Improvements of Hermite-Hadamard-Mercer inequality using k-fractional integral
The well-known Hermite-Hadamard inequality has attracted the attention of several researchers due to the fact that Hermite-Hadamard inequality has many important applications in mathematics as well as in other areas of science. In this article, the authors present new Hermite-Hadamard inequality of the Mercer type containing Riemann-Liouville k-fractional integrals. For these inequalities, we give integral identity for differentiable functions. With the help of the identity and Hermite-Hadamard-Mercer type inequalities, we derive several results for the inequalities. We establish bounds for the difference of the obtain results by applying Hölder's inequality and power-mean inequality. We hope that the proposed result will invigorate further interest in this direction.
[1] Pecaric, J., Proschan, F. & Tong, Y. L. (1992). Convex Functions, Partial Orderings, and Statistical Applications. Academic Press Inc. https://doi.org/10.1016/s0076-5392%2808%29x6162-4
[2] Zhao, T. H., Wang, M. K., & Chu, Y. M. (2021). Monotonicity and convexity involving generalized elliptic integral of the first kind. Revista de la Real Academia de Ciencias Exactas, Fysicas y Naturales (Espana), 115(2), 1-13. http://dx.doi.org/10.1007/s13398-020-00992-3
[3] Zhao, T. H., Wang, M. K., & Chu, Y. M. (2021). Concavity and bounds involving generalized elliptic integral of the first kind. Journal of Mathematical Inequalities, 15(2), 701-724. http://dx.doi.org/10.7153/jmi-2021-15-50
[4] Chu, Y. M., & Zhao, T. H. (2015). Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean, Journal of Inequalities and Application, 396, 1-6. http://dx.doi.org/10.1186/s13660-015-0926-7
[5] Chen, S. B., Rashid, S. Noor, M. A., Hammouch, Z., & Chu Y. M. (2020). New fractional approaches for n-polynomial P-convexity with applications in special function theory. Advances in Difference Equations, 543. http://dx.doi.org/10.1186/s13662-020-03000-5
[6] Ahmad, K., Khan M. A., Khan, S., Ali, A., & Chu Y. M. (2021). New estimation of Zipf-Mandelbrot and Shannon entropies via refinements of Jensen’s inequality. AIP Advances, 11(1), 015147. http://dx.doi.org/10.1063/5.0039672
[7] Hudzik, H., & Maligranda, L. (1994). Some remarks on s-convex functions. Aequationes Mathematicae, 48, 100-111. http://dx.doi.org/10.1007/BF01837981
[8] Sana, G., Khan, M. B., Noor, M. A., Mohammed, P. O., & Chu, Y. M. (2021). Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities. International Journal of Computational Intelligence Systems, 14(1), 1809-1822. http://dx.doi.org/10.2991/ijcis.d.210620.001
[9] Varoˇsanec, S. (2007). On h-convexity. Journal of Mathematical Analysis and Applications, 326, 303-311. http://dx.doi.org/10.1016/j.jmaa.2006.02.086
[10] Awan, M., Noor, M. A., & Noor, K. I. (2018). Hermite-Hadamard Inequalities for exponentially convex functions. Applied Mathematics and Information Sciences, 12(2), 405-409. http://dx.doi.org/10.18576/amis/120215
[11] Toader, G. (1985). Some generalizations of the convexity. Proceedings of the Colloquium on Approximation and Optimization, University Cluj-Napoca, 1985, 329-338.
[12] Ozcan, S. (2020). Hermite-Hadamard type inequalities for m-convex and (α,m)-convex functions. Journal of Inequalities and Applications, 2020, 175. https://doi.org/10.1186/s13660-020-02442-5
[13] You, X., Khan M. A., Ullah, H., & Saeed T. (2022). Improvements of Slater’s inequality by means of 4-convexity and its applications. Mathematics, 10, 1274. http://dx.doi.org/10.3390/math10081274
[14] Sezer, S., Eken, Z., Tinaztepe, G., & Adilov, G. (2021). p-convex functions and some of their properties. Numerical Functional Analysis and Optimization, 42, 443-459. http://dx.doi.org/10.1080/01630563.2021.1884876
[15] Chu, H.H., Kalsoom, H., Rashid, S., Idrees, M., Safdar, F., Chu, Y.-M., & Baleanu, D. (2020). Quantum analogs of Ostrowski-type inequalities for Raina’s function correlated with coordinated generalized Φ-convex functions, Symmetry, 12(2), 308. https://doi.org/10.3390/sym12020308
[16] Khan, M. A., Wu, S. H., Ullah, H., & Chu, Y. M. (2019). Discrete majorization type inequalities for convex functions on rectangles. Journal of Inequalities and Applications, 16, 1-18. http://dx.doi.org/10.1186/s13660-019-1964-3
[17] Zhao, T. H., Shi, L., & Chu, Y. M. (2020). Convexity and concavity of the modified Bessel functions of the first kind with respect to H¨older means. Revista de la Real Academia de Ciencias Exactas, Fysicas y Naturales (Espana), 114(2), 96. http://dx.doi.org/10.1007/s13398-020-00825-3
[18] Zhao, T. H., Wang, M. K., Zhang, W., & Chu,Y. M. (2018). Quadratic transformation inequalities for Gaussian hypergeometric function. Journal of Inequalities and Applications, 2018, 251. http://dx.doi.org/10.1186/s13660-018-1848-y
[19] Chu Y. M., & Zhao, T. H. (2016). Concavity of the error function with respect to H¨older means. Mathematical Inequalities and Applications, 19(2), 589-595. http://dx.doi.org/10.7153/mia-19-43
[20] Chen, S.-B., Rashid, S., Noor, M. A., Ashraf, R.; & Chu, Y.-M. (2020). A new approach on fractional calculus and probability density function, AIMS Mathematics, 5(6), 7041–7054. https://doi.org/10.3934/math.2020451
[21] Jain, S., Goyal, R., Agarwal, P., & Momani, S. (2023). Certain saigo type fractional integral inequalities and their q-analogues. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), 1-9. https://doi.org/10.11121/ijocta.2023.1258
[22] Mallma Ramirez, L., Maculan, N., Elias Xavier, A., & Layter Xavier, V. (2024). Dislocation hyperbolic augmented Lagrangian algorithm in convex programming. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(2), 147-155. https://doi.org/10.11121/ijocta.1402
[23] Mitrinovic, D. S., & Lackovic, I. B. (1985). Hermite and convexity. Aequationes Mathematicae, 28(3), 229-232.http://dx.doi.org/10.1007/BF02189414
[24] Hadamard, J. (1893). ´Etude sur les propri´et´es des fonctions enti`eres et en particulier `dune function consid´er´ee par Riemann. Journal de Mathematiques Pures et Appliquees, 58, 171-215.
[25] Niculescu, C. P. (2003-04). Old and new on the Hermite-Hadamard inequality. Real Analysis Exchange, 29(2), 663-685. https://doi.org/10.14321/REALANALEXCH\.29.2.0663
[26] Iqbal, A., Khan, M. A. Ullah, S., Chu, Y. M. & Kashuri, A. (2018). Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications. AIP Advances, 8(7), 075101. http://dx.doi.org/10.1063/1.5031954
[27] Khurshid, Y., Khan, M. A., & Chu, Y. M. (2020). Ostrowski type inequalities involving conformable integrals via preinvex functions, AIP Advances, 10(5), 055204. http://dx.doi.org/10.1063/5.0008964
[28] Khan, M. A., Khurshid, Y., Du, T. S., & Chu, Y. M. (2018). Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals. Journal of Function Spaces, 2018, 5357463. http://dx.doi.org/10.1155/2018/5357463
[29] Iqbal, A., Khan, M. A., Ullah, S. & Chu, Y. M. (2020). Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications. Journal of Function Spaces, 2020, 9845407. http://dx.doi.org/10.1155/2020/9845407
[30] Iqbal, A., Khan, M. A., Suleman, M., & Chu, Y. M. (2020). The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green’s function. AIP Advances, 10(4), 045032. http://dx.doi.org/10.1063/1.5143908
[31] Khan, M. B., Noor, M. A., Abdullah, L., & Chu, Y. M. (2021). Some new classes of preinvex fuzzy interval-valued functions and inequalities. International Journal of Computational Intelligence Systems, 14(1), 1403-1418. http://dx.doi.org/10.2991/ijcis.d.210409.001
[32] Khan, M. B., Noor, M. A., Noor, K. I., & Chu, Y. M. (2021). Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational like inequalities. International Journal of Computational Intelligence Systems, 14(1), 1856-1870. http://dx.doi.org/10.2991/ijcis.d.210616.001
[33] Kalsoom, H., Rashid, S., Idrees, M., Safdar, F., Akram, S., Baleanu, D. & Chu, Y. M. (2020). Post quantum integral inequalities of Hermite-Hadamard-type associated with coordinated higher-order generalized strongly preinvex and quasi-pre-invex mappings. Symmetry, 12(3), 443. http://dx.doi.org/10.3390/sym12030443
[34] Mercer, A. (2003). A variant of Jensen’s inequality. Journal of Inequalities in Pure and Applied Mathematics, 4(4), 73. http://eudml.org/doc/123826.
[35] Khan, M. A., & Peˇcari´c, J. (2020). New refinements of the Jensen-Mercer inequality associated to positive n-tuples. Armenian Journal of Mathematics, 12(4), 1-4. http://dx.doi.org/10.52737/18291163-2020.12.4-1-12
[36] Zguaid, K., & El Alaoui, F. Z. (2023). On the regional boundary observability of semilinear time fractional systems with Caputo derivative. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(2), 161-170. https://doi.org/10.11121/ijocta.2023.1286
[37] Sene, N. (2022). Theory and applications of new fractional-order chaotic system under Caputo operator. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 12(1), 20-38. https://doi.org/10.11121/ijocta.2022.1108
[38] Set, E., ˙Iscan, ˙I., Sarikaya, M. Z., & Ozdemir, M. E. (2015). On new inequalities of Hermite- Hadamard-Fejer type for convex functions via fractional integrals. Applied Mathematics and Computation, 259, 875-881. http://dx.doi.org/10.1016/j.amc.2015.03.030.
[39] Li, Y., Samraiz, M., Gul, A., Vivas-Cortez, M., & Rahman, G. (2022). Hermite-Hadamard fractional integral inequalities via Abel-Gontscharoff Green’s function. Fractal and Fractional, 12(3), 126. http://dx.doi.org/10.3390/fractalfract6030126
[40] Sarikaya, M. Z., Set, E., Yaldiz, H., & Basak, N. (2013). Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling, 57 (9), 2403- 2407. http://dx.doi.org/10.1016/j.mcm.2011.12.048
[41] Iscan, ˙I., (2015). Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals. Studia Universitatis Babes-Bolyai Mathematica, 60 (3), 355-366. https://doi.org/10.48550/arXiv.1404.7722
[42] Khan, M. A., Anwar, S., Khalid, S., Mohammed, Z., & Sayed, M. M. (2021). Inequalities of the type Hermite-Hadamard-Jensen-Mercer for strong convexity. Mathematical Problems in Engineering, 2021, 5357463. http://dx.doi.org/10.1155/2021/5386488
[43] Dragomir, S. S. & Agarwal, R.P. (1998). Two inequalities of differentiable mappings and applications to special means of real numbers and Trapezoidal formula. Applied Mathematics Letters, 11(5), 91-95. http://dx.doi.org/10.1016/S0893-9659(98)00086-X