AccScience Publishing / IMO / Volume 2 / Issue 1 / DOI: 10.36922/imo.4969
Cite this article
13
Download
223
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW ARTICLE

Innovative approaches in kidney disease management: Advances in therapeutics and treatment strategies

Suchismita Roy1* Palash Mitra1,2 Sahadeb Jana1,2 Kaberi Kandar2,3 Malay Kumar Patsa1
Show Less
1 Nutrition Research Laboratory, Department of Paramedical Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
2 Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
3 Department of Nutrition, Bajkul Milani Mahavidyalaya, Purba Medinipur West Bengal, India
IMO 2025, 2(1), 36–49; https://doi.org/10.36922/imo.4969
Submitted: 26 September 2024 | Revised: 16 December 2024 | Accepted: 24 December 2024 | Published: 20 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The health system is burdened by kidney disease (KD), which has considerable economic consequences. The aging population and the rise in Type 2 diabetes and hypertension are the main contributing causes. KD is also associated with an increased risk of cardiovascular diseases (CVDs) morbidity, early mortality, and reduced quality of life. Recent studies estimate that more than 850 million people worldwide are affected by kidney-related illnesses each year. Of these, about 3.9 million individuals are going through dialysis or kidney transplantations, neither of which provides an ultimate solution. Alternative therapeutic approaches through medications include the use of angiotensin-converting enzyme inhibitors and Angiotensin II receptor blockers, renin inhibitors, anti-inflammatory medicines, and bioactive phytocompounds isolated from several plants. Plants contain numerous bioactive compounds that are thought to provide a variety of health benefits, including potential nephroprotective properties. In this review, recent advancements in kidney disease (KD) research will be highlighted, including newly identified causes, renal pathophysiological alterations, and current therapeutic approaches.

Keywords
Kidney disease
Phytocompounds
Nephroprotective
Anti-inflammatory
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756-766. doi: 10.1016/S0140-6736(11)61454-2

 

  1. Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant. 2015;30(4):575-583. doi: 10.1093/ndt/gfu230

 

  1. Guzzi F, Cirillo L, Roperto RM, Romagnani P, Lazzeri E. Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: An updated view. Int J Mol Sci. 2019;20(19):4941. doi: 10.3390/ijms20194941

 

  1. Ohlmeier C, Schuchhardt J, Bauer C, et al. Risk of chronic kidney disease in patients with acute kidney injury following a major surgery: A US claims database analysis. Clin Kidney J. 2023;16(12):2461-2471. doi: 10.1093/ckj/sfad148

 

  1. Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 2019;34(11):1803-1805. doi: 10.1093/ndt/gfz174

 

  1. Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018;25(2):121-132. doi: 10.1053/j.ackd.2017.10.011

 

  1. Vera M, Torramade-Moix S, Martin-Rodriguez S, et al. Antioxidant and anti-inflammatory strategies based on the potentiation of glutathione peroxidase activity prevent endothelial dysfunction in chronic kidney disease. Cell Physiol Biochem. 2019;52(5):1251-1252. doi: 10.1159/000495540

 

  1. Yu J, Mao S, Zhang Y, et al. MnTBAP therapy attenuates renal fibrosis in mice with 5/6 nephrectomy. Oxid Med Cell Longev. 2016;2016:7496930. doi: 10.1155/2016/7496930

 

  1. Gaut JP, Liapis H. Acute kidney injury pathology and pathophysiology: A retrospective review. Clin Kidney J. 2020;14(2):526-536. doi: 10.1093/ckj/sfaa142

 

  1. Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative stress and renal fibrosis: Recent insights for the development of novel therapeutic strategies. Front Physiol. 2018;9:105. doi: 10.3389/fphys.2018.00105

 

  1. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629-646. doi: 10.1038/nrneph.2017.107

 

  1. Morigi M, Perico L, Benigni A. Sirtuins in renal health and disease. J Am Soc Nephrol. 2018;29(7):1799-1809. doi: 10.1681/ASN.2017111218

 

  1. Yang B, Lan S, Dieudé M, et al. Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fibrosis after ischemia-reperfusion injury. J Am Soc Nephrol. 2018;29(7):1900-1916. doi: 10.1681/ASN.2017050581

 

  1. Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol. 2014;25(7):1387-1400. doi: 10.1681/ASN.2014010117

 

  1. Zuk A, Bonventre JV. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28(4):397-405. doi: 10.1097/MNH.0000000000000504

 

  1. Bonavia A, Singbartl K. A review of the role of immune cells in acute kidney injury. Pediatr Nephrol. 2018;33(10) :1629-1639. doi: 10.1007/s00467-017-3774-5

 

  1. Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209-218. doi: 10.1016/j.kint.2020.05.006

 

  1. Joannidis M, Forni LG, Klein SJ, et al. Lung-kidney interactions in critically ill patients: Consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup. Intensive Care Med. 2020;46(4):654-672. doi: 10.1007/s00134-019-05869-7

 

  1. Pan XW, Xu D, Zhang H, Zhou W, Wang LH, Cui XG. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Med. 2020;46(6):1114-1116. doi: 10.1007/s00134-020-06026-1

 

  1. He W, Liu X, Hu B, et al. Mechanisms of SARS-CoV-2 infection-induced kidney injury: A literature review. Front Cell Infect Microbiol. 2022;12:838213. doi: 10.3389/fcimb.2022.838213

 

  1. Chiu PF, Su SL, Tsai CC, et al. Cyclophilin A and CD147 associate with progression of diabetic nephropathy. Free Radic Res. 2018;52(11-12):1456-1463. doi:10.1080/10715762.2018.1523545

 

  1. Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020;46(7):1339-1348. doi: 10.1007/s00134-020-06153-9

 

  1. Legrand M, Bell S, Forni L, et al. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol. 2021;17(11):751-764. doi: 10.1038/s41581-021-00452-0

 

  1. Faour WH, Choaib A, Issa E, et al. Mechanisms of COVID- 19-induced kidney injury and current pharmacotherapies. Inflamm Res. 2022;71(1):39-56. doi: 10.1007/s00011-021-01520-8

 

  1. Franzén S, DiBona G, Frithiof R. Anesthesia and the renal sympathetic nervous system in perioperative AKI. Semin Nephrol. 2022;42(3):151283. doi: 10.1016/j.semnephrol.2022.10.009

 

  1. Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int. 2020;97(3):466-476. doi: 10.1016/j.kint.2019.10.032

 

  1. Sata Y, Head GA, Denton K, May CN, Schlaich MP. Role of the sympathetic nervous system and its modulation in renal hypertension. Front Med (Lausanne). 2018;5:82. doi: 10.3389/fmed.2018.00082

 

  1. An J, Niu F, Sim JJ. Cardiovascular and kidney outcomes of spironolactone or eplerenone in combination with ACEI/ARBs in patients with diabetic kidney disease. Pharmacotherapy. 2021;41(12):998-1008. doi: 10.1002/phar.2633

 

  1. Li EC, Heran BS, Wright JM. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst Rev. 2014;2014(8):CD009096. doi: 10.1002/14651858.CD009096.pub2

 

  1. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/ AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/ NMA/ PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A Report of the American College of Cardiology/ American Heart association task force on clinical practice guidelines. Hypertension. 2018;71(6):e140-e144. doi: 10.1161/HYP.0000000000000065

 

  1. Chen JY, Tsai IJ, Pan HC, et al. The impact of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on clinical outcomes of acute kidney disease patients: A systematic review and meta-analysis. Front Pharmacol. 2021;12:665250. doi: 10.3389/fphar.2021.665250

 

  1. Tada K, Nakano Y, Takahashi K, et al. Current use of angiotensin II receptor blockers and angiotensin-converting enzyme inhibitors for hypertension in patients with chronic kidney disease with proteinuria: A cross-sectional study based on real-world data. Hypertens Res. 2024;28:244-255.. doi: 10.1038/s41440-024-01896-0

 

  1. Breyer MD, Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov. 2016;15(8):568-588. doi: 10.1038/nrd.2016.67

 

  1. Provenzano M, Puchades MJ, Garofalo C, et al. Albuminuria-lowering effect of dapagliflozin, eplerenone, and their combination in patients with chronic kidney disease: A randomized crossover clinical trial. J Am Soc Nephrol. 2022;33(8):1569-1580. doi: 10.1681/ASN.2022020207

 

  1. Zhang Y, He D, Zhang W, et al. ACE inhibitor benefit to kidney and cardiovascular outcomes for patients with non-dialysis chronic kidney disease stages 3-5: A network meta-analysis of randomised clinical trials. Drugs. 2020;80(8):797-811. doi: 10.1007/s40265-020-01290-3

 

  1. Brar S, Ye F, James MT, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with outcomes after acute kidney injury. JAMA Intern Med. 2018;178(12):1681-1690. doi: 10.1001/jamainternmed.2018.4749

 

  1. Wu LS, Chang SH, Chang GJ, et al. A comparison between angiotensin converting enzyme inhibitors and angiotensin receptor blockers on end stage renal disease and major adverse cardiovascular events in diabetic patients: A population-based dynamic cohort study in Taiwan. Cardiovasc Diabetol. 2016;15:56. doi: 10.1186/s12933-016-0365-x

 

  1. Bhandari S, Mehta S, Khwaja A, et al. Renin-angiotensin system inhibition in advanced chronic kidney disease. N Engl J Med. 2022;387(22):2021-2032. doi: 10.1056/NEJMoa2210639

 

  1. Tang SCW, Chan KW, Ip DKM, et al. Direct renin inhibition in non-diabetic chronic kidney disease (DRINK): A prospective randomized trial. Nephrol Dial Transplant. 2021;36(9):1648-1656. doi: 10.1093/ndt/gfaa085

 

  1. Cernaro V, Loddo S, Macaione V, et al. RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int Urol Nephrol. 2020;52(6):1125-1133. doi: 10.1007/s11255-020-02469-z

 

  1. Sica DA. Renin-Angiotensin blockade: Therapeutic agents. In; Textbook of Nephro-Endocrinology. United States Academic Press; 2018. p. 57-75.

 

  1. Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16(4):206-222. doi: 10.1038/s41581-019-0234-4

 

  1. Al-Lamki RS, Mayadas TN. TNF receptors: Signaling pathways and contribution to renal dysfunction. Kidney Int. 2015;87(2):281-296. doi: 10.1038/ki.2014.285

 

  1. Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503-514. doi: 10.1016/j.immuni.2012.03.013

 

  1. Tuttle KR, Adler S, Kretzler M, et al. Baricitinib in diabetic kidney disease: Results from a phase 2, multicenter, randomized, double-blind, placebo-controlled study. In: American Diabetes Association Meeting; 2015. p. 114.

 

  1. Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25(12):2707-2716. doi: 10.1681/ASN.2013121270

 

  1. Noh MR, Padanilam BJ. Cell death induced by acute renal injury: A perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol. 2024;327(1):F4-F20. doi: 10.1152/ajprenal.00275.2023

 

  1. Thielmann M, Corteville D, Szabo G, et al. Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: A randomized clinical study. Circulation. 2021;144(14):1133-1144. doi: 10.1161/CIRCULATIONAHA.120.053029

 

  1. Lin Y, Fang J, Zhang Z, Farag MA, Li Z, Shao P. Plant flavonoids bioavailability in vivo and mechanisms of benefits on chronic kidney disease: A comprehensive review. Phytochemistry Rev. 2022;22:1-25. doi: 10.1007/s11101-022-09837-w

 

  1. Alsawaf S, Alnuaimi F, Afzal S, et al. Plant flavonoids on oxidative stress-mediated kidney inflammation. Biology (Basel). 2022;11(12):1717. doi: 10.3390/biology11121717

 

  1. Kaeidi A, Taghipour Z, Allahtavakoli M, Fatemi I, Hakimizadeh E, Hassanshahi J. Ameliorating effect of troxerutin in unilateral ureteral obstruction induced renal oxidative stress, inflammation, and apoptosis in male rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(5):879-888. doi: 10.1007/s00210-019-01801-4

 

  1. Shan Q, Zhuang J, Zheng G, et al. Troxerutin reduces kidney damage against BDE-47-induced apoptosis via inhibiting NOX2 activity and increasing Nrf2 Activity. Oxid Med Cell Longev. 2017;2017:6034692. doi: 10.1155/2017/6034692

 

  1. Keyhanmanesh R, Hamidian G, Lotfi H, et al. Troxerutin affects nephropathy signaling events in the kidney of type-1 diabetic male rats. Avicenna J Phytomed. 2022;12(2):109-115. doi: 10.22038/AJP.2021.18875

 

  1. Guan T, Zheng Y, Jin S, et al. Troxerutin alleviates kidney injury in rats via PI3K/AKT pathway by enhancing MAP4 expression. Food Nutr Res. 2022;66:8469. doi: 10.29219/fnr.v66.8469

 

  1. Ren Q, Tao S, Guo F, et al. Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/ STAT3 and TGF-β/SMAD3 signaling. Phytomedicine. 2021;87:153552. doi: 10.1016/j.phymed.2021.153552

 

  1. Kwon TH. A novel strategy employing the flavonoid fisetin to halt the progression of renal fibrosis in obstructive nephropathy. Kidney Res Clin Pract. 2023;42(3):282-285. doi: 10.23876/j.krcp.23.095

 

  1. Ju HY, Kim J, Han SJ. The flavonoid fisetin ameliorates renal fibrosis by inhibiting SMAD3 phosphorylation, oxidative damage, and inflammation in ureteral obstructed kidney in mice. Kidney Res Clin Pract. 2023;42(3):325-339. doi: 10.23876/j.krcp.22.03458

 

  1. Zou TF, Liu ZG, Cao PC, et al. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway. Acta Pharmacol Sin. 2023;44(10):2065-2074. doi: 10.1038/s41401-023-01106-6

 

  1. Tavenier J, Nehlin JO, Houlind MB, et al. Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mech Ageing Dev. 2024;222:111995. doi: 10.1016/j.mad.2024.111995

 

  1. Chen D, Ma S, Ye W, et al. Kaempferol reverses acute kidney injury in septic model by inhibiting NF‐κB/AKT signaling pathway. J Food Biochem. 2023;2023(1):1353449. doi: 10.1155/2023/1353449

 

  1. Xu Z, Wang X, Kuang W, Wang S, Zhao Y. Kaempferol improves acute kidney injury via inhibition of macrophage infiltration in septic mice. Biosci Rep. 2023;43(7):BSR20230873. doi: 10.1042/BSR20230873

 

  1. Wu Q, Chen J, Zheng X, et al. Kaempferol attenuates doxorubicin-induced renal tubular injury by inhibiting ROS/ASK1-mediated activation of the MAPK signaling pathway. Biomed Pharmacother. 2023;157:114087. doi: 10.1016/j.biopha.2022.114087

 

  1. Wang Z, Sun W, Sun X, Wang Y, Zhou M. Kaempferol ameliorates Cisplatin induced nephrotoxicity by modulating oxidative stress, inflammation and apoptosis via ERK and NF-κB pathways. AMB Express. 2020;10(1):58. doi: 10.1186/s13568-020-00993-w

 

  1. Yuan P, Sun X, Liu X, et al. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway. Phytomedicine. 2021;86:153555. doi: 10.1016/j.phymed.2021.153555

 

  1. Roy S, Pradhan S, Mandal S, Das K, Nandi DK. Nephroprotective efficacy of Asparagus racemosus root extract on acetaminophen-induced renal injury in rats. Acta Biol Szegediensis. 2018;62(1):17-23. doi: 10.14232/abs.2018.1.17-23

 

  1. Peng X, Dai C, Zhang M, Das Gupta S. Molecular mechanisms underlying protective role of quercetin on copper sulfate-induced nephrotoxicity in mice. Front Vet Sci. 2021;7:586033. doi: 10.3389/fvets.2020.586033

 

  1. Rahdar A, Hasanein P, Bilal M, Beyzaei H, Kyzas GZ. Quercetin-loaded F127 nanomicelles: Antioxidant activity and protection against renal injury induced by gentamicin in rats. Life Sci. 2021;276:119420. doi: 10.1016/j.lfs.2021.119420

 

  1. Chen YQ, Chen HY, Tang QQ, et al. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front Pharmacol. 2022;13:968226. doi: 10.3389/fphar.2022.968226

 

  1. Yang H, Song Y, Liang YN, Li R. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease. Med Sci Monit. 2018;24:4760-4766. doi: 10.12659/MSM.909259

 

  1. Cao YL, Lin JH, Hammes HP, Zhang C. Flavonoids in treatment of chronic kidney disease. Molecules. 2022;27(7):2365. doi: 10.3390/molecules27072365

 

  1. Albarakati AJA, Baty RS, Aljoudi AM, et al. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/ HO-1 signaling pathways. Mol Biol Rep. 2020;47(4):2591-2603. doi: 10.1007/s11033-020-05346-1

 

  1. Khalil N, Bishr M, Desouky S, Salama O. Ammi Visnaga L., a potential medicinal plant: A review. Molecules. 2020;25(2):301. doi: 10.3390/molecules25020301

 

  1. Nirumand MC, Hajialyani M, Rahimi R, et al. Dietary plants for the prevention and management of kidney stones: Preclinical and clinical evidence and molecular mechanisms. Int J Mol Sci. 2018;19(3):765. doi: 10.3390/ijms19030765

 

  1. Chitiala RD, Burlec AF, Nistor A, et al. Chemical assessment and biologic potential of a special Lespedeza capitata extract. Med Surg J. 2023;127(3):474-479.

 

  1. Mitra P, Jana S, Roy S. Insights into the therapeutic uses of plant derive phytocompounds on diabetic nephropathy. Curr Diabetes Rev. 2024;20(9):e230124225973. doi: 10.2174/0115733998273395231117114600

 

  1. Jana S, Mitra P, Panchali T, et al. Evaluating anti-inflammatory and anti-oxidative potentialities of the chloroform fraction of Asparagus racemosus roots against cisplatin induced acute kidney injury. J Ethnopharmacol. 2025;339:119084. doi: 10.1016/j.jep.2024.119084

 

  1. Górriz JL, Soler MJ, Navarro-González JF, et al. GLP-1 receptor agonists and diabetic kidney disease: A call of attention to nephrologists. J Clin Med. 2020;9(4):947. doi: 10.3390/jcm9040947
Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing