AccScience Publishing / IJOCTA / Volume 10 / Issue 1 / DOI: 10.11121/ijocta.01.2020.00813
RESEARCH ARTICLE

The complex Ginzburg Landau equation in kerr and parabolic law media

Esma Ates1*
Show Less
1 Department of Electronics and Communication Engineering, Karadeniz Technical University, Turkey
IJOCTA 2020, 10(1), 113–117; https://doi.org/10.11121/ijocta.01.2020.00813
Submitted: 16 April 2019 | Accepted: 16 December 2019 | Published: 31 January 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper study the complex Ginzburg-Landau equation with two different forms of nonlinearity. The Jacobi elliptic ansatz method is used to obtain the optical soliton solutions of this equation in the kerr and parabolic law media. Bright and dark optical soliton solutions are acquired as well as Jacobi elliptic function solutions. The existence criteria of these solutions are also indicated.

Keywords
Solitons
Jacobi elliptic functions
Complex Ginzburg-Landau equation
Conflict of interest
The authors declare they have no competing interests.
References

[1] Aranson, I.S., Kramer, L. (2002). The world of the complex Ginzburg-Landau equation. Reviews of Modern Physics, 74(1) 99–143.

[2] Cross, M.C., Hohenberg, p.C. (1993). Pattern formation outside of equilibrium. Reviews of Modern Physics, 65(3) 851.

[3] Matsuo, T., Furihata, D. (2001). Dissipative or conservative finite-diference schemes for complex-valued nonlinear partial diferential equations. Journal of Computational Physics, 171(2) 425–447.

[4] Ginzburg, V.L., Landau, L.D. (1950). On the theory of superconductivity. Zhurnal Eksper- imentalnoi i Teoreticheskoi Fiziki, 20 1064– 1082.

[5] Biswas, A. (2018). Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlin- ear forms. Optik - International Journal for Light and Electron Optics, 174, 207–215.

[6] Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Kara, A.H., Milovic, D., Majid, F.B., Biswas, A., Belic, M. (2016). Optical solitons with complex Ginzburg-Landau equation. Nonlinear Dy- namics, 85(3),1979-2016.

[7] Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A. S., Ullah, M. Z., Zhou, Q., Moshokoa, S. p., Belic, M. (2018). Optical soliton perturbation with complex Ginzburg– Landau equation using trial solution ap- proach. Optik, 160, 44–60.

[8] Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A.S., Ullah, M.Z., Belic, M.(2018). Optical soliton perturbation for com- plex Ginzburg–Landau equation with modi- fied simple equation method. Optik, 158, 399– 415.

[9] Akram, G., Mahak, N. (2018). Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg- Landau equation. Optik, 164, 210–217.

[10] Biswas, A., Alqahtani, R.T. (2017). Optical soliton perturbation with complex Ginzburg- Landau equation by semi-inverse variational principle. Optik, 147, 77–81.

[11] Shwetanshumala, S. (2008). Temporal soli- tons of modified complex Ginzburg Landau equation. Progress In Electromagnetics Re- search, 3, 17–24.

[12] Arshed, S. (2018). Soliton solutions of frac- tional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media. Optik, 160, 322-332.

[13] Baskonus, H.M. (2019). Complex Soliton So- lutions to the Gilsonpickering Model. Axioms, 8(1), 18.

[14] Ilhan, O.A., Esen, A., Bulut H., Baskonus H.M. (2019). Singular Solitons in the pseudo- parabolic Model Arising in Nonlinear Surface Waves. Results in Physics, 12, 1712–1715.

[15] Cattani, C., Sulaiman, T.A., Baskonus H.M., Bulut, H. (2018). Solitons in an inhomoge- neous Murnaghan’s rod. European Physical Journal Plus, 133(228), 1-12.

[16] Baskonus, H.M., Sulaiman, T.A., Bulut, H.(2018). Dark, bright and other optical solitons to the decoupled nonlinear Schr¨odinger equa- tion arising in dual-core optical fibers. Optical and Quantum Electronics, 50(4),1-12.

[17] Ciancio A., Baskonus, H.M., Sulaiman, T.A., Bulut, H. (2018). New Structural Dynamics of Isolated Waves Via the Coupled Nonlin- ear Maccari’s System with Complex Struc- ture. Indian Journal of Physics, 92(10), 1281– 1290.

[18] Ilhan, O.A., Sulaiman, T.A., Baskonus H.M., Bulut, H. (2018). On the New Wave So- lutions to a Nonlinear Model Arising in plasma physics. European Physical Journal Plus, 133(27), 1-6.

[19] Yel, G., Baskonus H.M., Bulut, H. (2017). Novel archetypes of new coupled Konno– Oono equation by using sine–Gordon expan- sion method. Optical and Quantum Electron- ics, 49(285), 1-10.

[20] Baskonus H.M., Bulut, H., Sulaiman, T.A.(2017). New complex and hyperbolic func- tion solutions to the generalized double com- bined Sinh-Cosh-Gordon equation. AIP Conf. Proc., 1798, 1-9.

[21] Baskonus H.M. (2016). New acoustic wave behaviors to the Davey–Stewartson equation with power-law nonlinearity arising in 丑uid dynamics. Nonlinear Dynamics, 86(1), 177– 183.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing