AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.1951
Cite this article
162
Download
1925
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Current advances of 3D-bioprinted microfluidic models with hydrogel bioinks and their applications in drug screening

Jianing Li1 Na Li1,2 Bo Liu1,2 Shen Li2,3* Hangyu Zhang1,2*
Show Less
1 School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, Liaoning, China
2 Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, China
3 Department of Endocrinology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
IJB 2024, 10(3), 1951 https://doi.org/10.36922/ijb.1951
Submitted: 29 September 2023 | Accepted: 6 December 2023 | Published: 4 March 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microenvironments of tumor and organ models dictate the accuracy of drug screening results. The advancement of technologies and hydrogel bioinks has significantly increased the representation of tumor and organs models in the armada of drug testing tools. Hydrogel bioinks, characterized by their high water content and efficient substance transport, facilitate the reconstruction of human tissues by acting as functional carriers for cells. The molding and cell culture function of hydrogels are preserved and optimized through rational engineering techniques. Furthermore, previous studies have often focused on fabrication of supporting constructs by means of three-dimensional (3D) bioprinting or microfluidic technology for dynamic cultures. Nevertheless, the combination of bioprinting and microfluidic technologies offers advantages in terms of dynamic response and automation, which enable the creation of artificial tumor or organ models to represent actual microenvironments. In this review, we discuss the components and physical features of tumor microenvironments (TMEs), most of which have been reproduced in artificial models widely by different researchers. We also classify bioink-simulating extracellular matrix (ECM) in TMEs, explain their crosslinking principles, and introduce their manifestations, including artificial disease or organ models in tissue engineering application. Technologies, such as 3D bioprinting and microfluidic technology, used to create these models are also outlined. At last, we summarize disease models and organ microarchitectures fabricated by these two technologies and offer application prospects of these models in the realm of precision medicine.

Keywords
3D bioprinting
Bioinks
Tissue engineering
Drug screening
Microfluidic
Funding
This work was supported by the National Key R&D Program of China (2018AAA0100300) and the Fundamental Research Funds for the Central Universities (DUT22YG238).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Dawood AA, Yousif WI. The main reasons why cancer is so difficult to treatment. AJOAIMS. Philadelphia: Elsevier; 2020;2(2):20-22.
  2. DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med. 2020;382(9):869-871. doi: 10.1056/NEJMcibr1914890
  3. Advancing cancer therapy. Nat Cancer. 2021;2(3):245-246. doi: 10.1038/s43018-021-00192-x
  4. Bains W. Failure rate in drug discovery and development: will we ever get any better? Drug Discov World. 2004;5.
  5. Imamura Y, Mukohara T, Shimono Y, et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep. 2015;33(4):1837-1843. doi: 10.3892/or.2015.3767
  6. Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033
  7. de Jong M, Maina T. Of mice and humans: are they the same?--Implications in cancer translational research. J Nucl Med. 2010;51(4):501-504. doi: 10.2967/jnumed.109.065706
  8. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114-118.
  9. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10:14023. doi: 10.1038/s41598-020-70086-y
  10. Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-bioprinting in modeling of tumor immune evasion. Cancers (Basel). 2022;14(13):3126. doi: 10.3390/cancers14133126
  11. Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265:120416. doi: 10.1016/j.biomaterials.2020.120416
  12. Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal. 2022;209:114534. doi: 10.1016/j.jpba.2021.114534
  13. Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today. 2019;24(6):1248-1257. doi: 10.1016/j.drudis.2019.03.025
  14. Tiwari AP, Thorat ND, Pricl S, Patil RM, Rohiwal S, Townley H. Bioink: a 3D-bioprinting tool for anticancer drug discovery and cancer management. Drug Discov Today. 2021;26(7):1574-1590. doi: 10.1016/j.drudis.2021.03.010
  15. Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol. 2017;5:23. doi: 10.3389/fbioe.2017.00023
  16. Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368(6494):973-980. doi: 10.1126/science.aay9189 
  17. Galeano Niño JL, Wu H, LaCourse KD, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022;611(7937):810-817. doi: 10.1038/s41586-022-05435-0
  18. Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11(4):933-959. doi: 10.1158/2159-8290
  19. Marconi GD, Fonticoli L, Rajan TS, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells. 2021;10(7):1587. doi: 10.3390/cells10071587
  20. Huang H, Wang Z, Zhang Y, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656-673. doi: 10.1016/j.ccell.2022.04.011
  21. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392-401. doi: 10.1038/nrc1877
  22. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2019;16(5):282-295. doi: 10.1038/s41575-019-0115-0
  23. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146(4):895-905. doi: 10.1002/ijc.32193
  24. Chen X, Song. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99-115. doi: 10.1038/s41573-018-0004-1
  25. Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol. 2020;11:1731. doi: 10.3389/fimmu.2020.01731
  26. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. doi: 10.3389/fimmu.2020.583084
  27. Fukuda K, Kobayashi A, Watabe K. The role of tumor-associated macrophage in tumor progression. Front Biosci. 2012;4(2):787-798. doi: 10.2741/s299
  28. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39-51. doi: 10.1016/j.cell.2010.03.014
  29. Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol. 2020;10:3038. doi: 10.3389/fimmu.2019.03038
  30. Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20(1):28. doi: 10.1186/s12943-021-01316-8
  31. Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31(11):2448-2460. doi: 10.1038/emboj.2012.125
  32. Jiang Z, Zhou J, Li L, et al. Pericytes in the tumor microenvironment. Cancer Lett. 2023;216074. doi: 10.1016/j.canlet.2023.216074
  33. Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304. doi: 10.1177/15330338211036304
  34. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013
  35. Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: the elusive hallmark of cancer. Oncogene. 2020;39(9):2024-2026. doi: 10.1038/s41388-019-1110-1 
  36. Majidpoor J, Mortezaee K. Steps in metastasis: an updated review. Med Oncol. 2021;38(1):3. doi: 10.1007/s12032-020-01447-w
  37. Duffy MJ, McGowan PM, Gallagher WM. Cancer invasion and metastasis: changing views. J Pathol. 2008;214(3):283-293. doi: 10.1002/path.2282
  38. Jain RK, Martin JD, Chauhan VP, Duda DG. Tumor microenvironment: vascular and extravascular compartment. In: Niederhuber JE, Armitage JO, Kastan MB, Doroshow JH, Tepper JE, eds. Abeloff’s Clinical Oncology. 6th ed. Elsevier; 2020:108-126. doi: 10.1016/B978-0-323-47674-4.00008-6
  39. Ribatti D, Pezzella F. Overview on the different patterns of tumor vascularization. Cells. 2021;10(3):639. doi: 10.3390/cells10030639
  40. Najaf‍‍iM, Goradel NH, Farhood B, et al. Tumor microenvironment: interactions and therapy. J Cell Physiol. 2019;234(5):5700-5721. doi: 10.1002/jcp.27425
  41. Farhood B, Najafi M, Mortezaee K. Cancer-associated fibroblasts: secretions, interactions, and therapy. J Cell Biochem. 2019;120(3):2791-2800. doi: 10.1002/jcb.27703
  42. Jeong SY, Lee JH, Shin Y, Chung S, Kuh H-J. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One. 2016;11(7):e0159013. doi: 10.1371/journal.pone.0159013
  43. Melcher V, Graf M, Interlandi M, et al. Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathol. 2020;139(5): 913-936. doi: 10.1007/s00401-019-02116-7 
  44. Mortezaee K. Immune escape: a critical hallmark in solid tumors. Life Sci. 2020;258:118110. doi: 10.1016/j.lfs.2020.118110
  45. Elmusrati A, Wang J, Wang CY. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci. 2021;13(1):24. doi: 10.1038/s41368-021-00131-7
  46. Tang H, Fu YX. Immune evasion in tumor’s own sweet way. Cell Metab. 2018;27(5):945-946. doi: 10.1016/j.cmet.2018.03.013
  47. Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6(6):584-593. doi: 10.1158/2159-8290.CD-16-0062
  48. Cabanos HF, Hata AN. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers. 2021;13(11):2666. doi: 10.3390/cancers13112666
  49. Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat. 2015;23:69-78. doi: 10.1016/j.drup.2015.08.004
  50. Icard P, Simula L, Fournel L, et al. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: therapeutic implications. Drug Resist Updat. 2022;63:100852. doi: 10.1016/j.drup.2022.100852
  51. Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2015;380(1):205-215. doi: 10.1016/j.canlet.2015.07.044
  52. Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour microenvironment stress promotes the development of drug resistance. Antioxidants. 2021;10(11):1801. doi: 10.3390/antiox10111801
  53. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17(12):1976. doi: 10.3390/ijms17121976
  54. Zhang J, Wehrle E, Vetsch JR, Paul GR, Rubert M, Müller R. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed Mater. 2019;14(6):065009. doi: 10.1088/1748-605X/ab3c74
  55. Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol. 2020; 162:1414-1428. doi: 10.1016/j.ijbiomac.2020.07.311
  56. Thakur S, Govender PP, Mamo MA, Tamulevicius S, Thakur VK. Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum. 2017;146:396-408. doi: 10.1016/j.vacuum.2017.05.032
  57. Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch R, Boccaccini AR. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication. 2020;12(4):045005. doi: 10.1088/1758-5090/ab98e4
  58. Wang X, Ao Q, Tian X, et al. Gelatin-based hydrogels for organ 3D bioprinting. Polymers. 2017;9(9):401. doi: 10.3390/polym9090401
  59. Bertlein S, Brown G, Lim KS, et al. Thiol-ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater. 2017;29(44):201703404. doi: 10.1002/adma.201703404
  60. Leu Alexa R, Iovu H, Ghitman J, et al. 3D-printed gelatin methacryloyl-based scaffolds with potential application in tissue engineering. Polymers. 2021;13(5):727. doi: 10.3390/polym13050727 
  61. Kumar H, Sakthivel K, Mohamed MGA, et al. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol Biosci. 2021;21(1):e2000317. doi: 10.1002/mabi.202000317
  62. Stepanovska J, Supova M, Hanzalek K, Broz A, Matejka R. Collagen bioinks for bioprinting: a systematic review of hydrogel properties, bioprinting parameters, protocols, and bioprinted structure characteristics. Biomedicines. 2021;9(9):1137. doi: 10.3390/biomedicines9091137
  63. Osidak EO, Karalkin PA, Osidak MS, et al. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med. 2019;30(3):31. doi: 10.1007/s10856-019-6233-y
  64. Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of collagen: considerations, potentials, and applications. Macromol Biosci. 2021;21(1):e2000280. doi: 10.1002/mabi.202000280
  65. Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint. 2020;6(3):270. doi: 10.18063/ijb.v6i3.270
  66. Wang Z, Yang Y, Gao Y, Xu Z, Yang S, Jin M. Establishing a novel 3D printing bioinks system with recombinant human collagen. Int J Biol Macromol. 2022;211:400-409. doi: 10.1016/j.ijbiomac.2022.05.088
  67. Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther. 2021;18:88-96. doi: 10.1016/j.reth.2021.04.002
  68. Wang H, Yu H, Zhou X, et al. An overview of extracellular matrix-based bioinks for 3D bioprinting. Front Bioeng Biotechnol. 2022;10:905438. doi: 10.3389/fbioe.2022.905438
  69. Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med. 2022;16(1):56-82. doi: 10.1007/s11684-021-0900-3
  70. Rana D, Kumar TS, Ramalingam M. Cell-laden hydrogels for tissue engineering. J Biomater Tissue Eng. 2014;4. doi: 10.1166/jbt.2014.1206
  71. Liu H, Gong Y, Zhang K, et al. Recent advances in decellularized matrix-derived materials for bioink and 3D bioprinting. Gels. 2023;9(3):195. doi: 10.3390/gels9030195
  72. Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9(24):e2000734. doi: 10.1002/adhm.202000734
  73. Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
  74. Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen X. Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds. ACS Biomater Sci Eng. 2019;5(6):2976-2987. doi: 10.1021/acsbiomaterials.9b00167
  75. Jeon O, Lee YB, Lee SJ, Guliyeva N, Lee J, Alsberg E. Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries. Bioact Mater. 2021;15:185-193. doi: 10.1016/j.bioactmat.2021.11.025
  76. Cui R, Li S, Li T, et al. Natural polymer derived hydrogel bioink with enhanced thixotropy improves printability and cellular preservation in 3D bioprinting. J Mater Chem B. 2023;11(17):3907-3918. doi: 10.1039/d2tb02786k
  77. Wang Q, Karadas Ö, Backman O, et al. Aqueous two-phase emulsion bioresin for facile one-step 3D microgel-based bioprinting. Adv Healthc Mater. 2023;12(19):e2203243. doi: 10.1002/adhm.202203243
  78. Zhang W, Kuss M, Yan Y, Shi W. Dynamic alginate hydrogel as an antioxidative bioink for bioprinting. Gels. 2023;9(4):312. doi: 10.3390/gels9040312 
  79. Sachdev A 4th, Acharya S, Gadodia T, et al. A review on techniques and biomaterials used in 3D bioprinting. Cureus. 2022;14(8):e28463. doi: 10.7759/cureus.28463
  80. Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces. 2018;10(16):13304-13316. doi: 10.1021/acsami.7b18927
  81. Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748-10764. doi: 10.1039/d1nr02065j
  82. Wang J, Williamson GS, Yang H. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release. Colloids Surf B Biointerfaces. 2018;165:144-149. doi: 10.1016/j.colsurfb.2018.02.032
  83. Liu P, Chen W, Liu C, Tian M, Liu P. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci Rep. 2019;9(1):9534. doi: 10.1038/s41598-019-46061-7
  84. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484-504. doi: 10.1039/b820162p
  85. Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized 3D-printed ST2/gelatin methacryloyl/polcaprolactone scaffolds for enhancing bone regeneration with vascularization. Int J Mol Sci. 2022;23(15):8347. doi: 10.3390/ijms23158347
  86. Schmitt PR, Dwyer KD, Coulombe KLK. Current applications of polycaprolactone as a scaffold material for heart regeneration. ACS Appl Bio Mater. 2022;5(6):2461-2480. doi: 10.1021/acsabm.2c00174
  87. Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G, Russom A. 3D bioprinting of multi-material decellularized liver matrix hydrogel at physiological temperatures. Biosensors. 2022;12(7):521. doi: 10.3390/bios12070521
  88. Chen H, Fei F, Li X, et al. A structure-supporting, self-healing, and high permeating hydrogel bioink for establishment of diverse homogeneous tissue-like constructs. Bioact Mater. 2021;6(10):3580-3595. doi: 10.1016/j.bioactmat.2021.03.019
  89. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93-99. doi: 10.1016/j.biomaterials.2004.04.011
  90. Mandrycky CJ, Howard CC, Rayner SG, Shin YJ, Zheng Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol. 2021;159:1-13. doi: 10.1016/j.yjmcc.2021.06.002
  91. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124-3130. doi: 10.1002/adma.201305506 
  92. Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng. 2010;106(6):963-969. doi: 10.1002/bit.22762
  93. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  94. Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng. 2020;117(1): 272-284. doi: 10.1002/bit.27176
  95. Stratesteffen H, Köpf M, Kreimendahl F, Blaeser A, Jockenhoevel S, Fischer H. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication. 2017;9(4):045002. doi: 10.1088/1758-5090/aa857c
  96. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
  97. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  98. Naghieh S, Chen X. Printability-a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
  99. Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering. 2021;8(2):27. doi: 10.3390/bioengineering8020027
  100. Mohan TS, Datta P, Nesaei S, Ozbolat V, Ozbolat IT. 3D coaxial bioprinting: process mechanisms, bioinks and applications. Prog Biomed Eng. 2022;4(2):022003. doi: 10.1088/2516-1091/ac631c
  101. Yu Y, Xie R, He Y, et al. Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac6e88
  102. Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity. ACS Appl Mater Interfaces. 2020;12(40):44563-44577. doi: 10.1021/acsami.0c15078
  103. Zhou K, Sun Y, Yang J, Mao H, Gu Z. Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths. J Mater Chem B. 2022;10(12): 1897-1907. doi: 10.1039/d1tb02554f
  104. Zeng X, Meng Z, He J, et al. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomater. 2022;140:1-22. doi: 10.1016/j.actbio.2021.11.048
  105. Li Q, Ma L, Gao Z, et al. Regulable supporting baths for embedded printing of soft biomaterials with variable stiffness. ACS Appl Mater Interfaces. 2022; 14(37):41695-41711. doi: 10.1021/acsami.2c09221
  106. Shao L, Gao Q, Xie C, et al. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication. 2020;12(3):035014. doi: 10.1088/1758-5090/ab7e76
  107. Zheng W, Xie R, Liang X, Liang Q. Fabrication of biomaterials and biostructures based on microfluidic manipulation. Small. 2022;18(16):e2105867. doi: 10.1002/smll.202105867
  108. Fan XY, Deng ZF, Yan YY, et al. Application of microfluidic chips in anticancer drug screening. Bosn J Basic Med Sci. 2022;22(3):302-314. doi: 10.17305/bjbms.2021.6484
  109. Torino S, Corrado B, Iodice M, Coppola G. PDMS-based microfluidic devices for cell culture. Inventions. 2018;3:65. doi: 10.3390/inventions3030065
  110. Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today. 2019;24(6):1248-1257. doi: 10.1016/j.drudis.2019.03.025 
  111. Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3(7):509-519. doi: 10.1038/s41551-019-0363-x
  112. Xu F, Wu J, Wang S, Durmus NG, Gurkan UA, Demirci U. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication. 2011;3(3):034101. doi: 10.1088/1758-5082/3/3/034101
  113. Liang Y, Pan J, Fang Q. Research advances of high-throughput cell-based drug screening systems based on microfluidic technique. Se Pu. 2021;39(6):567-577. doi: 10.3724/SP.J.1123.2020.07014
  114. Wu Q, Liu J, Wang X, et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. doi: 10.1186/s12938-020-0752-0
  115. Knowlton S, Tasoglu S. A bioprinted liver-on-a-chip for drug screening applications.Trends Biotechnol. 2016; 34(9):681-682. doi: 10.1016/j.tibtech.2016.05.014
  116. Hoofnagle JH, Björnsson ES. Drug-induced liver injury - types and phenotypes. N Engl J Med. 2019;381(3):264-273. doi: 10.1056/NEJMra1816149
  117. Yin L, Du G, Zhang B, et al. Efficient drug screening and nephrotoxicity assessment on co-culture microfluidic kidney chip. Sci Rep. 2020;10(1):6568. doi: 10.1038/s41598-020-63096-3
  118. Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip. 2016;16(14):2618-2625. doi: 10.1039/c6lc00450d
  119. Lee H, Chae S, Kim JY, et al. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication. 2019;11(2):025001. doi: 10.1088/1758-5090/aaf9fa
  120. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
  121. Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019;116(12):5399-5404. doi: 10.1073/pnas.1815208116
  122. Park JY, Ryu H, Lee B, et al. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication. 2018;11(1):015002. doi: 10.1088/1758-5090/aae545
  123. Marino A, Tricinci O, Battaglini M, et al. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small. 2018;14(6). doi: 10.1002/smll.201702959
  124. Mandt D, Gruber P, Markovic M, et al. Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. Int J Bioprint. 2018;4(2):144. doi: 10.18063/IJB.v4i2.144
  125. Kim W, Lee Y, Kang D, Kwak T, Lee H-R, Jung S. 3D inkjet-bioprinted lung-on-a-chip. ACS Biomater Sci Eng. 2023;9(5):2806-2815. doi: 10.1021/acsbiomaterials.3c00089
  126. Li W, Zhou Z, Zhou X, et al. 3D biomimetic models to reconstitute tumor microenvironment in vitro: spheroids, organoids, and tumor-on-a-chip. Adv Healthc Mater. 2023;e2202609. doi: 10.1002/adhm.202202609
  127. Lee H, Kim J, Choi Y, Cho D-W. Application of gelatin bioinks and cell-printing technology to enhance cell delivery capability for 3D liver fibrosis-on-a-chip development. ACS Biomater Sci Eng. 2020;6(4):2469-2477. doi: 10.1021/acsbiomaterials.9b01735
  128. Nothdurfter D, Ploner C, Coraça-Huber DC, et al. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac5fb7
  129. Zhang YS, Davoudi F, Walch P, et al. Bioprinted thrombosis-on-a-chip. Lab Chip. 2016;16(21):4097-4105. doi: 10.1039/c6lc00380j   
  130. Huang CBX, Tu TY. Recent advances in vascularized tumor-on-a-chip. Front Oncol. 2023;13:1150332. doi: 10.3389/fonc.2023.1150332
  131. Mi S, Yang S, Liu T, et al. A novel controllable cell array printing technique on microfluidic chips. IEEE Trans Biomed Eng. 2019;66(9):2512-2520. doi: 10.1109/TBME.2019.2891016
  132. Jameson JL, Longo DL. Precision medicine-- personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229-2234. doi: 10.1056/NEJMsb1503104
  133. van Riet S, van Schadewijk A, Khedoe PPSJ, et al. Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial lung-chip cultures. Am J Physiol Lung Cell Mol Physiol. 2022;322(4):L526-L538. doi: 10.1152/ajplung.00153.2021
  134. Haque MR, Wessel CR, Leary DD, Wang C, Bhushan A, Bishehsari F. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst Nanoeng. 2022;8:36. doi: 10.1038/s41378-022-00370-6
  135. Hu Y, Sui X, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun. 2021;12(1):2581. doi: 10.1038/s41467-021-22676-1
  136. Fan H, Demirci U, Chen P. Emerging organoid models: leaping forward in cancer research. J Hematol Oncol. 2019;12(1):142. doi: 10.1186/s13045-019-0832-4
  137. Lee SH, Sung JH. Organ-on-a-chip technology for reproducing multiorgan physiology. Adv Healthc Mater. 2018;7(2). doi: 10.1002/adhm.201700419
  138. Shinha K, Nihei W, Ono T, Nakazato R, Kimura H. A pharmacokinetic-pharmacodynamic model based on multi-organ-on-a-chip for drug-drug interaction studies. Biomicrofluidics. 2020;14(4):044108. doi: 10.1063/5.0011545
  139. Ronaldson-Bouchard K, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022;6(4):351-371. doi: 10.1038/s41551-022-00882-6
  140. Li ZA, Tuan RS. Towards establishing human body-on-a-chip systems. Stem Cell Res Ther. 2022;13(1):431. doi: 10.1186/s13287-022-03130-5
  141. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467-491. doi: 10.1038/s41576-022-00466-9
  142. van Hasselt JGC, Iyengar R. Systems pharmacology: defining the interactions of drug combinations. Annu Rev Pharmacol Toxicol. 2019;59:21-40. doi: 10.1146/annurev-pharmtox-010818-021511
  143. Wan L, Yin J, Skoko J, et al. 3D collagen vascular tumor-on-a-chip mimetics for dynamic combinatorial drug screening. Mol Cancer Ther. 2021;20(6): 1210-1219. doi: 10.1158/1535-7163.MCT-20-0880
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing