AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.2725
RESEARCH ARTICLE

Stereolithography 3D printing of microgroove master moulds for topography-induced nerve guidance conduits

Hexin Yue1 Xuzhao Liu1 Kejian Hou1 Cian Vyas1,2* Paulo Bartolo1,2*
Show Less
1 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
2 Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
IJB 2024, 10(3), 2725 https://doi.org/10.36922/ijb.2725
Submitted: 12 January 2024 | Accepted: 23 February 2024 | Published: 31 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 Patients who have peripheral nerve damage from trauma or disease may suffer lifelong disability. Current interventions such as nerve allografts are inadequate due to limited availability of tissue and donor-site morbidity. Commercial nerve guidance conduits are used to bridge the damaged nerve gap and restore function. Typically, however, they lack cell-instructive guidance cues to promote directed regeneration. Tissue-engineered nerve guidance conduits that utilise micro- and nano-topographical architectures have been demonstrated to direct cell behaviour and contact guidance. This study uses projection micro-stereolithography-based three-dimensional (3D) printing to fabricate microgrooved (10–30 μm) master moulds to produce polydimethylsiloxane (PDMS) moulds and solvent cast polycaprolactone and polylactic acid films. The polymer microgrooves were successfully fabricated and were able to be formed into tubular nerve guidance conduits. The surface morphology, roughness, wettability, and thermal properties of the films were characterised. The microgroove topography improved proliferation and induced alignment of SH-SY5Y cells. This facile 3D printing approach is promising for the fabrication of nerve guidance conduits with topographical guidance cues as it obviates the need for using photolithographic techniques. Thus, this approach provides an alternative that is simpler, faster, cheaper, and offers greater design freedom.

Keywords
Bioprinting
Microgroove
Moulds
Nerve guidance conduit
Peripheral nerve repair
Stereolithography
Funding
This work was supported by the Engineering and Physical Sciences Research Council (UK) Doctoral Prize Fellowship (EP/R513131/1) and the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1, EP/S019367/1, EP/P025021/1, and EP/ P025498/1.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Lackington WA, Ryan AJ, O’Brien FJ. Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomater Sci Eng. 2017;3(7):1221-1235. doi: 10.1021/acsbiomaterials.6b00500
  2. Bryan DJ, Tang JB, Doherty SA, et al. Enhanced peripheral nerve regeneration through a poled bioresorbable poly (lactic-co-glycolic acid) guidance channel. J Neural Eng. 2004;1(2):91. doi: 10.1088/1741-2560/1/2/004
  3. Slavin BR, Sarhane KA, von Guionneau N, et al. Insulin-like growth factor-1: a promising therapeutic target for peripheral nerve injury. Front Bioeng Biotechnol. 2021;9:695850. doi: 10.3389/fbioe.2021.695850
  4. Pabari A, Yang SY, Seifalian AM, Mosahebi A. Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg. 2010;63(12):1941-1948. doi: 10.1016/j.bjps.2009.12.010
  5. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater. 2020;106:54-69. doi: 10.1016/j.actbio.2020.02.003
  6. Wang ML, Rivlin M, Graham JG, Beredjiklian PK. Peripheral nerve injury, scarring, and recovery. Connect Tissue Res. 2019;60(1):3-9. doi: 10.1080/03008207.2018.1489381
  7. Siemionow M, Brzezicki G. Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol. 2009;87:141-172. doi: 10.1016/S0074-7742(09)87008-6
  8. Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92(3):245-276. doi: 10.1016/j.pneurobio.2010.10.002
  9. Suo H, Wang Z, Dai G, Fu J, Yin J, Chang L. Polyacrylonitrile nerve conduits with inner longitudinal grooved textures to enhance neuron directional outgrowth. J Microelectromech Syst. 2018;27(3):457-463. doi: 10.1109/JMEMS.2018.2810097
  10. Taylor CS, Haycock JW. Biomaterials and scaffolds for repair of the peripheral nervous system. In: Phillips JB, Hercher D, Hausner T, eds. Peripheral Nerve Tissue Engineering and Regeneration. Cham: Springer; 2022: 245-279. doi: 10.1007/978-3-030-21052-6_3
  11. Wangensteen KJ, Kalliainen LK. Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand. 2010;5(3):273-277. doi: 10.1007/s11552-009-9245-0
  12. Spivey EC, Khaing ZZ, Shear JB, Schmidt CE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Biomaterials. 2012;33(17): 4264-4276. doi: 10.1016/j.biomaterials.2012.02.043
  13. Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553-572. doi: 10.1016/j.injury.2010.12.030
  14. Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio. 2020;6:100043. doi: 10.1016/j.mtbio.2020.100043
  15. Tonda‐Turo C, Gnavi S, Ruini F, et al. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med. 2017;11(1):197-208. doi: 10.1002/term.1902
  16. Du J, Liu J, Yao S, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296-309. doi: 10.1016/j.actbio.2017.04.010
  17. Ma Y, Wang H, Wang Q, Cao X, Gao H. Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration. Chem Eng J. 2023;452: 139424. doi: 10.1016/j.cej.2022.139424 
  18. Sharma AD, Zbarska S, Petersen EM, Marti ME, Mallapragada SK, Sakaguchi DS. Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates. J Biosci Bioeng. 2016;121(3):325-335. doi: 10.1016/j.jbiosc.2015.07.006
  19. Long Y, Zhang N, Huang Y, Wen X. Formation of highly aligned grooves on inner surface of semipermeable hollow fiber membrane for directional axonal outgrowth. J Manuf Sci Eng. 2008;130(2):021011. doi: 10.1115/1.2896111
  20. Yang CY, Huang WY, Chen LH, et al. Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment. J Mater Chem B. 2021;9(3):567-584. doi: 10.1039/d0tb01605e
  21. Ma Y, Gao H, Wang H, Cao X. Engineering topography: effects on nerve cell behaviors and applications in peripheral nerve repair. J Mater Chem B. 2021;9(32):6310-6325. doi: 10.1039/d1tb00782c
  22. Zhang D, Wu S, Feng J, Duan Y, Xing D, Gao C. Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth. Acta Biomater. 2018;74:143-155. doi: 10.1016/j.actbio.2018.05.018
  23. Miller C, Jeftinija S, Mallapragada S. Micropatterned Schwann cell-seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth. Tissue Eng. 2001;7(6):705-715. doi: 10.1089/107632701753337663
  24. Sun M, Kingham PJ, Reid AJ, Armstrong SJ, Terenghi G, Downes S. In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit. J Biomed Mater Res Part A. 2010;93(4):1470-1481. doi: 10.1002/jbm.a.32681
  25. Hwang CM, Park Y, Park JY, et al. Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed Microdevices. 2009;11(4):739-746. doi: 10.1007/s10544-009-9287-7
  26. Hsu SH, Lu PS, Ni HC, Su CH. Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. Biomed Microdevices. 2007;9:665-674. doi: 10.1007/s10544-007-9068-0
  27. Béduer A, Vieu C, Arnauduc F, Sol JC, Loubinoux I, Vaysse L. Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials. 2012;33(2):504-514. doi: 10.1016/j.biomaterials.2011.09.073
  28. Lu S, Chen W, Wang J, et al. Polydopamine-decorated PLCL conduit to induce synergetic effect of electrical stimulation and topological morphology for peripheral nerve regeneration. Small Methods. 2023;7(2):e2200883. doi: 10.1002/smtd.202200883
  29. Mobasseri A, Faroni A, Minogue BM, Downes S, Terenghi G, Reid AJ. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng Part A. 2015;21(5-6):1152-1162. doi: 10.1089/ten.TEA.2014.0266
  30. Mobasseri SA, Terenghi G, Downes S. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. J Mater Sci Mater Med. 2013;24(7):1639-1647. doi: 10.1007/s10856-013-4922-5 
  31. Hsu SH, Ni HC. Fabrication of the microgrooved/ microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation. Tissue Eng Part A. 2009;15(6):1381-1390. doi: 10.1089/ten.tea.2008.0175
  32. Litowczenko J, Maciejewska BM, Wychowaniec JK, Koscinski M, Jurga S, Warowicka A. Groove-patterned surfaces induce morphological changes in cells of neuronal origin. J Biomed Mater Res A. 2019;107(10):2244-2256. doi: 10.1002/jbm.a.36733 
  33. Yu S, Liu D, Wang T, Lee YZ, Wong JCN, Song X. Micropatterning of polymer substrates for cell culture. J Biomed Mater Res B Appl Biomater. 2021;109(10): 1525-1533. doi: 10.1002/jbm.b.34811 
  34. Pardo-Figuerez M, Martin NRW, Player DJ, et al. Controlled arrangement of neuronal cells on surfaces functionalized with micropatterned polymer brushes. ACS Omega. 2018;3(10):12383-12391. doi: 10.1021/acsomega.8b01698 
  35. Nam KH, Jamilpour N, Mfoumou E, Wang FY, Zhang DD, Wong PK. Probing mechanoregulation of neuronal differentiation by plasma lithography patterned elastomeric substrates. Sci Rep. 2014;4(1):6965. doi: 10.1038/srep06965  
  36. Klein CL, Scholl M, Maelicke A. Neuronal networks in vitro: formation and organization on biofunctionalized surfaces. J Mater Sci Mater Med. 1999;10(12):721-727. doi: 10.1023/a:1008975105243 
  37. Qin D, Xia Y, Whitesides GM. Soft lithography for micro-and nanoscale patterning. Nat Protoc. 2010;5(3):491-502. doi: 10.1038/nprot.2009.234 
  38. Miller C, Shanks H, Witt A, Rutkowski G, Mallapragada S. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates. Biomaterials. 2001;22(11):1263-1269. doi: 10.1016/s0142-9612(00)00278-7 
  39. Ge Q, Li Z, Wang Z, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extreme Manuf. 2020;2(2):022004. doi: 10.1088/2631-7990/ab8d9a 
  40. Evangelista MS, Perez M, Salibian AA, et al. Single-lumen and multi-lumen poly(ethylene glycol) nerve conduits fabricated by stereolithography for peripheral nerve regeneration in vivo. J Reconstr Microsurg. 2015;31(5): 327-335. doi: 10.1055/s-0034-1395415 
  41. Singh A, Asikainen S, Teotia AK, et al. Biomimetic photocurable three-dimensional printed nerve guidance channels with aligned cryomatrix lumen for peripheral nerve regeneration. ACS Appl Mater Interfaces. 2018;10(50): 43327-43342. doi: 10.1021/acsami.8b11677 
  42. Pateman CJ, Harding AJ, Glen A, et al. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials. 2015;49:77-89. doi: 10.1016/j.biomaterials.2015.01.055 
  43. Moreno-Rivas O, Hernández-Velázquez D, Piazza V, Marquez S. Rapid prototyping of microfluidic devices by SL 3D printing and their biocompatibility study for cell culturing. Mater Today Proc. 2019;13:436-445. doi: 10.1016/j.matpr.2019.03.189 
  44. Villegas M, Cetinic Z, Shakeri A, Didar TF. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating. Anal Chim Acta. 2018;1000:248-255. doi: 10.1016/j.aca.2017.11.063
  45. Jonathan Tjong AGT, John PF. Solvent extraction of 3D printed molds for soft lithography. R Soc Chem. 2020 
  46. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. doi: 10.1038/nmeth.2089 
  47. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V. Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym. 2009;75(1):172-179. doi: 10.1016/j.carbpol.2008.07.020 
  48. Tonazzini I, Cecchini A, Elgersma Y, Cecchini M. Interaction of SH-SY5Y cells with nanogratings during neuronal differentiation: comparison with primary neurons. Adv Healthc Mater. 2014;3(4):581-587. doi: 10.1002/adhm.201300216 
  49. Alvim Valente C, Cesar Chagastelles P, Fontana Nicoletti N, et al. Design and optimization of biocompatible polycaprolactone/poly (l-lactic-co-glycolic acid) scaffolds with and without microgrooves for tissue engineering applications. J Biomed Mater Res Part A. 2018;106(6): 1522-1534. doi: 10.1002/jbm.a.36355 
  50. Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC. Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly (ε-caprolactone)(PCL) and poly (lactic acid)(PLA). J Polym Environ. 2015;23(1): 83-89. doi: 10.1007/s10924-014-0666-7 
  51. Vieille B, Albouy W, Chevalier L, Taleb L. About the influence of stamping on thermoplastic-based composites for aeronautical applications. Compos Part B: Eng. 2013;45(1):821-834. doi: 10.1016/j.compositesb.2012.07.047 
  52. Kostakova E, Mészáros L, Maskova G, Blazkova L, Turcsan T, Lukas D. Crystallinity of electrospun and centrifugal spun polycaprolactone fibers: a comparative study. J Nanomater. 2017;1-9. doi: 10.1155/2017/8952390 
  53. Huang B, Wang Y, Vyas C, Bartolo P. Crystal growth of 3D poly(ε-caprolactone) based bone scaffolds and its effects on the physical properties and cellular interactions. Adv Sci. 2023;10(1):2203183. doi: 10.1002/advs.202203183 
  54. Sun M, Downes S. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair. J Mater Sci Mater Med. 2009;20(5):1181-1192. doi: 10.1007/s10856-008-3671-3 
  55. Dong J, Liu J, Li X, Liang Q, Xu X. Relationship between the Young’s modulus and the crystallinity of cross‐linked poly (ε‐caprolactone) as an immobilization membrane for cancer radiotherapy. Glob Chall. 2020;4(8):2000008. doi: 10.1002/gch2.202000008 
  56. Borschel GH, Kia KF, Kuzon WM, Jr., Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133-139. doi: 10.1016/s0022-4804(03)00255-5 
  57. Rydevik BL, Kwan MK, Myers RR, et al. An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. J Orthop Res. 1990;8(5):694-701. doi: 10.1002/jor.1100080511
  58. Kerns J, Piponov H, Helder C, Amirouche F, Solitro G, Gonzalez M. Mechanical properties of the human tibial and peroneal nerves following stretch with histological correlations. Anat Rec. 2019;302(11):2030-2039. doi: 10.1002/ar.24250
  59. Rahmati M, Silva EA, Reseland JE, Heyward CA, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev. 2020;49(15):5178-5224. doi: 10.1039/D0CS00103A
  60. Patr T, Glória A. Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng Trans. 2013;32:1645-1650. doi: 10.3303/CET1332275
  61. Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural polymer‐derived bioscaffolds for peripheral nerve regeneration. Adv Funct Mater. 2022;32(41):2203829. doi: 10.1002/adfm.202203829
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing