsbøll T. A pharmacological and clinical overview of oral semaglutide for the treatment of type 2 diabetes. Drugs. 2021;81(9):1003-1030. doi: 10.1007/s40265-021-01499-w

 

  1. Lewis AL, McEntee N, Holland J, Patel A. Development and approval of rybelsus (oral semaglutide): Ushering in a new era in peptide delivery. Drug Deliv Transl Res. 2022;12(1):1-6. doi: 10.1007/s13346-021-01000-w

 

  1. Bucheit JD, Pamulapati LG, Carter N, Malloy K, Dixon DL, Sisson EM. Oral semaglutide: A review of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technol Ther. 2020;22(1):10-18. doi: 10.1089/dia.2019.0185

 

  1. Sodhi M, Rezaeianzadeh R, Kezouh A, Etminan M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA. 2023;330(18):1795-1797. doi: 10.1001/jama.2023.19574

 

  1. Okeke IG, Camarda AR, Okeke R, Chaughtai S. Semaglutide-induced hyperemesis gravidarum. JCEM Case Rep. 2024;2(2):luad167. doi: 10.1210/jcemcr/luad167

 

  1. Tobaiqy M, Elkout H. Psychiatric adverse events associated with semaglutide, liraglutide and tirzepatide: A pharmacovigilance analysis of individual case safety reports submitted to the EudraVigilance database. Int J Clin Pharm. 2024;46(2):488-495. doi: 10.1007/s11096-023-01694-7

 

  1. Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: The STEP 8 randomized clinical trial. JAMA. 2022;327(2):138-150. doi: 10.1001/jama.2021.23619

 

  1. Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: A population-based matched case-control study. JAMA Intern Med. 2013;173(7):534-539. doi: 10.1001/jamainternmed.2013.2720

 

  1. Casella S, Galli K. Appendicitis: A hidden danger of GLP-1 receptor agonists? J Pharm Technol. 2024;40(2):108-111. doi: 10.1177/87551225231216638

 

  1. Gudin B, Ladhari C, Robin P, et al. Incretin-based drugs and intestinal obstruction: A pharmacovigilance study. Therapie. 2020;75(6):641-647. doi: 10.1016/j.therap.2020.02.024

 

  1. Kalas MA, Galura GM, McCallum RW. Medication-induced gastroparesis: A case report. J Investig Med High Impact Case Rep. 2021;9:23247096211051919. doi: 10.1177/23247096211051919

 

  1. Newsome P, Francque S, Harrison S, et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther. 2019;50(2):193-203. doi: 10.1111/apt.15316

 

  1. Kamrul-Hasan ABM, Dutta D, Nagendra L, Bhattacharya S, Singla R, Kalra S. Efficacy and safety of albiglutide, a once-weekly glucagon-like peptide-1 receptor agonist, in patients with type 2 diabetes: A systematic review and meta-analysis. Medicine (Baltimore). 2024;103(25):e38568. doi: 10.1097/MD.0000000000038568

 

  1. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548054 [Last accessed on 2024 Aug 27].

 

  1. Ferreira JP, Sharma A, Vasques-Nóvoa F, et al. Albiglutide in patients with type 2 diabetes and heart failure: A post-hoc analysis from Harmony Outcomes. Eur J Heart Fail. 2022;24(10):1792-1801. doi: 10.1002/ejhf.2660

 

  1. Pandey S, Mangmool S, Parichatikanond W. Multifaceted roles of GLP-1 and its analogs: A review on molecular mechanisms with a cardiotherapeutic perspective. Pharmaceuticals (Basel). 2023;16(6):836. doi: 10.3390/ph16060836

 

  1. Rendell MS. Albiglutide: A unique GLP-1 receptor agonist. Expert Opin Biol Ther. 2016;16(12):1557-1569. doi: 10.1080/14712598.2016.1240780

 

  1. Willard FS, Douros JD, Gabe BN, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020;5(17):e140532. doi: 10.1172/jci.insight.140532.

 

  1. Ali R., Virendra SA, Chawla PA. Bumps and humps in the success of Tirzepatide as the first GLP1 and GIP receptor agonist. Health Sci Rev. 2022;4:100032. doi: 10.1016/j.hsr.2022.100032

 

  1. Aronne LJ, Sattar N, Horn DB, et al. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: The SURMOUNT-4 randomized clinical trial. JAMA. 2024;331(1):38-48. doi: 10.1001/jama.2023.24945

 

  1. Mishra R, Raj R, Elshimy G, et al. Adverse Events Related to Tirzepatide. J Endocr Soc. 2023;7(4):bvad016. doi:10.1210/jendso/bvad016z

 

  1. Leon N, LaCoursiere R, Yarosh D, Patel RS. Lixisenatide (Adlyxin): A once-daily incretin mimetic injection for type-2 diabetes. P T. 2017;42(11):676-711.

 

  1. Rosenstock J, Raccah D, Korányi L, et al. Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: a 24-week, randomized, open-label, active-controlled study (GetGoal-X). Diabetes Care. 2013;36:2945-2951. doi:10.2337/dc12-2709

 

  1. Lee J, Kim R, Kim MH, et al. Weight loss and side-effects of liraglutide and lixisenatide in obesity and type 2 diabetes mellitus. Prim Care Diabetes. 2023;17(5):460-465. doi: 10.1016/j.pcd.2023.07.006

 

  1. Niedermier V, Ayers G, Springer S. Lixisenatide (adlyxin) for type 2 diabetes mellitus. Am Fam Physician. 2017;96(4):257-258.

 

  1. Li W, Zhou Q, Cong Z, et al. Structural insights into the triple agonism at GLP-1R, GIPR and GCGR manifested by retatrutide. Cell Discov. 2024;10(1):77. doi: 10.1038/s41421-024-00700-0

 

  1. Sanyal AJ, Kaplan LM, Frias JP, et al. Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease: A randomized phase 2a trial. Nat Med. 2024;30(7):2037-2048. doi: 10.1038/s41591-024-03018-2

 

  1. Jastreboff AM, Kaplan LM, Frías JP, et al. Triple-hormone- receptor agonist retatrutide for obesity - a phase 2 trial. N Engl J Med. 2023;389(6):514-526. doi: 10.1056/NEJMoa2301972

 

  1. Rosenstock J, Frias J, Jastreboff AM, et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: A randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet. 2023;402(10401):529-544. doi: 10.1016/S0140-6736(23)01053-X

 

  1. Naeem M, Imran L, Banatwala UESS. Unleashing the power of retatrutide: A possible triumph over obesity and overweight: A correspondence. Health Sci Rep. 2024;7(2):e1864. doi: 10.1002/hsr2.1864

 

  1. Caturano A, Galiero R, Rocco M, et al. Modern challenges in type 2 diabetes: Balancing new medications with multifactorial care. Biomedicines. 2024;12(9):2039. doi: 10.3390/biomedicines12092039

 

  1. Eleftheriadou A, Riley D, Zhao SS, et al. Risk of diabetic retinopathy and diabetic macular oedema with sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists in type 2 diabetes: A real-world data study from a global federated database. Diabetologia. 2024;67:1271-1281. doi: 10.1007/s00125-024-06132-5

 

  1. Wai KM, Mishra K, Koo E, et al. Impact of GLP-1 agonists and SGLT-2 inhibitors on diabetic retinopathy progression: An aggregated electronic health record data study. Am J Ophthalmol. 2024;265:39-47. doi: 10.1016/j.ajo.2024.04.010

 

  1. Liu C, Zou Y, Qian H. GLP-1R agonists for treating obesity: A patent review (2015-present). Expert Opin Ther Pat. 2020;30(10):781-794. doi: 10.1080/13543776.2020.1811851

 

  1. Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem. 2024;269:116342. doi: 10.1016/j.ejmech.2024.116342

 

  1. Cowart K. Oral semaglutide: First-in-class oral GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. Ann Pharmacother. 2019; 54(5):478-485. doi: 10.1177/1060028019889064

 

  1. Aldhaleei WA, Abegaz TM, Bhagavathula AS. Glucagon-like peptide-1 receptor agonists associated gastrointestinal adverse events: A cross-sectional analysis of the national institutes of health all of us cohort. Pharmaceuticals (Basel). 2024;17(2):199. doi: 10.3390/ph17020199

 

  1. Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New developments in pharmacological treatment of obesity and type 2 diabetes-beyond and within GLP-1 receptor agonists. Biomedicines. 2024;12(6):1320. doi: 10.3390/biomedicines12061320
Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing