Advancing intelligent additive manufacturing: Machine learning approaches for process optimization and quality control

Additive manufacturing (AM) has revolutionized modern fabrication by enabling complex geometries, material efficiency, and customized production. However, process variability, material inconsistencies, and defect formation remain critical challenges, limiting scalability and industrial adoption. Machine learning (ML) has emerged as a powerful tool to address these limitations by enabling data-driven optimization, defect detection, material property prediction, and real-time process control. This review provides a comprehensive analysis of ML applications in AM, spanning polymers, metals, ceramics, and carbon-based materials, with a focus on process optimization, quality assurance, and predictive modeling. Specifically, this review examines real-time defect detection through vision-based ML techniques, printing parameter optimization using supervised and reinforcement learning, and predictive modeling of material properties–laying the groundwork for deeper exploration of key methodologies such as deep learning and physics-informed models. Key ML methodologies, including deep learning, reinforcement learning, and hybrid physics-informed models, are explored in the context of enhancing print precision, mechanical performance, and functional properties. Despite significant advancements, challenges such as data scarcity, model generalization, and real-time integration into AM workflows persist. Emerging trends, including multimodal sensor fusion, in situ monitoring, and cloud-based predictive analytics, are discussed as potential pathways toward fully autonomous and intelligent manufacturing. By consolidating recent developments and outlining future directions, this review provides essential insights for researchers, engineers, and industry professionals looking to harness ML in AM, facilitating advancements in process efficiency, quality control, and overall manufacturing reliability.
- Wong KV, Hernandez A. A review of additive manufacturing. Int Sch Res Notices. 2012;2012(1):208760. doi: 10.5402/2012/208760
- Rajaguru K, Karthikeyan T, Vijayan V. Additive manufacturing- State of art. Mater Today Proc. 2020;21:628-633. doi: 10.1016/j.matpr.2019.06.728
- Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH. Additive manufacturing: Challenges, trends, and applications. Adv Mech Eng. 2019;11(2):1-27. doi: 10.1177/1687814018822880
- Srivastava M, Rathee S. Additive manufacturing: Recent trends, applications and future outlooks. Prog Addit Manuf. 2022;7(2):261-287. doi: 10.1007/s40964-021-00229-8
- Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M. The role of additive manufacturing in the era of industry 4.0. Procedia Manuf. 2017;11:545-554. doi: 10.1016/j.promfg.2017.07.148
- Kantaros A, Bimis A, Karalekas D. In situ Characterization of Residual Strains in Layered Manufacturing. In: Presented at: 5th International Conference on Materials Integrated Non Destructive Testing (IC-MINDT-2013). Athens, Greece; 2013. Available from: https://ssrn.com/abstract=5143213 [Last accessed on 2025 May 14]. doi: 10.2139/ssrn.5143213
- Jung ID, Lee MS, Lee J, et al. Embedding sensors using selective laser melting for self-cognitive metal parts. Addit Manuf. 2020;33:101151. doi: 10.1016/j.addma.2020.101151
- Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed stretchable tactile sensors. Adv Mater. 2017;29(27):1701218. doi: 10.1002/adma.201701218
- Yang J, Li B, Liu J, Tu Z, Wu X. Application of additive manufacturing in the automobile industry: A mini review. Processes. 2024;12(6):1101. doi: 10.3390/pr12061101
- Alami AH, Olabi AG, Alashkar A, et al. Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals. Ain Shams Eng J. 2023;14(11):102516. doi: 10.1016/j.asej.2023.102516
- Ramola M, Yadav V, Jain R. On the adoption of additive manufacturing in healthcare: A literature review. J Manuf Technol Manag. 2019;30(1):48-69. doi: 10.1108/JMTM-03-2018-0094
- Park JW, Shin YC, Kang H G, et al. In vivo analysis of post-joint-preserving surgery fracture of 3D-printed Ti-6Al-4V implant to treat bone cancer. Bio Des Manuf. 2021;4:879-888. doi: 10.1007/s42242-021-00147-2
- Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Des. 2019;182:108091. doi: 10.1016/j.matdes.2019.108091
- De Pastre MA, Quinsat Y, Lartigue C. Effects of additive manufacturing processes on part defects and properties: A classification review. Int J Interact Des Manuf. 2022;16(4):1471-1496. doi: 10.1007/s12008-022-00839-8
- Peng X, Kong L, Fuh JYH, Wang H. A review of post-processing technologies in additive manufacturing. J Manuf Mater Process. 2021;5(2):38. doi: 10.3390/jmmp5020038
- Dharmadhikari S, Menon N, Basak A. A reinforcement learning approach for process parameter optimization in additive manufacturing. Addit Manuf. 2023;71:103556. doi: 10.1016/j.addma.2023.103556
- Sawant DA, Shinde BM, Raykar SJ. Post processing techniques used to improve the quality of 3D printed parts using FDM: State of art review and experimental work. Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.09.202
- Wajahat M, Kim JH, Kim JH, Jung ID, Pyo J, Seol SK. 4D printing of ultrastretchable magnetoactive soft material architectures for soft actuators. ACS Appl Mater Interfaces. 2023;15(51):59582-59591. doi: 10.1021/acsami.3c12173
- Jeon H, Wajahat M, Park S, et al. 3D printing of luminescent perovskite quantum dot-polymer architectures. Adv Funct Mater. 2024;34(29):2400594. doi: 10.1002/adfm.202400594
- Tapia G, Elwany AH, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf. 2016;12:282-290. doi: 10.1016/j.addma.2016.05.009
- Khanzadeh M, Chowdhury S, Marufuzzaman M, Tschopp MA, Bian L. Porosity prediction: Supervised-learning of thermal history for direct laser deposition. J Manuf Syst. 2018;47:69-82. doi: 10.1016/j.jmsy.2018.04.001
- Garg A, Lam JSL, Savalani MM. A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int J Adv Manuf Technol. 2015;80:555-565. doi: 10.1007/s00170-015-6989-2
- Qin J, Hu F, Liu Y, et al. Research and application of machine learning for additive manufacturing. Addit Manuf. 2022;52:102691. doi: 10.1016/j.addma.2022.102691
- Wang C, Tan XP, Tor SB, Lim CS. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit Manuf. 2020;36:101538. doi: 10.1016/j.addma.2020.101538
- Chen L, Moon SK. In-situ defect detection in laser-directed energy deposition with machine learning and multi-sensor fusion. J Mech Sci Technol. 2024;38(9):4477-4484. doi: 10.1007/s12206-024-2401-1
- Scime L, Beuth J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit Manuf. 2019;25:151-165. doi: 10.1016/j.addma.2018.11.010
- Chen L, Yao X, Xu P, Moon SK, Bi G. Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning. Virtual Phys Prototyp. 2021;16(1):50-67. doi: 10.1080/17452759.2020.1832695
- Qi X, Chen G, Li Y, Cheng X, Li C. Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives. Engineering. 2019;5(4):721-729. doi: 10.1016/j.eng.2019.04.012
- Trovato M, Belluomo L, Bici M, Prist M, Campana F, Cicconi P. Machine learning in design for additive manufacturing: A state-of-the-art discussion for a support tool in product design lifecycle. Int J Adv Manuf Technol. 2025;137:2157-2180. doi: 10.1007/s00170-025-15273-9
- Rojek I, Mikołajewski D, Kempiński M, Galas K, Piszcz A. Emerging applications of machine learning in 3D printing. Appl Sci. 2025;15(4):1781. doi: 10.3390/app15041781
- Kumar S, Gopi T, Harikeerthana N, et al. Machine learning techniques in additive manufacturing: A state of the art review on design, processes and production control. J Intell Manuf. 2023;34(1):21-55. doi: 10.1007/s10845-022-02029-5
- Oleff A, Küster B, Stonis M, Overmeyer L. Process monitoring for material extrusion additive manufacturing: A state-of-the-art review. Prog Addit Manuf. 2021;6(4):705-730. doi: 10.1007/s40964-021-00192-4
- Mahmoud D, Magolon M, Boer J, Elbestawi MA, Mohammadi MG. Applications of machine learning in process monitoring and controls of L-PBF additive manufacturing: A review. Appl Sci. 2021;11(24):11910. doi: 10.3390/app112411910
- Zhou L Y, Fu J, He Y. A review of 3D printing technologies for soft polymer materials. Adv Funct Mater. 2020;30(28):2000187. doi: 10.1002/adfm.202000187
- Zhang Y, Jarosinski W, Jung YG, Zhang J. Additive manufacturing processes and equipment. In: Additive Manufacturing: Materials, Processes, Quantifications and Applications. Oxford, UK: Butterworth-Heinmann; 2018. p. 39-51. doi: 10.1016/B978-0-12-812155-9.00002-5
- Tan LJ, Zhu W, Zhou K. Recent progress on polymer materials for additive manufacturing. Adv Funct Mater. 2020;30(43):2003062. doi: 10.1002/adfm.202003062
- Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28):2108855. doi: 10.1002/adma.202108855
- Nohut S, Schwentenwein M. Vat photopolymerization additive manufacturing of functionally graded materials: A review. J Manuf Mater Process. 2022;6(1):17. doi: 10.3390/jmmp6010017
- Lewandowski JJ, Seifi M. Metal additive manufacturing: A review of mechanical properties. Ann Rev Mater Res. 2016;46(1):151-186. doi: 10.1146/annurev-matsci-070115-032024
- Frazier WE. Metal additive manufacturing: A review. J Mater Eng Perform. 2014;23:1917-1928. doi: 10.1007/s11665-014-0958-z
- Du W, Ren X, Pei Z, Ma C. Ceramic binder jetting additive manufacturing: A literature review on density. J Manuf Sci Eng. 2020;142(4):040801. doi: 10.1115/1.4046248
- Mirzababaei S, Pasebani S. A review on binder jet additive manufacturing of 316L stainless steel. J Manuf Mater Process. 2019;3(3):82. doi: 10.3390/jmmp3030082
- Svetlizky D, Das M, Zheng B, et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater Today. 2021;49:271-295. doi: 10.1016/j.mattod.2021.03.020
- Petrich J, Snow Z, Corbin D, Reutzel EW. Multi-modal sensor fusion with machine learning for data-driven process monitoring for additive manufacturing. Addit Manuf. 2021;48:102364. doi: 10.1016/j.addma.2021.102364
- Ren W, Wen G, Zhang Z, Mazumder J. Quality monitoring in additive manufacturing using emission spectroscopy and unsupervised deep learning. Mater Manuf Process. 2022;37(11):1339-1346. doi: 10.1080/10426914.2021.1906891
- Kapusuzoglu B, Mahadevan S. Physics-informed and hybrid machine learning in additive manufacturing: Application to fused filament fabrication. JOM. 2020;72(12):4695-4705. doi: 10.1007/s11837-020-04438-4
- Acharya R, Sharon JA, Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017;124:360-371. doi: 10.1016/j.actamat.2016.11.018
- Fergani O, Berto F, Welo T, Liang SY. Analytical modelling of residual stress in additive manufacturing. Fatigue Fract Eng Mater Struct. 2017;40(6):971-978. doi: 10.1111/ffe.12560
- Chen Q, Guillemot G, Gandin CA, Bellet M. Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials. Addit Manuf. 2017;16:124-137. doi: 10.1016/j.addma.2017.02.005
- Davoudinejad A. Vat photopolymerization methods in additive manufacturing. In: Additive Manufacturing: Handbooks in Advanced Manufacturing. Amsterdam, The Netherlands: Elsevier. p. 159-181; 2021. doi: 10.1016/B978-0-12-818411-0.00007-0
- Goh GD, Hamzah NMB, Yeong WY. Anomaly detection in fused filament fabrication using machine learning. 3D Print Addit Manuf. 2023;10(3):428-437. doi: 10.1089/3dp.2021.0231
- Zhao B, Zhang M, Dong L, Wang D. Design of grayscale digital light processing 3D printing block by machine learning and evolutionary algorithm. Compos Commun. 2022;36:101395. doi: 10.1016/j.coco.2022.101395
- Khadilkar A, Wang J, Rai R. Deep learning-based stress prediction for bottom-up SLA 3D printing process. Int J Adv Manuf Technol. 2019;102:2555-2569. doi: 10.1007/s00170-019-03363-4
- Chung J, Shen B, Law ACC, Kong ZJ. Reinforcement learning-based defect mitigation for quality assurance of additive manufacturing. J Manuf Syst. 2022;65:822-835. doi: 10.1016/j.jmsy.2022.11.008
- Wu S, Hamel CM, Ze Q, Yang F, Qi H J, Zhao R. Evolutionary algorithm‐guided voxel‐encoding printing of functional hard‐magnetic soft active materials. Adv Intell Syst. 2020;2(8):2000060. doi: 10.1002/aisy.202000060
- Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun. 2017;8(1):596. doi: 10.1038/s41467-017-00685-3
- Kim Y, Parada GA, Liu S, Zhao XF. Ferromagnetic soft continuum robots. Sci Robot. 2019;4(33):eaax7329. doi: 10.1126/scirobotics.aax7329
- Jang EJ, Lee SY, Kim KH, Lee GY. Design and fabrication of a millimeter-scale rotary actuator based on the twisted shape memory alloy (SMA) wires. J Korean Soc Precis Eng. 2022;39(6):403-410. doi: 10.7736/jkspe.022.034
- Seong M, Sun K, Kim S, et al. Multifunctional magnetic muscles for soft robotics. Nat Commun. 2024;15(1):7929. doi: 10.1038/s41467-024-52347-w
- Jo H, Park JS, Lim HY, Lee GY. Laser sintered silver nanoparticles on the PDMS for a wearable strain sensor capable of detecting finger motion. ACS Appl Nano Mater. 2023;6(24):22998-23011. doi: 10.1021/acsanm.3c04386
- Kim JH, Park S, Ahn J, et al. Meniscus‐guided micro‐printing of prussian blue for smart electrochromic display. Adv Sci. 2023;10(3):2205588. doi: 10.1002/advs.202205588
- Kim H, Kim KH, Jeong J, Lee Y, Jung ID. Recent progress on materials for functional additive manufacturing. Mat Sci Add Manufact. 2024;3(2):3323. doi: 10.36922/msam.3323
- Wickramasinghe S, Do T, Tran P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers. 2020;12(7):1529. doi: 10.3390/polym12071529
- Fu Z, Angeline V, Sun W. Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation. Int J Bioprinting. 2021;7(4):434. doi: 10.18063/ijb.v7i4.434
- Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018;558(7709):274-279. doi: 10.1038/s41586-018-0185-0
- Kim SH, Yeon YK, Lee JM, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 2018;9(1):1620. doi: 10.1038/s41467-018-03759-y
- Madrid‐Wolff J, Boniface A, Loterie D, Delrot P, Moser C. Controlling light in scattering materials for volumetric additive manufacturing. Adv Sci. 2022;9(22):2105144. doi: 10.1002/advs.202105144
- Mu Q, Wang L, Dunn CK, et al. Digital light processing 3D printing of conductive complex structures. Addit Manuf. 2017;18:74-83. doi: 10.1016/j.addma.2017.08.011
- Peng X, Kuang X, Roach DJ, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit Manuf. 2021;40:101911. doi: 10.1016/j.addma.2021.101911
- Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater. 2017;29(15):1606000. doi: 10.1002/adma.201606000
- Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK. Volumetric additive manufacturing via tomographic reconstruction. Science. 2019;363(6431):1075-1079. doi: 10.1126/science.aau7114
- Han D, Farino C, Yang C, et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl Mater Interfaces. 2018;10(21):17512-17518. doi: 10.1021/acsami.8b04250
- Sapkota A, Ghimire SK, Adanur S. A review on fused deposition modeling (FDM)-based additive manufacturing (AM) methods, materials and applications for flexible fabric structures. J Ind Text. 2024;54:1-51. doi: 10.1177/15280837241282110
- Garg A, Bhattacharya A. An insight to the failure of FDM parts under tensile loading: Finite element analysis and experimental study. Int J Mech Sci. 2017;120:225-236. doi: 10.1016/j.ijmecsci.2016.11.032
- Jin Z, Zhang Z, Gu GX. Automated real‐time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence. Adv Intell Syst. 2020;2(1):1900130. doi: 10.1002/aisy.201900130
- Tan L, Huang T, Liu J, Li Q, Wu X. Deep adversarial learning system for fault diagnosis in fused deposition modeling with imbalanced data. Comput Ind Eng. 2023;176:108887. doi: 10.1016/j.cie.2022.108887
- Zhai C, Wang J, Tu YP, Chang G, Ren X, Ding C. Robust optimization of 3D printing process parameters considering process stability and production efficiency. Addit Manuf. 2023;71:103588. doi: 10.1016/j.addma.2023.103588
- Kantaros A, Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater Des. 2013;50:44-50. doi: 10.1016/j.matdes.2013.02.067
- Delli U, Chang S. Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf. 2018;26:865-870. doi: 10.1016/j.promfg.2018.07.111
- Khan MF, Alam A, Siddiqui MA, et al. Real-time defect detection in 3D printing using machine learning. Mater Today Proc. 2021;42:521-528. doi: 10.1016/j.matpr.2020.10.482
- Fu Y, Downey A, Yuan L, Pratt A, Balogun Y. In situ monitoring for fused filament fabrication process: A review. Addit Manuf. 2021;38:101749. doi: 10.1016/j.addma.2020.101749
- Jin Z, Zhang Z, Gu GX. Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning. Manuf Lett. 2019;22:11-15. doi: 10.1016/j.mfglet.2019.09.005
- Westphal E, Seitz H. Machine learning for the intelligent analysis of 3D printing conditions using environmental sensor data to support quality assurance. Addit Manuf. 2022;50:102535. doi: 10.1016/j.addma.2021.102535
- Nasrin T, Pourkamali‐Anaraki F, Peterson AM. Application of machine learning in polymer additive manufacturing: A review. J Polym Sci. 2024;62(12):2639-2669. doi: 10.1002/pol.20230649
- Jin Z, Zhang Z, Shao X, Gu GX. Monitoring anomalies in 3D bioprinting with deep neural networks. ACS Biomater Sci Eng. 2021;9(7):3945-3952. doi: 10.1021/acsbiomaterials.0c01761
- Chen H, Liu Y, Balabani S, Hirayama R, Huang J. Machine learning in predicting printable biomaterial formulations for direct ink writing. Research (Wash D C). 2023;6:0197. doi: 10.34133/research.0197
- Valizadeh I, Tayyarian T, Weeger O. Influence of process parameters on geometric and elasto-visco-plastic material properties in vat photopolymerization. Addit Manuf. 2023;72:103641. doi: 10.1016/j.addma.2023.103641
- Andreu A, Su PC, Kim JH, et al. 4D printing materials for vat photopolymerization. Addit Manuf. 2021;44:102024. doi: 10.1016/j.addma.2021.102024
- Pazhamannil RV, Hadidi HM, Puthumana G. Development of a low‐cost volumetric additive manufacturing printer using less viscous commercial resins. Polym Eng Sci. 2023;63(1):65-77. doi: 10.1002/pen.26186
- Wu H, Chen P, Yan C, Cai C, Shi Y. Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing. Mater Des. 2019;171:107704. doi: 10.1016/j.matdes.2019.107704
- Hosseinabadi HG, Nieto D, Yousefinejad A, et al. Ink material selection and optical design considerations in DLP 3D printing. Appl Mater Today. 2023;30:101721. doi: 10.1016/j.apmt.2022.101721
- Guan J, You S, Xiang Y, et al. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning. Biofabrication. 2021;14(1):015011. doi: 10.1088/1758-5090/ac3b92
- You S, Guan J, Alido J, et al. Mitigating scattering effects in light-based three-dimensional printing using machine learning. J Manuf Sci Eng. 2020;142(8):081002. doi: 10.1115/1.4046986
- Zhao L, Zhao Z, Ma L, Li S, Men Z, Wu L. Developing the optimized control scheme for digital light processing 3D printing by combining numerical simulation and machine learning-guided temperature prediction. J Manuf Process. 2024;132:363-374. doi: 10.1016/j.jmapro.2024.10.049
- Ma Y, Tian Z, Wang B, et al. Enhancing the 3D printing fidelity of vat photopolymerization with machine learning-driven boundary prediction. Mater Des. 2024;241:112978. doi: 10.1016/j.matdes.2024.112978
- Chaudhary R, Fabbri P, Leoni E, Mazzanti F, Akbari R, Antonini C. Additive manufacturing by digital light processing: A review. Prog Addit Manuf. 2023; 8(2):331-351. doi: 10.1007/s40964-022-00336-0
- Zakeri S, Vippola M, Levänen E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit Manuf. 2020;35:101177. doi: 10.1016/j.addma.2020.101177
- Wang X, Liu J, Zhang Y, et al. Advances in precision microfabrication through digital light processing: System development, material and applications. Virtual Phys Prototyp. 2023;18(1):e2248101. doi: 10.1080/17452759.2023.2248101
- Frumosu FD, Méndez Ribó M, Shan S, Zhang Y, Kulahci M. Online monitoring for error detection in vat photopolymerization. Int J Comput Integr Manuf. 2023;36(9):1313-1330. doi: 10.1080/0951192X.2022.2162600
- Cao L, Lu L, Liu X. Waiting time prediction for bottom-up vat photopolymerization. Addit Manuf. 2023;74:103693. doi: 10.1016/j.addma.2023.103693
- Wang X, Liu J, Dong R, Gilchrist MD, Zhang N. High-precision digital light processing (DLP) printing of microstructures for microfluidics applications based on a machine learning approach. Virtual Phys Prototyp. 2024;19(1):e2318774. doi: 10.1080/17452759.2024.2318774
- Pingali R, Saha SK. Printability prediction in projection two-photon lithography via machine learning based surrogate modeling of photopolymerization. J Micro Nano-Manuf. 2022;10(3):031005. doi: 10.1115/1.4063021
- Charalampous P, Kladovasilakis N, Kostavelis I, Tsongas K, Tzetzis D, Tzovaras D. Machine learning-based mechanical behavior optimization of 3D print constructs manufactured via the FFF process. J Mater Eng Perform. 2022;31(6):4697-4706. doi: 10.1007/s11665-021-06535-0
- Veeman D, Sudharsan S, Surendhar GJ, Shanmugam R, Guo L. Machine learning model for predicting the hardness of additively manufactured acrylonitrile butadiene styrene. Mater Today Commun. 2023;35:106147. doi: 10.1016/j.mtcomm.2023.106147
- Sharma S, Gupta V, Mudgal D, Srivastava V. Predicting biomechanical properties of additively manufactured polydopamine coated poly lactic acid bone plates using deep learning. Eng Appl Artif Intell. 2023;124:106587. doi: 10.1016/j.engappai.2023.106587
- Bone JM, Childs C M, Menon A et al. Hierarchical machine learning for high-fidelity 3D printed biopolymers. ACS Biomater Sci Eng. 2020;6(12):7021-7031. doi: 10.1021/acsbiomaterials.0c00755
- Zhang J, Wang P, Gao RX. Deep learning-based tensile strength prediction in fused deposition modeling. Comput Ind. 2019;107:11-21. doi: 10.1016/j.compind.2019.01.011
- Li Z, Zhang Z, Shi J, Wu D. Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robot Comp Integr Manuf. 2019;57:488-495. doi: 10.1016/j.rcim.2019.01.004
- Song K, Xu G, Tanvir ANM, et al. Machine learning-assisted 3D printing of thermoelectric materials of ultrahigh performances at room temperature. J Mater Chem A. 2024;12(32):21243-21251. doi: 10.1039/D4TA03062A
- Jo J, Park K, Song H, Lee H, Ryu S. Innovative 3D printing of mechanoluminescent composites: Vat photopolymerization meets machine learning. Addit Manuf. 2024;90:104324. doi: 10.1016/j.addma.2024.104324
- Seifermann M, Reiser P, Friederich P, Levkin PA. High‐throughput synthesis and machine learning assisted design of photodegradable hydrogels. Small Methods. 2023;7(9):2300553. doi: 10.1002/smtd.202300553
- Jain A, Armstrong CD, Joseph VR, Ramprasad R, Qi HJ. Machine-guided discovery of acrylate photopolymer compositions. ACS Appl Mater Interfaces. 2024; 16(14):17992-18000. doi: 10.1021/acsami.4c00759
- Gao W, Wang H, Xu Y, et al. Accurately predicting multiple performance of 3D printing photopolymers using ensemble learning. ACS Appl Polym Mater. 2024;6(8):4501-4508. doi: 10.1021/acsapm.3c03102
- Yang GZ, Fischer P, Nelson B. New materials for next-generation robots. Sci Robot. 2017;2(10):eaap9294. doi: 10.1126/scirobotics.aap9294
- Sun X, Yue L, Yu L, et al. Machine learning‐evolutionary algorithm enabled design for 4D‐printed active composite structures. Adv Funct Mater. 2022;32(10):2109805. doi: 10.1002/adfm.202109805
- Sun X, Yue L, Yu L, et al. Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat Commun. 2024;15(1):5509. doi: 10.1038/s41467-024-49775-z
- Rodriguez JA, Goodman DW. The nature of the metal-metal bond in bimetallic surfaces. Science. 1992;257(5072):897-903. doi: 10.1126/science.257.5072.897
- Berry JF, Lu CC. Metal-metal bonds: From fundamentals to applications. Inorg Chem. 2017;56(14):7577-7581. doi: 10.1021/acs.inorgchem.7b01330
- Laleh M, Sadeghi E, Revilla RI, et al. Heat treatment for metal additive manufacturing. Prog Mater Sci. 2023;133:101051. doi: 10.1016/j.pmatsci.2022.101051
- Rajan TV, Sharma CP, Sharma A. Heat Treatment, Principles and Techniques. New Delhi, India: Prentice-Hall of India; 2006.
- De Boer FR, Mattens W, Boom R, Miedema AR, Niessen AK. Cohesion in Metals: Transition Metal Alloys. Amsterdam, The Netherlands: Elsevier; 1988.
- Khan HM, Karabulut Y, Kitay O, Kaynak Y, Jawahir IS. Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: A review. Mach Sci Technol. 2020;25(1):118-176. doi: 10.1080/10910344.2020.1855649
- Vafadar A, Guzzomi F, Rassau A, Hayward K. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges. Appl Sci. 2021;11(3):1213. doi: 10.3390/app11031213
- Buchanan C, Gardner L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng Struct. 2019;180:332-348. doi: 10.1016/j.engstruct.2018.11.045
- Das S, Bourell DL, Babu SS. Metallic materials for 3D printing. MRS Bull. 2016;41(10):729-741. doi: 10.1557/mrs.2016.217
- Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-392. doi: 10.1016/j.actamat.2016.07.019
- Park JW, Seo E, Park H, et al. Hybrid solid mesh structure for electron beam melting customized implant to treat bone cancer. Int J Bioprinting. 2023;9(4):716. doi: 10.18063/ijb.716
- King WE, Anderson AT, Ferencz RM, et al. Laser powder bed fusion additive manufacturing of metals: Physics, computational, and materials challenges. Appl Phys Rev. 2015;2(4):041304. doi: 10.1063/1.4937809
- Ladani L, Sadeghilaridjani M. Review of powder bed fusion additive manufacturing for metals. Metals. 2021;11(9):1391. doi: 10.3390/met11091391
- Seo E, Sung H, Jeon H, et al. Laser powder bed fusion for AI assisted digital metal components. Virtual Phys Prototyp. 2022;17(4):806-820. doi: 10.1080/17452759.2022.2068804
- Saboori A, Gallo D, Biamino S, Fino P, Lombardi M. An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties. Appl Sci. 2017;7(9):883. doi: 10.3390/app7090883
- Ansari M, Jabari E, Toyserkani E. Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: A review. J Mater Process Technol. 2021;294:117117. doi: 10.1016/j.jmatprotec.2021.117117
- Kim H, Seo J, Chung Baek AM, et al. Direct energy deposition for smart micro reactor. Virtual Phys Prototyp. 2024;19(1):e2411024. doi: 10.1080/17452759.2024.2411024
- Brennan MC, Keist JS, Palmer TA. Defects in metal additive manufacturing processes. J Mater Eng Perform. 2021;30:4808-4818. doi: 10.1007/s11665-021-05919-6
- Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater Des. 2020;187:108385. doi: 10.1016/j.matdes.2019.108385
- Jiang M, Mukherjee T, Du Y, DebRoy T. Superior printed parts using history and augmented machine learning. NPJ Comput Mater. 2022;8(1):184. doi: 10.1038/s41524-022-00866-9
- Zhang Y, Lin C, Tian Y, et al. Machine learning enhanced metal 3D printing: High throughput optimization and material transfer extensibility. Int J Extrem Manuf. 2025;7:045004. doi: 10.1088/2631-7990/adbb96
- Ogoke F, Farimani AB. Thermal control of laser powder bed fusion using deep reinforcement learning. Addit Manuf. 2021;46:102033. doi: 10.1016/j.addma.2021.102033
- Zhong Q, Tian X, Huang X, Huo C, Li D. Using feedback control of thermal history to improve quality consistency of parts fabricated via large-scale powder bed fusion. Addit Manuf. 2021;42:101986. doi: 10.1016/j.addma.2021.101986
- Zhang Z, Liu Z, Wu D. Prediction of melt pool temperature in directed energy deposition using machine learning. Addit Manuf. 2021;37:101692. doi: 10.1016/j.addma.2020.101692
- Abranovic B, Sarkar S, Chang-Davidson E, Beuth J. Melt pool level flaw detection in laser hot wire directed energy deposition using a convolutional long short-term memory autoencoder. Addit Manuf. 2024;79:103843. doi: 10.1016/j.addma.2023.103843
- Williams RJ, Sing SL. Spatiotemporal analysis of powder bed fusion melt pool monitoring videos using deep learning. J Intell Manuf. 2024;36:2409-2422. doi: 10.1007/s10845-024-02355-w
- Guirguis D, Tucker C, Beuth J. Accelerating process development for 3D printing of new metal alloys. Nat Commun. 2024;15(1):582. doi: 10.1038/s41467-024-44783-5
- Lee H, Heogh W, Yang J, et al. Deep learning for in-situ powder stream fault detection in directed energy deposition process. J Manuf Syst. 2022;62:575-587. doi: 10.1016/j.jmsy.2022.01.013
- Karkaria V, Goeckner A, Zha R, et al. Towards a digital twin framework in additive manufacturing: Machine learning and bayesian optimization for time series process optimization. J Manuf Syst. 2024;75:322-332. doi: 10.1016/j.jmsy.2024.04.023
- Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C. 2017;76:1328-1343. doi: 10.1016/j.msec.2017.02.094
- Ladd C, So JH, Muth J, Dickey MD. 3D printing of free standing liquid metal microstructures. Adv Mater. 2013;25(36):5081-5085. doi: 10.1002/adma.201301400
- Huang DJ, Li H. A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing. Mater Des. 2021;203:109606. doi: 10.1016/j.matdes.2021.109606
- Montalbano T, Nimer S, Daffron M, Croom B, Ghosh S, Storck S. Machine learning enabled discovery of new L-PBF processing domains for Ti-6Al-4V. Addit Manuf. 2025;98:104632. doi: 10.1016/j.addma.2024.104632
- Asadi R, Queguineur A, Wiikinkoski O, et al. Process monitoring by deep neural networks in directed energy deposition: CNN-based detection, segmentation, and statistical analysis of melt pools. Robot Comput Integr Manuf. 2024;87:102710. doi: 10.1016/j.rcim.2023.102710
- Kim T, Kim JG, Park S, et al. Virtual surface morphology generation of Ti-6Al-4V directed energy deposition via conditional generative adversarial network. Virtual Phys Prototyp. 2023;18(1):e2124921. doi: 10.1080/17452759.2022.2124921
- Yang Z, Zhu L, Dun Y, et al. In-situ monitoring of the melt pool dynamics in ultrasound-assisted metal 3D printing using machine learning. Virtual Phys Prototyp. 2023;18(1):e2251453. doi: 10.1080/17452759.2023.2251453
- Cai Y, Wang Y, Chen H, Xiong J. Searching optimal process parameters for desired layer geometry in wire-laser directed energy deposition based on machine learning. Virtual Phys Prototyp. 2024;19(1):e2352066. doi: 10.1080/17452759.2024.2352066
- Pulido-Victoria LA, Flores-Tlacuahuac A, Panales- Pérez A., Lara-Ceniceros TE, Ávila-López MA, Bonilla- Cruz J. Prediction of viscoelastic and printability properties on binder-free TiO2-based ceramic pastes by DIW through a machine learning approach. Comput Chem Eng. 2025;193:108920. doi: 10.1016/j.compchemeng.2024.108920
- Chen W, Zou B, Zheng Q, Huang C, Li L, Liu J. Research on anti-interference detection of 3D-printed ceramics surface defects based on deep learning. Ceram Int. 2023;49(13):22479-22491. doi: 10.1016/j.ceramint.2023.04.081
- Chen W, Zou B, Huang C, et al. The defect detection of 3D-printed ceramic curved surface parts with low contrast based on deep learning. Ceram Int. 2023;49(2):2881-2893. doi: 10.1016/j.ceramint.2022.09.272
- Zhou J, Li L, Lu L, Cheng Y. Machine learning-based quality optimisation of ceramic extrusion 3D printing deposition lines. Mater Today Commun. 2024;41:110841. doi: 10.1016/j.mtcomm.2024.110841
- Nohut S, Schwentenwein M. Machine learning assisted material development for lithography-based additive manufacturing of porous alumina ceramics. Open Ceram. 2024;18:100573. doi: 10.1016/j.oceram.2024.100573
- Tang J, Geng X, Li D, et al. Machine learning-based microstructure prediction during laser sintering of alumina. Sci Rep. 2021;11(1):10724. doi: 10.1038/s41598-021-89816-x
- Saimon AI, Yangue E, Yue X, Kong Z, Liu C. Advancing additive manufacturing through deep learning: A comprehensive review of current progress and future challenges. IISE Trans. 2025:1-24. doi: 10.1080/24725854.2024.2443592
- Chen Q, Zhang W, Liang X, et al. Machine learning-assisted multi-property prediction and sintering mechanism exploration of mullite-corundum ceramics. Materials. 2025;18(6):1384. doi: 10.3390/ma18061384
- Raj T, Tiwary A, Jain A, et al. Machine learning-assisted prediction modeling for anisotropic flexural strength variations in fused filament fabrication of graphene reinforced poly-lactic acid composites. Prog Addit Manuf. 2024;10:2585-2599. doi: 10.1007/s40964-024-00768-w
- Yi J, Deng B, Peng F, et al. Study on the parameters optimization of 3D printing continuous carbon fiber-reinforced composites based on CNN and NSGA-II. Compos Part A Appl Sci Manuf. 2025;190:108657. doi: 10.1016/j.compositesa.2024.108657
- Zhang Z, Shi J, Yu T, et al. Predicting flexural strength of additively manufactured continuous carbon fiber-reinforced polymer composites using machine learning. J Comput Inf Sci Eng. 2020;20(6):061015. doi: 10.1115/1.4047477
- Raj R, Mahato S, Moharana AP, Dixit AR. Predicting dimensional accuracy in 3D printed polydimethylsiloxane-carbon nanotubes composites via machine learning. Polym Compos. 2024;45(4):2965-2980. doi: 10.1002/pc.27963
- Yang H, Fang L, Yuan Z, et al. Machine learning guided 3D printing of carbon microlattices with customized performance for supercapacitive energy storage. Carbon. 2023;201:408-414. doi: 10.1016/j.carbon.2022.08.083
- Poompiew N, Sukmas W, Aumnate C, et al. Strain sensing characteristics of 3D-printed carbon nanotubes/ polypyrrole/UV-curable composites: Experimental validation and machine learning predictions. Prog Addit Manuf. 2025;10(1):581-591. doi: 10.1007/s40964-024-00642-9
- Maurya D, Khaleghian S, Sriramdas R, et al. 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles. Nat Commun. 2020;11(1):5392. doi: 10.1038/s41467-020-19088-y
- Zhu J, Cho M, Li Y, et al. Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy. 2021;86:106035. doi: 10.1016/j.nanoen.2021.106035
- Kwon YT, Kim YS, Kwon S, et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat Commun. 2020;11(1):3450. doi: 10.1038/s41467-020-17288-0
- Hou Y, Gao M, Gao J, et al. 3D printed conformal strain and humidity sensors for human motion prediction and health monitoring via machine learning. Adv Sci. 2023;10(36):2304132. doi: 10.1002/advs.202304132