Profiling the 8-nucleotide microRNA targets in genes involved in type 2 diabetes mellitus in association with oxidative and endoplasmic reticulum stress
Type 2 diabetes mellitus (T2DM) is one of the top 10 global killers. The association between oxidative stress and T2DM has been reported, in which oxidative stress triggers the life-threatening consequences, including stroke, nephropathy, and myocardial infarction. MicroRNA (miRNA)-based therapies are thought to revolutionize early medical interventions, potentially enabling the treatment of T2DM. miRNAs are 20–22 nucleotide non-coding sequences used to silence genes at the post-transcriptional level. Gene testing registry, TargetScan, and other bioinformatic databases were used to identify the oxidative- and endoplasmic reticulum (ER) stress-linked genes and their targeted miRNAs (8-mers and species conserved) associated with T2DM. ShinyGO was used to establish links between T2DM and its associated genes. We identified putative common miRNAs, such as miR-26-5p/miR-124-3p.1/miR-124-3p.2/miR-98-5p/miR-17-5p/miR-519-3p/miR-20-5p/miR-93-5p/miR-106-5p, which may involve in the regulation of T2DM-associated genes. In addition, several common miRNAs were also considered in the regulation of pathological conditions. The miRNAs for T2DM associated with oxidative stress are as follows: miR-33-5p/miR-506-3p/miR-7-5p/miR-107/miR-93-5p, and for T2DM associated with ER stress are as follows: miR-195-5p/miR-181-5p/miR-101-3p.1/miR-424-5p/miR-145-5p/miR-519-3p/miR-16-5p. Overall, this study provides a framework for the rational selection of miRNAs for nucleic acid-based therapies and guides future studies in maximizing the potential of miRNAs against oxidative- and ER-stress associated with T2DM.
- O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi: 10.3389/fendo.2018.00402
- Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA-mRNA interactome. Front Genet. 2019;10:933. doi: 10.3389/fgene.2019.00933
- Mushtaq I, Ishtiaq A, Ali T, Jan MI, Murtaza I. An overview of Non-coding RNAs and cardiovascular system. Adv Exp Med Biol. 2020;1229:3-45. doi: 10.1007/978-981-15-1671-9_1
- Çakmak HA, Demir M. MicroRNA and cardiovascular diseases. Balkan Med J. 2020;37(2):60-71. doi: 10.4274/balkanmedj.galenos.2020.2020.1.94
- Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763
- Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456-80. doi: 10.4239/wjd.v6.i3.456
- Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21(3):396-413. doi: 10.1089/ars.2014.5851
- Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26(2):19-39.
- Antar SA, Ashour NA, Sharaky M, et al. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023;168:115734. doi: 10.1016/j.biopha.2023.115734
- Ghemrawi R, Battaglia-Hsu SF, Arnold C. Endoplasmic reticulum stress in metabolic disorders. Cells. 2018;7(6):63. doi: 10.3390/cells7060063
- Giannakogeorgou A, Roden M, Pafili K. Diabetes mellitus as a multisystem disease: Understanding subtypes, complications, and the link with steatotic liver diseases in humans. Hormones. 2025. doi: 10.1007/s42000-025-00701-y
- White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab. 2021;52:101304. doi: 10.1016/j.molmet.2021.101304
- Elangeeb ME, Elfaki I, Elkhalifa MA, et al. In silico investigation of AKT2 Gene and protein abnormalities reveals potential association with insulin resistance and type 2 diabetes. Curr Issues Mol Biol. 2023;45(9):7449-7475. doi: 10.3390/cimb45090471
- Berbudi A, Khairani S, Tjahjadi AI. Interplay between insulin resistance and immune dysregulation in type 2 diabetes mellitus: Implications for therapeutic interventions. Immuno Targets Therapy. 2025;14:359-382. doi: 10.2147/itt.S499605
- Lindsay RT, Rhodes CJ. Reactive oxygen species (ROS) in metabolic disease-Don’t shoot the metabolic messenger. Int J Mol Sci. 2025;26(6):2622. doi: 10.3390/ijms26062622
- Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: A dynamic duo in multiple myeloma. Cell Mol Life Sci. 2021;78(8):3883-3906. doi: 10.1007/s00018-021-03756-3
- Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxid Redox Signal. 2019;31(10): 722-751. doi: 10.1089/ars.2018.7656
- Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C. Redox controls UPR to control redox. J Cell Sci. 2014; 127(Pt 17):3649-3658. doi: 10.1242/jcs.153643
- Kappeler L. Role of adipose tissue microRNAs in the onset of metabolic diseases and implications in the context of the DOHaD. Cells. 2022;11(23):3711. doi: 10.3390/cells11233711
- Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem. 2015;396(3):235-244. doi: 10.1515/hsz-2014-0241
- Ge Q, Brichard S, Yi X, Li Q. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res. 2014;2014:987285. doi: 10.1155/2014/987285
- Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649-653. doi: 10.1038/nature10112
- Kim H, Bae YU, Lee H, et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res Care. 2020;8(1):e001403. doi: 10.1136/bmjdrc-2020-001403
- Yang L, Jiang S. Adipose tissue-derived extracellular vesicle MicroRNAs: Diagnostic biomarkers for the pathophysiology associated with obesity. Precis Chem. 2025;3(9):480-491. doi: 10.1021/prechem.5c00007
- Nadeem U, Xie B, Xie EF, et al. Using advanced bioinformatics tools to identify novel therapeutic candidates for age-related macular degeneration. Transl Vision Sci Technol. 2022;11(8):10. doi: 10.1167/tvst.11.8.10
- Lu TP, Lee CY, Tsai MH, et al. miRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 2012;7(8):e42390. doi: 10.1371/journal.pone.0042390
- Liu H, Yue D, Chen Y, Gao SJ, Huang Y. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics. 2010;11:476. doi: 10.1186/1471-2105-11-476
- Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90. doi: 10.1186/gb-2010-11-8-r90
- Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005
- Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic polymorphisms and risk of diabetes mellitus. J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152
- Staiger H, Machicao F, Fritsche A, Häring HU. Pathomechanisms of type 2 diabetes genes. Endocr Rev. 2009;30(6):557-585. doi: 10.1210/er.2009-0017
- Bhushan R, Rani A, Gupta D, Ali A, Dubey PK. MicroRNA-7 regulates insulin signaling pathway by targeting IRS1, IRS2, and RAF1 genes in gestational diabetes mellitus. Microrna. 2022;11(1):57-72. doi: 10.2174/2211536611666220413100636
- Sekine Y, Hatanaka R, Watanabe T, et al. The Kelch repeat protein KLHDC10 regulates oxidative stress-induced ASK1 activation by suppressing PP5. Molecular Cell. 2012;48(5):692-704. doi: 10.1016/j.molcel.2012.09.018
- Peng D, Belkhiri A, Hu T, et al. Glutathione peroxidase 7 protects against oxidative DNA damage in oesophageal cells. Gut. 2012;61(9):1250-1260. doi: 10.1136/gutjnl-2011-301078
- Chiefari E, Tanyolaç S, Iiritano S, et al. A polymorphism of HMGA1 is associated with increased risk of metabolic syndrome and related components. Sci Rep. 2013;3:1491. doi: 10.1038/srep01491
- Xia H, Zhao H, Yang W, Luo X, Wei J, Xia H. MiR-195-5p represses inflammation, apoptosis, oxidative stress, and endoplasmic reticulum stress in sepsis-induced myocardial injury by targeting activating transcription factor 6. Cell Biol Int. 2022;46(2):243-254. doi: 10.1002/cbin.11726
- Karadoğan AH, Arikoglu H, Göktürk F, İşçioğlu F, İpekçi SH. PIK3R1 gene polymorphisms are associated with type 2 diabetes and related features in the Turkish population. Adv Clin Exp Med. 2018;27(7):921-927. doi: 10.17219/acem/68985
- Zhang Y, Huang S, Yang G, Zou L, Huang X, Liu S. The role of miRNAs during endoplasmic reticulum stress induced apoptosis in digestive cancer. J Cancer. 2021;12(22): 6787-6795. doi: 10.7150/jca.62352
- Agrawal S, Gupta S, Singh SV. Exploring the role of circulating microRNAs as potential diagnostic markers in Mycobacterium paratuberculosis. Vet Ital. 2025;61(3):325–339.doi: 10.12834/VetIt.3673.34650.3
- Zhang S, Cheng Z, Wang Y, Han T. The risks of miRNA therapeutics: In a drug target perspective. Drug Design Dev Therapy. 2021;15:721-733. doi: 10.2147/dddt.S288859
- He Z, Liu Q, Wang Y, et al. The role of endoplasmic reticulum stress in type 2 diabetes mellitus mechanisms and impact on islet function. PeerJ. 2025;13:e19192. doi: 10.7717/peerj.19192
- Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med. 2022;184:114-134. doi: 10.1016/j.freeradbiomed.2022.03.019
- Mir MM, Jeelani M, Alharthi MH, et al. Unraveling the mystery of insulin resistance: From principle mechanistic insights and consequences to therapeutic interventions. Int J Mol Sci. 2025;26(6):2770. doi: 10.3390/ijms26062770
- Weir GC, Gaglia J, Bonner-Weir S. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol. 2020;8(3):249-256. doi: 10.1016/s2213-8587(20)30022-x
- Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne). 2023;14:1112363. doi: 10.3389/fendo.2023.1112363
- Bhattarai KR, Riaz TA, Kim HR, Chae HJ. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53(2): 151-167. doi: 10.1038/s12276-021-00560-8
- Burgos-Morón E, Abad-Jiménez Z, Marañón AM, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med. 2019;8(9):1385. doi: 10.3390/jcm8091385
- Shimu SJ, Mahir JUK, Shakib FAF, et al. Metabolic reprogramming through polyphenol networks: A systems approach to metabolic inflammation and insulin resistance. Med Sci (Basel). 2025;13(3):180. doi: 10.3390/medsci13030180
- Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional regulation of insulin resistance: Implications for metabolic diseases. Biomolecules. 2022;12(2):208. doi: 10.3390/biom12020208
- He Y, Yang X, He X, et al. Mechanisms and therapeutics of insulin signaling transduction genes in diabetic cardiomyopathy: A comprehensive updated review. Front Endocrinol. 2025;16:1589695. doi: 10.3389/fendo.2025.1589695
- Sunny JS, Saleena LM. In-silico analysis of rSNPs in miRNA: mRNA duplex involved in insulin signaling genes shows a possible pathogenesis of insulin resistance. Microrna. 2021;10(3):200-205. doi: 10.2174/2211536610666210909164348
- Khan I, Saeed MH, Amjad A, et al. Elucidating the role of MicroRNAs in regulating insulin signaling pathways: Implications for the pathophysiology and treatment of type 2 diabetes. Cureus. 2025;17(7):e87682. doi: 10.7759/cureus.87682
- De Franco E, Saint-Martin C, Brusgaard K, et al. Update of variants identified in the pancreatic β-cell K(ATP) channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat. 2020;41(5): 884-905. doi: 10.1002/humu.23995
- Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: Recent findings and future research directions. Mol Cell Endocrinol. 2012;364(1-2):1-27. doi: 10.1016/j.mce.2012.08.003
- Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: An m6 a reader that affects cellular function and disease progression. Cell Mol Biol Lett. 2025;30(1):43. doi: 10.1186/s11658-025-00723-9
- Yu S, Zhai J, Yu J, Yang Q, Yang J. miR-98-5p protects against cerebral ischemia/reperfusion injury through anti-apoptosis and anti-oxidative stress in mice. J Biochem. 2021;169(2):195-206. doi: 10.1093/jb/mvaa099
- Khan R, Kadamkode V, Kesharwani D, Purkayastha S, Banerjee G, Datta M. Circulatory miR-98-5p levels are deregulated during diabetes and it inhibits proliferation and promotes apoptosis by targeting PPP1R15B in keratinocytes. RNA Biol. 2020;17(2):188-201. doi: 10.1080/15476286.2019.1673117
- Yagil C, Varadi-Levi R, Ifrach C, Yagil Y. Dysregulated UPR and ER stress related to a mutation in the Sdf2l1 gene are involved in the pathophysiology of diet-induced diabetes in the cohen diabetic rat. Int J Mol Sci. 2023;24(2):1355. doi: 10.3390/ijms24021355
- Zhou M, Hou Y, Wu J, et al. miR-93-5p promotes insulin resistance to regulate type 2 diabetes progression in HepG2 cells by targeting HGF. Mol Med Rep. 2021;23(5):329. doi: 10.3892/mmr.2021.11968
- Nishida H, Sohara E, Nomura N, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/ SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012;60(4):981-990. doi: 10.1161/hypertensionaha.112.201509
- Chi L, Jiao D, Nan G, Yuan H, Shen J, Gao Y. miR-9-5p attenuates ischemic stroke through targeting ERMP1- mediated endoplasmic reticulum stress. Acta Histochem. 2019;121(8):151438. doi: 10.1016/j.acthis.2019.08.005
- Aghaei M, Khodadadian A, Elham KN, Nazari M, Babakhanzadeh E. Major miRNA involved in insulin secretion and production in beta-cells. Int J Gen Med. 2020;13:89-97. doi: 10.2147/ijgm.S249011
- Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323-328. doi: 10.1038/15500
- Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. NPGPx (GPx7): A novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am J Transl Res. 2016;8(4):1626-40.
- Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S, Miska EA. The microRNA miR-124 controls gene expression in the sensory nervous system of caenorhabditis elegans. Nucleic Acids Res. 2010;38(11):3780-3793. doi: 10.1093/nar/gkq083
- Kaneto H, Matsuoka TA, Nakatani Y, et al. Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J Mol Med. 2005;83(6):429-439. doi: 10.1007/s00109-005-0640-x
- Oliveto S, Manfrini N, Biffo S. The power of microRNA regulation-insights into immunity and metabolism. FEBS Lett. 2025;599(13):1821-1851. doi: 10.1002/1873-3468.70039
- Gómez-Jiménez V, Burggraaf-Sánchez de Las Matas R, Ortega ÁL. Modulation of oxidative stress in diabeticretinopathy: Therapeutic role of natural polyphenols. Antioxidants (Basel). 2025;14(7):875. doi: 10.3390/antiox14070875
- Al-Zamily AM. Effect of GLP-1 receptor agonists (liraglutide) on glycemic parameters and circulating miRNA expression in type 2 diabetes mellitus. Med Mod Mod Med. 2025;32:143–150.
- Mikheeva EV, Aulova KS, Nevinsky GA, Timofeeva AM. In silico Analysis of MiRNA regulatory networks to identify potential biomarkers for the clinical COURSE of viral infections. Int J Mol Sci. 2025;26(20):10100. doi: 10.3390/ijms262010100
- Ge Q, Gérard J, Noël L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153(11):5285-5296. doi: 10.1210/en.2012-1623
- Lischka J, Schanzer A, Hojreh A, et al. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients. Int J Obesity (Lond). 2021;45(8):1763-1772. doi: 10.1038/s41366-021-00842-1
- Caturano A, Rocco M, Tagliaferri G, et al. Oxidative stress and cardiovascular complications in type 2 diabetes: From pathophysiology to lifestyle modifications. Antioxidants (Basel, Switzerland). 2025;14(1):72. doi: 10.3390/antiox14010072
- Wang J, Li Y, Wang H, et al. Harnessing miRNA therapeutics: A novel approach to combat heart and brain infarctions in atherosclerosis. Cell Death Discov. 2025;11(1):482. doi: 10.1038/s41420-025-02649-9
- Iside C, Picone F, Di Pietro P, et al. MicroRNA signatures in cardiometabolic disorders as a next-generation diagnostic approach: Current insight. Int J Mol Sci. 2025;26(21):10769. doi: 10.3390/ijms262110769
- Klisic A, Radoman Vujacic I, Munjas J, Ninic A, Kotur- Stevuljevic J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch Med Sci AMS. 2022;18(4):870-880. doi: 10.5114/aoms/146796
- Otoukesh B, Abbasi M, Gorgani HOL, et al. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int. 2020;20(1):254. doi: 10.1186/s12935-020-01342-4
