AccScience Publishing / GTM / Online First / DOI: 10.36922/GTM025440081
ORIGINAL RESEARCH ARTICLE

Profiling the 8-nucleotide microRNA targets in genes involved in type 2 diabetes mellitus in association with oxidative and endoplasmic reticulum stress

Ayesha Jabeen1* Umm E. Laila2
Show Less
1 Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Veneto, Italy
2 Department of Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
Global Translational Medicine, 025440081 https://doi.org/10.36922/GTM025440081
Received: 27 October 2025 | Revised: 11 December 2025 | Accepted: 20 January 2026 | Published online: 9 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Type 2 diabetes mellitus (T2DM) is one of the top 10 global killers. The association between oxidative stress and T2DM has been reported, in which oxidative stress triggers the life-threatening consequences, including stroke, nephropathy, and myocardial infarction. MicroRNA (miRNA)-based therapies are thought to revolutionize early medical interventions, potentially enabling the treatment of T2DM. miRNAs are 20–22 nucleotide non-coding sequences used to silence genes at the post-transcriptional level. Gene testing registry, TargetScan, and other bioinformatic databases were used to identify the oxidative- and endoplasmic reticulum (ER) stress-linked genes and their targeted miRNAs (8-mers and species conserved) associated with T2DM. ShinyGO was used to establish links between T2DM and its associated genes. We identified putative common miRNAs, such as miR-26-5p/miR-124-3p.1/miR-124-3p.2/miR-98-5p/miR-17-5p/miR-519-3p/miR-20-5p/miR-93-5p/miR-106-5p, which may involve in the regulation of T2DM-associated genes. In addition, several common miRNAs were also considered in the regulation of pathological conditions. The miRNAs for T2DM associated with oxidative stress are as follows: miR-33-5p/miR-506-3p/miR-7-5p/miR-107/miR-93-5p, and for T2DM associated with ER stress are as follows: miR-195-5p/miR-181-5p/miR-101-3p.1/miR-424-5p/miR-145-5p/miR-519-3p/miR-16-5p. Overall, this study provides a framework for the rational selection of miRNAs for nucleic acid-based therapies and guides future studies in maximizing the potential of miRNAs against oxidative- and ER-stress associated with T2DM.

Keywords
miRNAs
Type 2 diabetes mellitus
Oxidative stress
Endoplasmic reticulum stress
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi: 10.3389/fendo.2018.00402

 

  1. Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA-mRNA interactome. Front Genet. 2019;10:933. doi: 10.3389/fgene.2019.00933

 

  1. Mushtaq I, Ishtiaq A, Ali T, Jan MI, Murtaza I. An overview of Non-coding RNAs and cardiovascular system. Adv Exp Med Biol. 2020;1229:3-45. doi: 10.1007/978-981-15-1671-9_1

 

  1. Çakmak HA, Demir M. MicroRNA and cardiovascular diseases. Balkan Med J. 2020;37(2):60-71. doi: 10.4274/balkanmedj.galenos.2020.2020.1.94

 

  1. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763

 

  1. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456-80. doi: 10.4239/wjd.v6.i3.456

 

  1. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21(3):396-413. doi: 10.1089/ars.2014.5851

 

  1. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26(2):19-39.

 

  1. Antar SA, Ashour NA, Sharaky M, et al. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023;168:115734. doi: 10.1016/j.biopha.2023.115734

 

  1. Ghemrawi R, Battaglia-Hsu SF, Arnold C. Endoplasmic reticulum stress in metabolic disorders. Cells. 2018;7(6):63. doi: 10.3390/cells7060063

 

  1. Giannakogeorgou A, Roden M, Pafili K. Diabetes mellitus as a multisystem disease: Understanding subtypes, complications, and the link with steatotic liver diseases in humans. Hormones. 2025. doi: 10.1007/s42000-025-00701-y

 

  1. White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab. 2021;52:101304. doi: 10.1016/j.molmet.2021.101304

 

  1. Elangeeb ME, Elfaki I, Elkhalifa MA, et al. In silico investigation of AKT2 Gene and protein abnormalities reveals potential association with insulin resistance and type 2 diabetes. Curr Issues Mol Biol. 2023;45(9):7449-7475. doi: 10.3390/cimb45090471

 

  1. Berbudi A, Khairani S, Tjahjadi AI. Interplay between insulin resistance and immune dysregulation in type 2 diabetes mellitus: Implications for therapeutic interventions. Immuno Targets Therapy. 2025;14:359-382. doi: 10.2147/itt.S499605

 

  1. Lindsay RT, Rhodes CJ. Reactive oxygen species (ROS) in metabolic disease-Don’t shoot the metabolic messenger. Int J Mol Sci. 2025;26(6):2622. doi: 10.3390/ijms26062622

 

  1. Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: A dynamic duo in multiple myeloma. Cell Mol Life Sci. 2021;78(8):3883-3906. doi: 10.1007/s00018-021-03756-3

 

  1. Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxid Redox Signal. 2019;31(10): 722-751. doi: 10.1089/ars.2018.7656

 

  1. Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C. Redox controls UPR to control redox. J Cell Sci. 2014; 127(Pt 17):3649-3658. doi: 10.1242/jcs.153643

 

  1. Kappeler L. Role of adipose tissue microRNAs in the onset of metabolic diseases and implications in the context of the DOHaD. Cells. 2022;11(23):3711. doi: 10.3390/cells11233711

 

  1. Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem. 2015;396(3):235-244. doi: 10.1515/hsz-2014-0241

 

  1. Ge Q, Brichard S, Yi X, Li Q. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res. 2014;2014:987285. doi: 10.1155/2014/987285

 

  1. Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649-653. doi: 10.1038/nature10112

 

  1. Kim H, Bae YU, Lee H, et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res Care. 2020;8(1):e001403. doi: 10.1136/bmjdrc-2020-001403

 

  1. Yang L, Jiang S. Adipose tissue-derived extracellular vesicle MicroRNAs: Diagnostic biomarkers for the pathophysiology associated with obesity. Precis Chem. 2025;3(9):480-491. doi: 10.1021/prechem.5c00007

 

  1. Nadeem U, Xie B, Xie EF, et al. Using advanced bioinformatics tools to identify novel therapeutic candidates for age-related macular degeneration. Transl Vision Sci Technol. 2022;11(8):10. doi: 10.1167/tvst.11.8.10

 

  1. Lu TP, Lee CY, Tsai MH, et al. miRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 2012;7(8):e42390. doi: 10.1371/journal.pone.0042390

 

  1. Liu H, Yue D, Chen Y, Gao SJ, Huang Y. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics. 2010;11:476. doi: 10.1186/1471-2105-11-476

 

  1. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90. doi: 10.1186/gb-2010-11-8-r90

 

  1. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005

 

  1. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic polymorphisms and risk of diabetes mellitus. J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152

 

  1. Staiger H, Machicao F, Fritsche A, Häring HU. Pathomechanisms of type 2 diabetes genes. Endocr Rev. 2009;30(6):557-585. doi: 10.1210/er.2009-0017

 

  1. Bhushan R, Rani A, Gupta D, Ali A, Dubey PK. MicroRNA-7 regulates insulin signaling pathway by targeting IRS1, IRS2, and RAF1 genes in gestational diabetes mellitus. Microrna. 2022;11(1):57-72. doi: 10.2174/2211536611666220413100636

 

  1. Sekine Y, Hatanaka R, Watanabe T, et al. The Kelch repeat protein KLHDC10 regulates oxidative stress-induced ASK1 activation by suppressing PP5. Molecular Cell. 2012;48(5):692-704. doi: 10.1016/j.molcel.2012.09.018

 

  1. Peng D, Belkhiri A, Hu T, et al. Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells. Gut. 2012;61(9):1250-1260. doi: 10.1136/gutjnl-2011-301078

 

  1. Chiefari E, Tanyolaç S, Iiritano S, et al. A polymorphism of HMGA1 is associated with increased risk of metabolic syndrome and related components. Sci Rep. 2013;3:1491. doi: 10.1038/srep01491

 

  1. Xia H, Zhao H, Yang W, Luo X, Wei J, Xia H. MiR-195-5p represses inflammation, apoptosis, oxidative stress, and endoplasmic reticulum stress in sepsis-induced myocardial injury by targeting activating transcription factor 6. Cell Biol Int. 2022;46(2):243-254. doi: 10.1002/cbin.11726

 

  1. Karadoğan AH, Arikoglu H, Göktürk F, İşçioğlu F, İpekçi SH. PIK3R1 gene polymorphisms are associated with type 2 diabetes and related features in the Turkish population. Adv Clin Exp Med. 2018;27(7):921-927. doi: 10.17219/acem/68985

 

  1. Zhang Y, Huang S, Yang G, Zou L, Huang X, Liu S. The role of miRNAs during endoplasmic reticulum stress induced apoptosis in digestive cancer. J Cancer. 2021;12(22): 6787-6795. doi: 10.7150/jca.62352

 

  1. Agrawal S, Gupta S, Singh SV. Exploring the role of circulating microRNAs as potential diagnostic markers in Mycobacterium paratuberculosis. Vet Ital. 2025;61(3):325–339.doi: 10.12834/VetIt.3673.34650.3

 

  1. Zhang S, Cheng Z, Wang Y, Han T. The risks of miRNA therapeutics: In a drug target perspective. Drug Design Dev Therapy. 2021;15:721-733. doi: 10.2147/dddt.S288859

 

  1. He Z, Liu Q, Wang Y, et al. The role of endoplasmic reticulum stress in type 2 diabetes mellitus mechanisms and impact on islet function. PeerJ. 2025;13:e19192. doi: 10.7717/peerj.19192

 

  1. Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med. 2022;184:114-134. doi: 10.1016/j.freeradbiomed.2022.03.019

 

  1. Mir MM, Jeelani M, Alharthi MH, et al. Unraveling the mystery of insulin resistance: From principle mechanistic insights and consequences to therapeutic interventions. Int J Mol Sci. 2025;26(6):2770. doi: 10.3390/ijms26062770

 

  1. Weir GC, Gaglia J, Bonner-Weir S. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol. 2020;8(3):249-256. doi: 10.1016/s2213-8587(20)30022-x

 

  1. Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne). 2023;14:1112363. doi: 10.3389/fendo.2023.1112363

 

  1. Bhattarai KR, Riaz TA, Kim HR, Chae HJ. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53(2): 151-167. doi: 10.1038/s12276-021-00560-8

 

  1. Burgos-Morón E, Abad-Jiménez Z, Marañón AM, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med. 2019;8(9):1385. doi: 10.3390/jcm8091385

 

  1. Shimu SJ, Mahir JUK, Shakib FAF, et al. Metabolic reprogramming through polyphenol networks: A systems approach to metabolic inflammation and insulin resistance. Med Sci (Basel). 2025;13(3):180. doi: 10.3390/medsci13030180

 

  1. Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional regulation of insulin resistance: Implications for metabolic diseases. Biomolecules. 2022;12(2):208. doi: 10.3390/biom12020208

 

  1. He Y, Yang X, He X, et al. Mechanisms and therapeutics of insulin signaling transduction genes in diabetic cardiomyopathy: A comprehensive updated review. Front Endocrinol. 2025;16:1589695. doi: 10.3389/fendo.2025.1589695

 

  1. Sunny JS, Saleena LM. In-silico analysis of rSNPs in miRNA: mRNA duplex involved in insulin signaling genes shows a possible pathogenesis of insulin resistance. Microrna. 2021;10(3):200-205. doi: 10.2174/2211536610666210909164348

 

  1. Khan I, Saeed MH, Amjad A, et al. Elucidating the role of MicroRNAs in regulating insulin signaling pathways: Implications for the pathophysiology and treatment of type 2 diabetes. Cureus. 2025;17(7):e87682. doi: 10.7759/cureus.87682

 

  1. De Franco E, Saint-Martin C, Brusgaard K, et al. Update of variants identified in the pancreatic β-cell K(ATP) channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020;41(5): 884-905. doi: 10.1002/humu.23995

 

  1. Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: Recent findings and future research directions. Mol Cell Endocrinol. 2012;364(1-2):1-27. doi: 10.1016/j.mce.2012.08.003

 

  1. Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: An m6 a reader that affects cellular function and disease progression. Cell Mol Biol Lett. 2025;30(1):43. doi: 10.1186/s11658-025-00723-9

 

  1. Yu S, Zhai J, Yu J, Yang Q, Yang J. miR-98-5p protects against cerebral ischemia/reperfusion injury through anti-apoptosis and anti-oxidative stress in mice. J Biochem. 2021;169(2):195-206. doi: 10.1093/jb/mvaa099

 

  1. Khan R, Kadamkode V, Kesharwani D, Purkayastha S, Banerjee G, Datta M. Circulatory miR-98-5p levels are deregulated during diabetes and it inhibits proliferation and promotes apoptosis by targeting PPP1R15B in keratinocytes. RNA Biol. 2020;17(2):188-201. doi: 10.1080/15476286.2019.1673117

 

  1. Yagil C, Varadi-Levi R, Ifrach C, Yagil Y. Dysregulated UPR and ER stress related to a mutation in the Sdf2l1 gene are involved in the pathophysiology of diet-induced diabetes in the cohen diabetic rat. Int J Mol Sci. 2023;24(2):1355. doi: 10.3390/ijms24021355

 

  1. Zhou M, Hou Y, Wu J, et al. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF. Mol Med Rep. 2021;23(5):329. doi: 10.3892/mmr.2021.11968

 

  1. Nishida H, Sohara E, Nomura N, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/ SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012;60(4):981-990. doi: 10.1161/hypertensionaha.112.201509

 

  1. Chi L, Jiao D, Nan G, Yuan H, Shen J, Gao Y. miR-9-5p attenuates ischemic stroke through targeting ERMP1- mediated endoplasmic reticulum stress. Acta Histochem. 2019;121(8):151438. doi: 10.1016/j.acthis.2019.08.005

 

  1. Aghaei M, Khodadadian A, Elham KN, Nazari M, Babakhanzadeh E. Major miRNA involved in insulin secretion and production in beta-cells. Int J Gen Med. 2020;13:89-97. doi: 10.2147/ijgm.S249011

 

  1. Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323-328. doi: 10.1038/15500

 

  1. Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. NPGPx (GPx7): A novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am J Transl Res. 2016;8(4):1626-40.

 

  1. Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S, Miska EA. The microRNA miR-124 controls gene expression in the sensory nervous system of caenorhabditis elegans. Nucleic Acids Res. 2010;38(11):3780-3793. doi: 10.1093/nar/gkq083

 

  1. Kaneto H, Matsuoka TA, Nakatani Y, et al. Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J Mol Med. 2005;83(6):429-439. doi: 10.1007/s00109-005-0640-x

 

  1. Oliveto S, Manfrini N, Biffo S. The power of microRNA regulation-insights into immunity and metabolism. FEBS Lett. 2025;599(13):1821-1851. doi: 10.1002/1873-3468.70039

 

  1. Gómez-Jiménez V, Burggraaf-Sánchez de Las Matas R, Ortega ÁL. Modulation of oxidative stress in diabeticretinopathy: Therapeutic role of natural polyphenols. Antioxidants (Basel). 2025;14(7):875. doi: 10.3390/antiox14070875

 

  1. Al-Zamily AM. Effect of GLP-1 receptor agonists (liraglutide) on glycemic parameters and circulating miRNA expression in type 2 diabetes mellitus. Med Mod Mod Med. 2025;32:143–150.

 

  1. Mikheeva EV, Aulova KS, Nevinsky GA, Timofeeva AM. In silico Analysis of MiRNA regulatory networks to identify potential biomarkers for the clinical COURSE of viral infections. Int J Mol Sci. 2025;26(20):10100. doi: 10.3390/ijms262010100

 

  1. Ge Q, Gérard J, Noël L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153(11):5285-5296. doi: 10.1210/en.2012-1623

 

  1. Lischka J, Schanzer A, Hojreh A, et al. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients. Int J Obesity (Lond). 2021;45(8):1763-1772. doi: 10.1038/s41366-021-00842-1

 

  1. Caturano A, Rocco M, Tagliaferri G, et al. Oxidative stress and cardiovascular complications in type 2 diabetes: From pathophysiology to lifestyle modifications. Antioxidants (Basel, Switzerland). 2025;14(1):72. doi: 10.3390/antiox14010072

 

  1. Wang J, Li Y, Wang H, et al. Harnessing miRNA therapeutics: A novel approach to combat heart and brain infarctions in atherosclerosis. Cell Death Discov. 2025;11(1):482. doi: 10.1038/s41420-025-02649-9

 

  1. Iside C, Picone F, Di Pietro P, et al. MicroRNA signatures in cardiometabolic disorders as a next-generation diagnostic approach: Current insight. Int J Mol Sci. 2025;26(21):10769. doi: 10.3390/ijms262110769

 

  1. Klisic A, Radoman Vujacic I, Munjas J, Ninic A, Kotur- Stevuljevic J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch Med Sci AMS. 2022;18(4):870-880. doi: 10.5114/aoms/146796

 

  1. Otoukesh B, Abbasi M, Gorgani HOL, et al. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int. 2020;20(1):254. doi: 10.1186/s12935-020-01342-4
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing