AccScience Publishing / GTM / Online First / DOI: 10.36922/GTM025470087
REVIEW ARTICLE

From cancer treatment strategies to survivorship care: Advances in integrating multi-omics and artificial intelligence

Ling Yin1,2 Bao Chun Cheng3 Xueyi Wang3 Li Xia3 Lei Ye3 Xuefei Ji3 Hui Wang3 Lu Gao3*
Show Less
1 Department of Medicine, Weill Cornell Medicine, Cornell University, New York, United States of America
2 Department of Epidemiology and Biostatistics, College of Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
3 Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
Global Translational Medicine, 025470087 https://doi.org/10.36922/GTM025470087
Received: 17 November 2025 | Revised: 12 December 2025 | Accepted: 21 January 2026 | Published online: 9 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Advances in oncology are successfully shifting clinical focus beyond initial tumor control to address the complex, lifelong needs of a growing survivor population. This review examines the evolution of therapeutic paradigms, dissecting the mechanistic underpinnings and clinical impact of modern immunotherapies and gene-based modalities. It further addresses the multifaceted challenges in survivorship care, from managing persistent morbidity and psychological distress to overcoming systemic barriers in care coordination. Central to this discussion is the promise of multi-omics—which offers a high-resolution lens into tumor and host biology—to enable preemptive risk profiling. Concurrently, artificial intelligence (AI) emerges as the computational engine to distill these complex datasets into actionable intelligence for personalized surveillance. Furthermore, this review explores the translational hurdles facing AI, with a critical examination of inherent vulnerabilities, such as algorithmic bias, model opacity, and ethical pitfalls, in clinical deployment. By synthesizing these domains, this article provides a conceptual framework to steer the evolution of evidence-based, equitable, and patient-focused survivorship care.

Keywords
Cancer treatment strategy
Cancer survivorship care
Multi-omics
Artificial intelligence
Personalized medicine
Funding
None.
Conflict of interest
Ling Yin is the Guest Editor of this special issue, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol. 2024. 24(9):654-669. doi: 10.1038/s41577-024-01026-4

 

  1. Yuan S, Almagro J, Fuchs E. Beyond genetics: Driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer. 2024;24(4):274-286. doi: 10.1038/s41568-023-00660-9

 

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820

 

  1. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015. 372(4):320-330. doi: 10.1056/NEJMoa1412082

 

  1. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531-2544. doi: 10.1056/NEJMoa1707447

 

  1. Mamede I, Escalante-Romero L, Celso DSG, et al. Immunotherapy plus chemotherapy versus chemotherapy alone as first-line treatment for advanced urothelial cancer: An updated systematic review and meta-analysis of randomized controlled trials. Clin Genitourin Cancer. 2024;22(5):102154. doi: 10.1016/j.clgc.2024.102154

 

  1. Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “Silver Tsunami”: Prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol Biomarkers Prev. 2016;25(7):1029-1036. doi: 10.1158/1055-9965.EPI-16-0133

 

  1. Shapiro CL. Cancer survivorship. N Engl J Med. 2018;379(25):2438-2450. doi: 10.1056/NEJMra1712502

 

  1. Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72(5):409-436. doi: 10.3322/caac.21731

 

  1. Drury A, Payne S, Brady AM. Cancer survivorship: Advancing the concept in the context of colorectal cancer. Eur J Oncol Nurs. 2017;29:135-147. doi: 10.1016/j.ejon.2017.06.006

 

  1. Sheikh-Wu SF, Kauffman MA, Anglade D, Shamsaldeen F, Ahn S, Downs CA. Effectiveness of different music interventions on managing symptoms in cancer survivors: A meta-analysis. Eur J Oncol Nurs. 2021;52:101968. doi: 10.1016/j.ejon.2021.101968

 

  1. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83. doi: 10.1186/s13059-017-1215-1

 

  1. Hoadley KA, Yau C, Hinoue T, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291-304.e6. doi: 10.1016/j.cell.2018.03.022

 

  1. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. doi: 10.1038/s41568-018-0016-5

 

  1. Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39(7):916-927. doi: 10.1016/j.ccell.2021.04.002

 

  1. Bersanelli M, Mosca E, Remondini D, et al. Methods for the integration of multi-omics data: Mathematical aspects. BMC Bioinformatics. 2016;17 Suppl 2(Suppl 2):15. doi: 10.1186/s12859-015-0857-9

 

  1. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: 10.1186/s12916-019-1426-2

 

  1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-795. doi: 10.1056/NEJMp1500523

 

  1. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat Rev. 2020;86:102019. doi: 10.1016/j.ctrv.2020.102019

 

  1. Serratì S, Di Fonte R, Porcelli L, et al. Circulating extracellular vesicles are monitoring biomarkers of anti-PD1 response and enhancer of tumor progression and immunosuppression in metastatic melanoma. J Exp Clin Cancer Res. 2023;42(1):251. doi: 10.1186/s13046-023-02808-9

 

  1. Saijo H, Hirohashi Y, Honjo O, et al. Anti-CTLA-4 antibody might be effective against non-small cell lung cancer with large size tumor. Anticancer Res. 2023;43(9):4155-4160. doi: 10.21873/anticanres.16606

 

  1. Rubio-Pérez J, Hernández R, Hernández T, Doger B, Casado V, Moreno V. Dostarlimab for the treatment of endometrium cancer and other solid tumors. Drugs Today (Barc). 2021;57(3):187-197. doi: 10.1358/dot.2021.57.3.3233363

 

  1. Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044-3060. doi: 10.3390/curroncol29050247

 

  1. Ahmed J, Nishizaki D, Miyashita H, et al. TIM-3 transcriptomic landscape with clinical and immunomic correlates in cancer. Am J Cancer Res. 2024;14(5):2493-2506. doi: 10.62347/MQFF6404

 

  1. Nishizaki D, Kurzrock R, Miyashita H, et al. Viewing the immune checkpoint VISTA: landscape and outcomes across cancers. ESMO Open. 2024;9(4):102942. doi: 10.1016/j.esmoop.2024.102942

 

  1. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18(4):842-859. doi: 10.1038/s41423-020-00565-9

 

  1. Pang Z, Lu MM, Zhang Y, et al. Neoantigen-targeted TCR-engineered T cell immunotherapy: Current advances and challenges. Biomark Res. 2023;11(1):104. doi: 10.1186/s40364-023-00534-0

 

  1. Del Bufalo F, Becilli M, Rosignoli C, et al. Allogeneic, donor-derived, second-generation, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL. Blood. 2023;142(2):146-157. doi: 10.1182/blood.2023020023

 

  1. Merkt W, Freitag M, Claus M, et al. Third-generation CD19. CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann Rheum Dis. 2024. 83(4):543-546. doi: 10.1136/ard-2023-225174

 

  1. Ecsedi M, McAfee MS, Chapuis AG. The anticancer potential of T cell receptor-engineered T cells. Trends Cancer. 2021;7(1):48-56. doi: 10.1016/j.trecan.2020.09.002

 

  1. Xu Y, Jiang J, Wang Y, et al. Engineered T cell therapy for gynecologic malignancies: Challenges and opportunities. Front Immunol. 2021;12:725330. doi: 10.3389/fimmu.2021.725330

 

  1. Elhag OA, Hu XJ, Wen-Ying Z, et al. Reconstructed adeno-associated virus with the extracellular domain of murine PD-1 induces antitumor immunity. Asian Pac J Cancer Prev. 2012;13:4031-4036. doi: 10.7314/apjcp.2012.13.8.4031

 

  1. Yin L, He H, Zhang H, et al. Revolution of AAV in drug discovery: From delivery system to clinical application. J Med Virol. 2025;97(6):e70447. doi: 10.1002/jmv.70447

 

  1. Tan Z, Chiu MS, Yan CW, Man K, Chen Z. Eliminating mesothelioma by AAV-vectored, PD1-based vaccination in the tumor microenvironment. Mol Ther Oncolytics. 2021;20:373-386. doi: 10.1016/j.omto.2021.01.010

 

  1. Reul J, Frisch J, Engeland CE, et al. Tumor-specific delivery of immune checkpoint inhibitors by engineered AAV vectors. Front Oncol. 2019;9:52. doi: 10.3389/fonc.2019.00052

 

  1. Münch RC, Muth A, Muik A, et al. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun. 2015;6:6246. doi: 10.1038/ncomms7246

 

  1. Strecker MI, Wlotzka K, Strassheimer F, et al. AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology. 2022;11:2127508. doi: 10.1080/2162402X.2022.2127508

 

  1. Du Z, Kan H, Sun J, et al. Molecular mechanisms of acquired resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Drug Resist Updat. 2025;82:101266. doi: 10.1016/j.drup.2025.101266

 

  1. Zhou F, Guo H, Xia Y, et al. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol. 2025;22(2):95-116. doi: 10.1038/s41571-024-00971-2

 

  1. Wang Y, Zhang H, Xu Y, Peng T, Meng X, Zou F. NLRP3 induces the autocrine secretion of IL-1β to promote epithelial-mesenchymal transition and metastasis in breast cancer. Biochem Biophys Res Commun. 2021;560:72-79. doi: 10.1016/j.bbrc.2021.04.122

 

  1. Ershaid N, Sharon Y, Doron H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat Commun. 2019;10(1):4375. doi: 10.1038/s41467-019-12370-8

 

  1. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275-291. doi: 10.1016/j.stem.2014.02.006

 

  1. Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY. Hedgehog signaling in cancer: A prospective therapeutic target for eradicating cancer stem cells. Cells. 2018;7(11):208. doi: 10.3390/cells7110208

 

  1. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482-1492. doi: 10.1093/annonc/mdw168

 

  1. Zafar SY, Peppercorn JM, Schrag D, et al. The financial toxicity of cancer treatment: A pilot study assessing out-of-pocket expenses and the insured cancer patient’s experience. Oncologist. 2013;18(4):381-390. doi: 10.1634/theoncologist.2012-0279

 

  1. NekhlyudovL, MollicaMA, JacobsenPB, MayerDK, ShulmanLN, Geiger AM. Developing a quality of cancer survivorship care framework: Implications for clinical care, research, and policy. J Natl Cancer Inst. 2019;111(11):1120-1130. doi: 10.1093/jnci/djz089

 

  1. Mayer DK, Nekhlyudov L, Snyder CF, Merrill JK, Wollins DS, Shulman LN. American Society of Clinical Oncology clinical expert statement on cancer survivorship care planning. J Oncol Pract. 2014;10(6):345-351. doi: 10.1200/JOP.2014.001321

 

  1. Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446-451. doi: 10.1038/nature22364

 

  1. Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, CCGA Consortium. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745-759. doi: 10.1016/j.annonc.2020.02.011

 

  1. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-930. doi: 10.1126/science.aar3247

 

  1. Wu SZ, Al-Eryani G, Roden DL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021;53(9):1334-1347. doi: 10.1038/s41588-021-00911-1

 

  1. Petralia F, Tignor N, Reva B, et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell. 2020;183(7):1962-1985.e31. doi: 10.1016/j.cell.2020.10.044

 

  1. Kim C, Gao R, Sei E, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879-893.e13. doi: 10.1016/j.cell.2018.03.041

 

  1. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24(6):1248-1259. doi: 10.1158/1078-0432.CCR-17-0853

 

  1. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180-1191. doi: 10.1016/S1470-2045(18)30413-3

 

  1. Aminkeng F, Bhavsar AP, Visscher H, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079-1084. doi: 10.1038/ng.3374

 

  1. Wheeler HE, Wing C, Delaney SM, Komatsu M, Dolan ME. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells. PLoS One. 2015;10(2):e0118020. doi: 10.1371/journal.pone.0118020

 

  1. Armenian SH, Lacchetti C, Barac A, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2017;35(8):893-911. doi: 10.1200/JCO.2016.70.5400

 

  1. Ness KK, Plana JC, Joshi VM, et al. Exercise intolerance, mortality, and organ system impairment in adult survivors of childhood cancer. J Clin Oncol. 2020;38(1):29-42. doi: 10.1200/JCO.19.01661

 

  1. Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229-4361.

 

  1. Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945-1960. doi: 10.1002/ejhf.1920

 

  1. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelligence. Lancet Oncol. 2019;20(5):e253-e261. doi: 10.1016/S1470-2045(19)30154-8

 

  1. Patel AV, Friedenreich CM, Moore SC, et al. American college of sports medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exerc. 2019;51(11):2391-2402. doi: 10.1249/MSS.0000000000002117

 

  1. Nekhlyudov L, Lacchetti C, Davis NB, et al. Head and neck cancer survivorship care guideline: American society of clinical oncology clinical practice guideline endorsement of the American cancer society guideline. J Clin Oncol. 2017;35(14):1606-1621. doi: 10.1200/JCO.2016.71.8478

 

  1. Giannakopoulos K, Kavadella A, Aaqel Salim A, Stamatopoulos V, Kaklamanos EG. Evaluation of the performance of generative AI large language models ChatGPT, Google bard, and microsoft bing chat in supporting evidence-based dentistry: Comparative mixed methods study. J Med Internet Res. 2023;25:e51580. doi: 10.2196/51580

 

  1. Gilson A, Safranek CW, Huang T, et al. How does ChatGPT perform on the United States medical licensing examination (USMLE)? The implications of large language models for medical education and knowledge assessment. JMIR Med Educ. 2023;9:e45312. doi: 10.2196/45312

 

  1. Issom DZ, Hardy-Dessources MD, Romana M, Hartvigsen G, Lovis C. Toward a conversational agent to support the self-management of adults and young adults with sickle cell disease: Usability and usefulness study. Front Digit Health. 2021;3:600333. doi: 10.3389/fdgth.2021.600333

 

  1. Mokmin NAM, Ibrahim NA. The evaluation of chatbot as a tool for health literacy education among undergraduate students. Educ Inf Technol (Dordr). 2021;26:6033-6049. doi: 10.1007/s10639-021-10542-y

 

  1. Schreuder MJ, Hartman CA, George SV, et al. Early warning signals in psychopathology: What do they tell? BMC Med. 2020;18(1):269. doi: 10.1186/s12916-020-01742-3

 

  1. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. doi: 10.1126/science.aax2342

 

  1. Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43. doi: 10.1038/s41591-018-0272-7

 

  1. Budhkar A, Song Q, Su J, Zhang X. Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics. Comput Struct Biotechnol J. 2025;27:346-359. doi: 10.1016/j.csbj.2024.12.027

 

  1. Liu Y, Chen PC, Krause J, Peng L. How to read articles that use machine learning: Users’ guides to the medical literature. JAMA. 2019;322(18):1806-1816. doi: 10.1001/jama.2019.16489
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing