AccScience Publishing / GTM / Online First / DOI: 10.36922/GTM025350061
REVIEW ARTICLE

High-throughput sequencing unveils tumor-immune interactions: From genomic alterations to clinical translation

Ling Yin1,2*
Show Less
1 Department of Medicine, Weill Cornell Medicine, New York, United States of America
2 Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
Global Translational Medicine, 025350061 https://doi.org/10.36922/GTM025350061
Received: 26 August 2025 | Revised: 29 September 2025 | Accepted: 24 October 2025 | Published online: 7 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

High-throughput sequencing (HTS) has revolutionized tumor immunology by enabling precise dissection of tumor-immune interactions, directly informing the development of precision immunotherapies. This review highlights key advances in HTS technologies—including whole genome sequencing (WGS), RNA sequencing, assay for transposase-accessible chromatin using sequencing, and single-cell immunogenomics (scTCR-seq/scBCR-seq)—and their clinical translation in personalized cancer vaccines, engineered T-cell therapies, and combination regimens. We discuss how these tools decode tumor-specific mutations, immune evasion mechanisms, and therapeutic targets, while addressing challenges in data standardization, sample processing, and computational integration. Emerging breakthroughs such as spatial multiomics, real-time monitoring, and artificial intelligence-driven discovery are transforming the field by enabling dynamic, personalized treatment strategies. Finally, we outline future directions to overcome current barriers and expand equitable access to HTS-driven precision immunotherapies.

Keywords
High-throughput sequencing
Tumor immunology
Neoantigen vaccines
Spatial multiomics
Artificial intelligence-driven discovery
Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 81972713) and the China Postdoctoral Science Foundation (Grant No. PC2018018).
Conflict of interest
Ling Yin is the Guest Editor of this special issue, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly.
References
  1. Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58(4):586-597. doi: 10.1016/j.molcel.2015.05.004

 

  1. Lee JY. The principles and applications of high-throughput sequencing technologies. Dev Reprod. 2023;27(1):9-24. doi: 10.12717/DR.2023.27.1.9

 

  1. Vitorino R. Transforming clinical research: The power of high-throughput omics integration. Proteomes. 2024;12(3):25. doi: 10.3390/proteomes12030025

 

  1. Dongare DB, Nishad SS, Mastoli SY, Saraf SA, Srivastava N, Dey A. High-throughput sequencing: A breakthrough in molecular diagnosis for precision medicine. Funct Integr Genomics. 2025;25(1):22. doi: 10.1007/s10142-025-01529-w

 

  1. Zhao EY, Jones M, Jones SJM. Whole-genome sequencing in cancer. Cold Spring Harb Perspect Med. 2019;9(3):a034579. doi: 10.1101/cshperspect.a034579

 

  1. Brlek P, Bulić L, Bračić M, et al. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells. 2024;13(6):504. doi: 10.3390/cells13060504

 

  1. Akhoundova D, Rubin MA. The grand challenge of moving cancer whole-genome sequencing into the clinic. Nat Med. 2024;30(1):39-40. doi: 10.1038/s41591-023-02697-7

 

  1. Suvà ML, Tirosh I. Single-cell RNA sequencing in cancer: Lessons learned and emerging challenges. Mol Cell. 2019;75(1):7-12. doi: 10.1016/j.molcel.2019.05.003

 

  1. Tirosh I, Suva ML. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell. 2024;42(9):1497-1506. doi: 10.1016/j.ccell.2024.08.005

 

  1. Zhang L, Yang Y, Tan J. Applications and emerging challenges of single-cell RNA sequencing technology in tumor drug discovery. Drug Discov Today. 2025;30(2):104290. doi: 10.1016/j.drudis.2025.104290

 

  1. Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas. 2019;156:29. doi: 10.1186/s41065-019-0105-9

 

  1. Sahu SK, Basu A, Tiwari VK. Measuring chromatin accessibility: ATAC-Seq. Methods Mol Biol. 2021;2351:105-121. doi: 10.1007/978-1-0716-1597-3_6

 

  1. Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022;17(6):1518-1552. doi: 10.1038/s41596-022-00692-9

 

  1. Addala V, Newell F, Pearson JV, et al. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol. 2024;21(1):28-46. doi: 10.1038/s41571-023-00830-6

 

  1. Wu Y, Wu F, Li J, Zhou H, Ma L, Yao X. scTCR-seq and HTS reveal a special novel TRBD2-TRBJ1 rearrangement in mammalian TRB CDR3 repertoire. BMC Genomics. 2025;26(1):341. doi: 10.1186/s12864-025-11506-z

 

  1. Zhu L, Peng Q, Wu Y, Yao X. scBCR-seq revealed a special and novel IG H&L V(D)J allelic inclusion rearrangement and the high proportion dual BCR expressing B cells. Cell Mol Life Sci. 2023;80(11):319. doi: 10.1007/s00018-023-04973-8

 

  1. Nguyen BQT, Tran TPD, Nguyen HT, et al. Improvement in neoantigen prediction via integration of RNA sequencing data for variant calling. Front Immunol. 2023;14:1251603. doi: 10.3389/fimmu.2023.1251603

 

  1. Höllein A, Twardziok SO, Walter W, et al. The combination of WGS and RNA-Seq is superior to conventional diagnostic tests in multiple myeloma: Ready for prime time? Cancer Genet. 2020;242:15-24. doi: 10.1016/j.cancergen.2020.01.001

 

  1. Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods. 2021;18(8):881-892. doi: 10.1038/s41592-021-01201-8

 

  1. Zhang C, Li S, Shen L, et al. Single-cell sequencing of tumour infiltrating T cells efficiently identifies tumour-specific T cell receptors based on the T cell activation score. Cancer Immunol Immunother. 2024;73(7):123. doi: 10.1007/s00262-024-03710-9

 

  1. Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta. 2021;1141:144-162. doi: 10.1016/j.aca.2020.10.038

 

  1. Ivanisevic T, Sewduth RN. Multi-omics integration for the design of novel therapies and the identification of novel biomarkers. Proteomes. 2023;11(4):34. doi: 10.3390/proteomes11040034

 

  1. Kosugi S, Terao C. Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data. Hum Genome Var. 2024;11(1):18. doi: 10.1038/s41439-024-00276-x

 

  1. Coutelier M, Holtgrewe M, Jäger M, et al. Combining callers improves the detection of copy number variants from whole-genome sequencing. Eur J Hum Genet. 2022;30(2):178-186. doi: 10.1038/s41431-021-00983-x

 

  1. Lu Y, Li M, Gao Z, et al. Advances in whole genome sequencing: Methods, tools, and applications in population genomics. Int J Mol Sci. 2025;26(1):372. doi: 10.3390/ijms26010372

 

  1. Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19(1):359. doi: 10.1186/s12885-019-5572-x

 

  1. Wang S, He Z, Wang X, Li H, Liu XS. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. Elife. 2019;8:e49020. doi: 10.7554/eLife.49020

 

  1. Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer. 2019;19(8):465-478. doi: 10.1038/s41568-019-0162-4

 

  1. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: Key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121-32. doi: 10.1038/nrg3642

 

  1. Borges MG, Rocha CS, Carvalho BS, Lopes-Cendes I. Methodological differences can affect sequencing depth with a possible impact on the accuracy of genetic diagnosis. Genet Mol Biol. 2020;43(2):e20190270. doi: 10.1590/1678-4685-GMB-2019-0270

 

  1. Do Valle ÍF, Giampieri E, Simonetti G, et al. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinformatics. 2016;17(Suppl 12):341. doi: 10.1186/s12859-016-1190-7

 

  1. Tate JG, Bamford S, Jubb HC, et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941-D947. doi: 10.1093/nar/gky1015

 

  1. Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform. 2021;22(3):bbaa148. doi: 10.1093/bib/bbaa148

 

  1. Phan L, Zhang H, Wang Q, et al. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025;53(D1):D925-D931. doi: 10.1093/nar/gkae977

 

  1. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10(12):1808-1825. doi: 10.1158/2159-8290.CD-20-0522

 

  1. Guan H, Wu Y, Li LU, et al. Tumor neoantigens: Novel strategies for application of cancer immunotherapy. Oncol Res. 2023;31(4):437-448. doi: 10.32604/or.2023.029924

 

  1. Kim JY, Kronbichler A, Eisenhut M, et al. Tumor mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers (Basel). 2019;11(11):1798. doi: 10.3390/cancers11111798

 

  1. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022; 23(5):660-670. doi: 10.1038/s41590-022-01141-1

 

  1. Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39(2):154-173. doi: 10.1016/j.ccell.2020.10.001

 

  1. Hu C, Zhao L, Liu W, et al. Genomic profiles and their associations with TMB, PD-L1 expression, and immune cell infiltration landscapes in synchronous multiple primary lung cancers. J Immunother Cancer. 2021;9(12):e003773. doi: 10.1136/jitc-2021-003773

 

  1. Lu YC, Zheng Z, Robbins PF, et al. An efficient single-Cell RNA-seq approach to identify neoantigen-specific T cell receptors. Mol Ther. 2018;26(2):379-389. doi: 10.1016/j.ymthe.2017.10.018

 

  1. Rieder D, Fotakis G, Ausserhofer M, et al. nextNEOpi: A comprehensive pipeline for computational neoantigen prediction. Bioinformatics. 2022;38(4):1131-1132. doi: 10.1093/bioinformatics/btab759

 

  1. Tan X, Xu L, Jian X, et al. PGNneo: A proteogenomics-based neoantigen prediction pipeline in noncoding regions. Cells. 2023;12(5):782. doi: 10.3390/cells12050782

 

  1. Shao XM, Bhattacharya R, Huang J, et al. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. Cancer Immunol Res. 2020;8(3):396-408. doi: 10.1158/2326-6066.CIR-19-0464

 

  1. Hundal J, Kiwala S, McMichael J, et al. pVACtools: A Computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8(3):409-420. doi: 10.1158/2326-6066.CIR-19-0401

 

  1. Schmidt J, Smith AR, Magnin M, et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep Med. 2021;2(2):100194. doi: 10.1016/j.xcrm.2021.100194

 

  1. Bouvet M, Reid TR, Larson C, Oronsky B, Carter C, Morris JC. Extended treatment with MY-NEOVAX, personalized neoantigen-enhanced oncolytic viruses, for two end-stage cancer patients. Oxf Med Case Reports. 2019;2019(11):461-463. doi: 10.1093/omcr/omz105

 

  1. Huff AL, Longway G, Mitchell JT, et al. CD4 T cell-activating neoantigens enhance personalized cancer vaccine efficacy. JCI Insight. 2023;8(23):e174027. doi: 10.1172/jci.insight.174027

 

  1. Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144-150. doi: 10.1038/s41586-023-06063-y

 

  1. Borgers JSW, Lenkala D, Kohler V, et al. Personalized, autologous neoantigen-specific T cell therapy in metastatic melanoma: A phase 1 trial. Nat Med. 2025;31(3):881-893. doi: 10.1038/s41591-025-03896-0

 

  1. Liu C, Zheng S, Wang Z, et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond). 2022;42(9):828-847. doi: 10.1002/cac2.12327

 

  1. Pang Z, Lu MM, Zhang Y, et al. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res. 2023;11(1):104. doi: 10.1186/s40364-023-00534-0

 

  1. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-1833. doi: 10.1056/NEJMoa1606774

 

  1. Fujita T, Kuroki T, Hayama N, et al. Pembrolizumab for previously untreated patients with advanced non-small-cell lung cancer and preexisting interstitial lung disease. Intern Med. 2020;59(16):1939-1945. doi: 10.2169/internalmedicine.4552-20

 

  1. Birnboim-Perach R, Benhar I. Using combination therapy to overcome diverse challenges of immune checkpoint inhibitors treatment. Int J Biol Sci. 2024;20(10):3911-3922. doi: 10.7150/ijbs.93697

 

  1. Thind AS, Monga I, Thakur PK, et al. Demystifying emerging bulk RNA-Seq applications: The application and utility of bioinformatic methodology. Brief Bioinform. 2021;22(6):bbab259. doi: 10.1093/bib/bbab259

 

  1. Liu L, Zhao Q, Cheng C, et al. Analysis of Bulk RNA sequencing data reveals novel transcription factors associated with immune infiltration among multiple cancers. Front Immunol. 2021;12:644350. doi: 10.3389/fimmu.2021.644350

 

  1. Estimate. Available from: https://bioinformatics. mdanderson.org/public-software/estimate [Last accessed on 2025 Nov 05].

 

  1. Wahl C, Bochtler P, Chen L, Schirmbeck R, Reimann J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology. 2008;135(3):980-988. doi: 10.1053/j.gastro.2008.05.076

 

  1. Tanemoto S, Sujino T, Miyamoto K, et al. Single-cell transcriptomics of human gut T cells identifies cytotoxic CD4+CD8A+ T cells related to mouse CD4 cytotoxic T cells. Front Immunol. 2022;13:977117. doi: 10.3389/fimmu.2022.977117

 

  1. Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining human regulatory T cells beyond FOXP3: The need to combine phenotype with function. Cells. 2024;13(11):941. doi: 10.3390/cells13110941

 

  1. Khoja L, Atenafu EG, Suciu S, et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: An international rare cancers initiative (IRCI) ocular melanoma study. Ann Oncol. 2019;30(8):1370-1380. doi: 10.1093/annonc/mdz176

 

  1. Memmott RM, Wolfe AR, Carbone DP, Williams TM. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors. J Thorac Oncol. 2021;16(7):1086-1098. doi: 10.1016/j.jtho.2021.03.017

 

  1. Liu S, Wu F, Li X, et al. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/ PD-L1 based immunotherapy in EGFR common mutation NSCLC. Front Oncol. 2021;11:639947. doi: 10.3389/fonc.2021.639947

 

  1. Liu W, Lin N, Feng X, et al. Long-term survival benefit of anti-PD-1 therapy in patients with relapsed or refractory classical Hodgkin lymphoma. Signal Transduct Target Ther. 2023;8(1):356. doi: 10.1038/s41392-023-01600-7

 

  1. Shimabukuro-Vornhagen A, Draube A, Liebig TM, Rothe A, Kochanek M, von Bergwelt-Baildon MS. The immunosuppressive factors IL-10, TGF-β, and VEGF do not affect the antigen-presenting function of CD40-activated B cells. J Exp Clin Cancer Res. 2012;31(1):47. doi: 10.1186/1756-9966-31-47

 

  1. Saleh R, Taha RZ, Toor SM, et al. Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother. 2020;69(10):1989-1999. doi: 10.1007/s00262-020-02593-w

 

  1. Chen H, Ye F, Guo G. Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol. 2019;16(3):242-249. doi: 10.1038/s41423-019-0214-4

 

  1. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022;12(3):e694. doi: 10.1002/ctm2.694

 

  1. Chen Z, Ji Z, Ngiow SF, et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 2019;51(5):840-855.e5. doi: 10.1016/j.immuni.2019.09.013

 

  1. Sekine T, Perez-Potti A, Nguyen S, et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci Immunol. 2020;5(49):eaba7918. doi: 10.1126/sciimmunol.aba7918

 

  1. Van der Heide V, Humblin E, Vaidya A, Kamphorst AO. Advancing beyond the twists and turns of T cell exhaustion in cancer. Sci Transl Med. 2022;14(670):eabo4997. doi: 10.1126/scitranslmed.abo4997

 

  1. Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549-555. doi: 10.1038/s41586-019-1922-8

 

  1. Nellimarla S, Kesanakurti P. Next-generation sequencing: A promising tool for vaccines and other biological products. Vaccines (Basel). 2023;11(3):527. doi: 10.3390/vaccines11030527

 

  1. Castellanos-Rueda R, Di Roberto RB, Schlatter FS, Reddy ST. Leveraging single-cell sequencing for chimeric antigen receptor T cell therapies. Trends Biotechnol. 2021;39(12):1308-1320. doi: 10.1016/j.tibtech.2021.03.005

 

  1. Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu Rev Immunol. 2021;39:583-609. doi: 10.1146/annurev-immunol-110519-071134

 

  1. Hornburg M, Desbois M, Lu S, et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 2021;39(7):928-944.e6. doi: 10.1016/j.ccell.2021.04.004

 

  1. Shashikant T, Ettensohn CA. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol. 2019;151:219-235. doi: 10.1016/bs.mcb.2018.11.002

 

  1. Luo L, Gribskov M, Wang S. Bibliometric review of ATAC-Seq and its application in gene expression. Brief Bioinform. 2022;23(3):bbac061. doi: 10.1093/bib/bbac061

 

  1. Bian X, Wang W, Abudurexiti M, et al. Integration analysis of single-cell multi-omics reveals prostate cancer heterogeneity. Adv Sci (Weinh). 2024;11(18):e2305724. doi: 10.1002/advs.202305724

 

  1. Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology. 2013;139(3):285-293. doi: 10.1111/imm.12100

 

  1. Ellmeier W, Seiser C. Histone deacetylase function in CD4+ T cells. Nat Rev Immunol. 2018;18(10):617-634. doi: 10.1038/s41577-019-0153-4

 

  1. Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931-21936. doi: 10.1073/pnas.1016071107

 

  1. Zhang L, Xiong D, Liu Q, et al. Genome-wide histone H3K27 acetylation profiling identified genes correlated with prognosis in papillary thyroid carcinoma. Front Cell Dev Biol. 2021;9:682561. doi: 10.3389/fcell.2021.682561

 

  1. Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer. 2020;6(7):580-592. doi: 10.1016/j.trecan.2020.02.003

 

  1. Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer. 2021;20(1):171. doi: 10.1186/s12943-021-01464-x

 

  1. Braun DA, Wu CJ. Tumor-infiltrating T cells - A portrait. N Engl J Med. 2022;386(10):992-994. doi: 10.1056/NEJMcibr2119477

 

  1. Zhang H, Yue X, Chen Z, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 2023;22(1):159. doi: 10.1186/s12943-023-01860-5

 

  1. Baek S, Lee I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Comput Struct Biotechnol J. 2020;18:1429-1439. doi: 10.1016/j.csbj.2020.06.012

 

  1. Wu X, Lu M, Yun D, et al. Single-cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Hum Mol Genet. 2022;31(3):321-333. doi: 10.1093/hmg/ddab006

 

  1. Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017;45(1):229-236. doi: 10.1042/BST20160387

 

  1. Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD transcription factors in cancer biology. Cells. 2019;8(6):600. doi: 10.3390/cells8060600

 

  1. Tewari D, Nabavi SF, Nabavi SM, et al. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366-375. doi: 10.1016/j.phrs.2017.09.014

 

  1. Atsaves V, Leventaki V, Rassidakis GZ, Claret FX. AP-1 Transcription factors as regulators of immune responses in cancer. Cancers (Basel). 2019;11(7):1037. doi: 10.3390/cancers11071037

 

  1. Sun Y, Hu L, Tao Z, et al. Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells. Nat Commun. 2022;13(1):6744. doi: 10.1038/s41467-022-34559-0

 

  1. Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res. 2023;13(7):2041-2056. doi: 10.1007/s13346-023-01308-9

 

  1. Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92. doi: 10.3389/fonc.2018.00092

 

  1. Walsh RJ, Sundar R, Lim JSJ. Immune checkpoint inhibitor combinations-current and emerging strategies. Br J Cancer. 2023;128(8):1415-1417. doi: 10.1038/s41416-023-02181-6

 

  1. Allen TA. The role of circulating tumor cells as a liquid biopsy for cancer: Advances, biology, technical challenges, and clinical relevance. Cancers (Basel). 2024;16(7):1377. doi: 10.3390/cancers16071377

 

  1. Qureshi Z, Altaf F, Khanzada M, et al. Liquid biopsies for early detection and monitoring of cancer: Advances, challenges, and future directions. Ann Med Surg (Lond). 2025;87(6):3244-3253. doi: 10.1097/MS9.0000000000002776

 

  1. Wang Y, Li R, Tong R, et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat Immunol. 2025;26(2):308-322. doi: 10.1038/s41590-024-02059-6

 

  1. Wang P, Xu Z, Zhou W, et al. Identification of potential vaccine targets for COVID-19 by combining single-cell and bulk TCR sequencing. Clin Transl Med. 2021;11(5):e430. doi: 10.1002/ctm2.430

 

  1. Depuydt MAC, Schaftenaar FH, Prange KHM, et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat Cardiovasc Res. 2023;2(2):112-125. doi: 10.1038/s44161-022-00208-4

 

  1. Lecuelle J, Boidot R, Mananet H, et al. TCR Clonality and genomic instability signatures as prognostic biomarkers in high grade serous ovarian cancer. Cancers (Basel). 2021;13(17):4394. doi: 10.3390/cancers13174394

 

  1. Finke C, Mohr P. BRAFV600E metastatic melanoma journey: A perspective from a patient and his oncologist. Adv Ther. 2024;41(7):2576-2585. doi: 10.1016/j.bbmt.2020.04.026

 

  1. Leick M, Gittelman RM, Yusko E, et al. T Cell clonal dynamics determined by high-resolution TCR-β sequencing in recipients after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020;26(9):1567-1574. doi: 10.1016/j.bbmt.2020.04.026

 

  1. Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol. 2016;36:73-85. doi: 10.1016/j.intimp.2016.04.018

 

  1. Ochoa MC, Minute L, Rodriguez I, et al. Antibody-dependent cell cytotoxicity: Immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol. 2017;95(4):347-355. doi: 10.1038/icb.2017.6

 

  1. Zuo T, Gautam A, Saghaei S, et al. Somatic hypermutation generates antibody specificities beyond the primary repertoire. Immunity. 2025;58(6):1396-1410.e7. doi: 10.1016/j.immuni.2025.04.014

 

  1. Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148-167. doi: 10.1038/nrc.2017.121

 

  1. Haber L, Olson K, Kelly MP, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep. 2021;11(1):14397. doi: 10.1038/s41598-021-93842-0

 

  1. Yeh CH, Finney J, Okada T, Kurosaki T, Kelsoe G. Primary germinal center-resident T follicular helper cells are a physiologically distinct subset of CXCR5hiPD-1hi T follicular helper cells. Immunity. 2022;55(2):272-289.e7. doi: 10.1016/j.immuni.2021.12.015

 

  1. Wu X, Yang X, Dai Y, et al. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res. 2024;12(1):110. doi: 10.1186/s40364-024-00643-4

 

  1. Perrinjaquet M, Richard Schlegel C. Personalized neoantigen cancer vaccines: An analysis of the clinical and commercial potential of ongoing development programs. Drug Discov Today. 2023;28(11):103773. doi: 10.1016/j.drudis.2023.103773

 

  1. Wu DW, Jia SP, Xing SJ, et al. Personalized neoantigen cancer vaccines: Current progression, challenges and a bright future. Clin Exp Med. 2024;24(1):229. doi: 10.1007/s10238-024-01436-7

 

  1. Chen JW, Shrestha L, Green G, Leier A, Marquez-Lago TT. The hitchhikers’ guide to RNA sequencing and functional analysis. Brief Bioinform. 2023;24(1):bbac529. doi: 10.1093/bib/bbac529

 

  1. Saichi M, Ladjemi MZ, Korniotis S, et al. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol. 2021;23(5):538-551. doi: 10.1038/s41556-021-00681-2

 

  1. Karasaki T, Nagayama K, Kuwano H, et al. Prediction and prioritization of neoantigens: Integration of RNA sequencing data with whole-exome sequencing. Cancer Sci. 2017;108(2):170-177. doi: 10.1111/cas.13131

 

  1. Lu RJ, Liu YT, Huang CW, Yen MR, Lin CY, Chen PY. ATACgraph: Profiling genome-wide chromatin accessibility from ATAC-seq. Front Genet. 2021;11:618478. doi: 10.3389/fgene.2020.618478

 

  1. Zhang H, Qin Z, Yue X, et al. Proteome-wide profiling of transcriptional machinery on accessible chromatin with biotinylated transposons. Sci Adv. 2021;7(43):eabh1022. doi: 10.1126/sciadv.abh1022

 

  1. Satpathy AT, Saligrama N, Buenrostro JD, et al. Transcript-indexed ATAC-seq for precision immune profiling. Nat Med. 2018;24(5):580-590. doi: 10.1038/s41591-018-0008-8

 

  1. Spear TT, Evavold BD, Baker BM, Nishimura MI. Understanding TCR affinity, antigen specificity, and cross-reactivity to improve TCR gene-modified T cells for cancer immunotherapy. Cancer Immunol Immunother. 2019;68(11):1881-1889. doi: 10.1007/s00262-019-02401-0

 

  1. Andreatta M, Gueguen P, Borcherding N, Carmona SJ. T Cell clonal analysis using single-cell RNA sequencing and reference maps. Bio Protoc. 2023;13(16):e4735. doi: 10.21769/BioProtoc.4735

 

  1. Füchsl F, Untch J, Kavaka V, et al. High-resolution profile of neoantigen-specific TCR activation links moderate stimulation to increased resilience of engineered TCR-T cells. Nat Commun. 2024;15(1):10520. doi: 10.1038/s41467-024-53911-0

 

  1. Janelle V, Delisle JS. T-cell dysfunction as a limitation of adoptive immunotherapy: Current concepts and mitigation strategies. Cancers (Basel). 2021;13(4):598. doi: 10.3390/cancers13040598

 

  1. Zebley CC, Zehn D, Gottschalk S, Chi H. T cell dysfunction and therapeutic intervention in cancer. Nat Immunol. 2024;25(8):1344-1354. doi: 10.1038/s41590-024-01896-9

 

  1. Deng W, Ma Y, Su Z, et al. Single-cell RNA-sequencing analyses identify heterogeneity of CD8+ T cell subpopulations and novel therapy targets in melanoma. Mol Ther Oncolytics. 2020;20:105-118. doi: 10.1016/j.omto.2020.12.003

 

  1. Mann JE, Lucca L, Austin MR, et al. ScRNA-seq defines dynamic T-cell subsets in longitudinal colon and peripheral blood samples in immune checkpoint inhibitor-induced colitis. J Immunother Cancer. 2023;11(8):e007358. doi: 10.1136/jitc-2023-007358

 

  1. Lan X, Mi T, Alli S, et al. Antitumor progenitor exhausted CD8+ T cells are sustained by TCR engagement. Nat Immunol. 2024;25(6):1046-1058. doi: 10.1038/s41590-024-01843-8

 

  1. Wu A, Jiang W. Progenitor exhausted T cells contribute to the formation of immunological memory. Nat Rev Immunol. 2025;25(6):405. doi: 10.1038/s41577-025-01182-1

 

  1. Zhang H, Pang Y, Yi L, et al. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics. 2025;17(1):51. doi: 10.1186/s13148-025-01856-6

 

  1. Vatapalli R, Rossi AP, Chan HM, Zhang J. Cancer epigenetic therapy: Recent advances, challenges, and emerging opportunities. Epigenomics. 2025;17(1):59-74. doi: 10.1080/17501911.2024.2430169

 

  1. Hu C, Liu X, Zeng Y, Liu J, Wu F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application. Clin Epigenetics. 2021;13(1):166. doi: 10.1186/s13148-021-01154-x

 

  1. Zhang Z, Wang G, Li Y, et al. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front Pharmacol. 2022;13:1072651. doi: 10.3389/fphar.2022.1072651

 

  1. Li Y, Guo C, Zhang F, et al. DNMT1 inhibition improves the activity of memory-like natural killer cells by enhancing the level of autophagy. Mol Biol Rep. 2024;52(1):68. doi: 10.1007/s11033-024-10181-9

 

  1. Prinzing B, Zebley CC, Petersen CT, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med. 2021;13(620):eabh0272. doi: 10.1126/scitranslmed.abh0272

 

  1. Kim DJ. The Role of the DNA methyltransferase family and the therapeutic potential of DNMT inhibitors in tumor treatment. Curr Oncol. 2025;32(2):88. doi: 10.3390/curroncol32020088

 

  1. Thapa B, Kato S, Nishizaki D, et al. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev. 2024;43(3):1001-1013. doi: 10.1007/s10555-024-10184-9

 

  1. Zhou H, Ma Y, Li Y, et al. Anti-OX40 antibody BAT6026 in patients with advanced solid tumors: A multi-center phase I study. iScience. 2025;28(6):112270. doi: 10.1016/j.isci.2025.112270

 

  1. Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020;10(3):414-433. doi: 10.1016/j.apsb.2019.08.010

 

  1. Marfil-Cantón M, Prados-Carmona A, Cebolla-Verdugo M, Husein-ElAhmed H, Campos F, Ruiz-Villaverde R. Anti-OX40 biological therapies in the treatment of atopic dermatitis: A comprehensive review. J Clin Med. 2024;13(22):6925. doi: 10.3390/jcm13226925

 

  1. Li Z, Liu L, Chen X, et al. A novel anti-OX40 human monoclonal antibody that blocks OX40/OX40L signaling and depletes OX40+ T cells. Mar Life Sci Technol. 2025;7(2):328-339. doi: 10.1007/s42995-025-00284-y

 

  1. De-Kayne R, Frei D, Greenway R, Mendes SL, Retel C, Feulner PGD. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol Ecol Resour. 2021;21(3):653-660. doi: 10.1111/1755-0998.13309

 

  1. Zhang T, Zhou J, Gao W, Jia Y, Wei Y, Wang G. Complex genome assembly based on long-read sequencing. Brief Bioinform. 2022;23(5):bbac305. doi: 10.1093/bib/bbac305

 

  1. Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson ARA. NeoPredPipe: High-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics. 2019;20(1):264. doi: 10.1186/s12859-019-2876-4

 

  1. Chuang CC, Liu YC, Ou YY. DeepNeoAG: Neoantigen epitope prediction from melanoma antigens using a synergistic deep learning model combining protein language models and multi-window scanning convolutional neural networks. Int J Biol Macromol. 2024;281(Pt 1):136252. doi: 10.1016/j.ijbiomac.2024.136252

 

  1. Shao Y, Gao Y, Wu LY, Ge SG, Wen PB. TumorAgDB1.0: Tumor neoantigen database platform. Database (Oxford). 2025;2025:baaf010. doi: 10.1093/database/baaf010

 

  1. Spjuth O, Bongcam-Rudloff E, Hernández GC, et al. Experiences with workflows for automating data-intensive bioinformatics. Biol Direct. 2015;10:43. doi: 10.1186/s13062-015-0071-8

 

  1. Chen X, Chang JT. Planning bioinformatics workflows using an expert system. Bioinformatics. 2017;33(8):1210-1215. doi: 10.1093/bioinformatics/btw817

 

  1. Bageritz J, Raddi G. Single-Cell RNA sequencing with drop-seq. Methods Mol Biol. 2019;1979:73-85. doi: 10.1007/978-1-4939-9240-9_6

 

  1. Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631-643.e4. doi: 10.1016/j.molcel.2017.01.023

 

  1. Ju S, Chen C, Zhang J, et al. Detection of circulating tumor cells: Opportunities and challenges. Biomark Res. 2022;10(1):58. doi: 10.1186/s40364-022-00403-2

 

  1. Zhang Y, Scholten D, Qiang W, et al. Circulation tumor cell isolation and enrichment technologies. Int Rev Cell Mol Biol. 2025;392:119-149. doi: 10.1016/bs.ircmb.2025.01.009

 

  1. Zaki HA, Albaroudi B, Shaban EE, et al. Advancement in pleura effusion diagnosis: A systematic review and meta-analysis of point-of-care ultrasound versus radiographic thoracic imaging. Ultrasound J. 2024;16(1):3. doi: 10.1186/s13089-023-00356-z

 

  1. Tanjo T, Kawai Y, Tokunaga K, Ogasawara O, Nagasaki M. Practical guide for managing large-scale human genome data in research. J Hum Genet. 2021;66(1):39-52. doi: 10.1038/s10038-020-00862-1

 

  1. Spisarová M, Študentová H, Holá K, Melichar B. Pleural effusion as a sample matrix for laboratory analyses in cancer management: A perspective. Clin Chem Lab Med. 2025;63(6):1069-1074. doi: 10.1515/cclm-2025-0197

 

  1. Kumar P, Paul RK, Roy HS, Yeasin M, Ajit, Paul AK. Big data analysis in computational biology and bioinformatics. Methods Mol Biol. 2024;2719:181-197. doi: 10.1007/978-1-0716-3461-5_11

 

  1. Shafin K, Pesout T, Chang PC, et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat Methods. 2021;18(11):1322-1332. doi: 10.1038/s41592-021-01299-w

 

  1. Pereira WJ, Almeida FM, Conde D, et al. Asc-Seurat: Analytical single-cell Seurat-based web application. BMC Bioinformatics. 2021;22(1):556. doi: 10.1186/s12859-021-04472-2

 

  1. Hippen AA, Omran DK, Weber LM, et al. Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors. Genome Biol. 2023;24(1):239. doi: 10.1186/s13059-023-03077-7

 

  1. Zhu L, Jiang M, Wang H, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann Transl Med. 2021;9(16):1351. doi: 10.21037/atm-21-1948

 

  1. Scheibner J, Raisaro JL, Troncoso-Pastoriza JR, et al. Revolutionizing medical data sharing using advanced privacy-enhancing technologies: Technical, legal, and ethical synthesis. J Med Internet Res. 2021;23(2):e25120. doi: 10.2196/25120

 

  1. Jackson BR, Kaplan B, Schreiber R, et al. Ethical dimensions of clinical data sharing by U.S. health care organizations for purposes beyond direct patient care: Interviews with health care leaders. Appl Clin Inform. 2025;16(1):90-100. doi: 10.1055/a-2432-0329

 

  1. Li L, Sun M, Wang J, Wan S. Multi-omics based artificial intelligence for cancer research. Adv Cancer Res. 2024;163:303-356. doi: 10.1016/bs.acr.2024.06.005

 

  1. Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021;19:3735-3746. doi: 10.1016/j.csbj.2021.06.030

 

  1. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Brief Bioinform. 2022;23(1):bbab454. doi: 10.1093/bib/bbab454

 

  1. Cao J, Li C, Cui Z, et al. Spatial transcriptomics: A powerful tool in disease understanding and drug discovery. Theranostics. 2024;14(7):2946-2968. doi: 10.7150/thno.95908

 

  1. Peng Z, Ye M, Ding H, Feng Z, Hu K. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med. 2022;20(1):302. doi: 10.1186/s12967-022-03510-8

 

  1. Wang C, Lu M, Chen C, et al. Integrating scRNA-seq and Visium HD for the analysis of the tumor microenvironment in the progression of colorectal cancer. Int Immunopharmacol. 2025;145:113752. doi: 10.1016/j.intimp.2024.113752

 

  1. Pu Y, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 2022;13:874589. doi: 10.3389/fimmu.2022.874589

 

  1. Wang B, Cheng D, Ma D, et al. Mutual regulation of PD-L1 immunosuppression between tumor-associated macrophages and tumor cells: A critical role for exosomes. Cell Commun Signal. 2024;22(1):21. doi: 10.1186/s12964-024-01473-5

 

  1. Wang L, Guo W, Guo Z, et al. PD-L1-expressing tumor-associated macrophages are immunostimulatory and associate with good clinical outcome in human breast cancer. Cell Rep Med. 2024;5(2):101420. doi: 10.1016/j.xcrm.2024.101420

 

  1. Lammi MJ, Qu C. Spatial transcriptomics, proteomics, and epigenomics as tools in tissue engineering and regenerative medicine. Bioengineering (Basel). 2024;11(12):1235. doi: 10.3390/bioengineering11121235

 

  1. Breckels LM, Hutchings C, Ingole KD, et al. Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations. Cell Chem Biol. 2024;31(9):1665-1687. doi: 10.1016/j.chembiol.2024.08.008

 

  1. Wu M, Tao H, Xu T, et al. Spatial proteomics: Unveiling the multidimensional landscape of protein localization in human diseases. Proteome Sci. 2024;22(1):7. doi: 10.1186/s12953-024-00231-2

 

  1. Horvath P, Coscia F. Spatial proteomics in translational and clinical research. Mol Syst Biol. 2025;21(6):526-530. doi: 10.1038/s44320-025-00101-9

 

  1. Zhang D, Deng Y, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature. 2023;616(7955):113-122. doi: 10.1038/s41586-023-05795-1

 

  1. Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell. 2022;185(23):4448-4464.e17. doi: 10.1016/j.cell.2022.09.035

 

  1. Pandey S, Yadav P. Liquid biopsy in cancer management: Integrating diagnostics and clinical applications. Pract Lab Med. 2024;43:e00446. doi: 10.1016/j.plabm.2024.e00446

 

  1. Adashek JJ, Janku F, Kurzrock R. Signed in blood: Circulating tumor DNA in cancer diagnosis, treatment and screening. Cancers (Basel). 2021;13(14):3600. doi: 10.3390/cancers13143600

 

  1. Parums DV. A review of circulating tumor DNA (ctDNA) and the liquid biopsy in cancer diagnosis, screening, and monitoring treatment response. Med Sci Monit. 2025;31:e949300. doi: 10.12659/MSM.949300

 

  1. Guigal-Stephan N, Lockhart B, Moser T, Heitzer E. A perspective review on the systematic implementation of ctDNA in phase I clinical trial drug development. J Exp Clin Cancer Res. 2025;44(1):79. doi: 10.1186/s13046-025-03328-4

 

  1. Ernst SM, Aldea M, von der Thüsen JH, et al. Utilizing ctDNA to discover mechanisms of resistance to targeted therapies in patients with metastatic NSCLC: Towards more informative trials. Nat Rev Clin Oncol. 2025;22(5):371-378. doi: 10.1038/s41571-025-01011-3

 

  1. Rapanotti MC, Cenci T, Scioli MG, et al. Circulating tumor cells: Origin, role, current applications, and future perspectives for personalized medicine. Biomedicines. 2024;12(9):2137. doi: 10.3390/biomedicines12092137

 

  1. Eslami-S Z, Cortés-Hernández LE, Thomas F, Pantel K, Alix-Panabières C. Functional analysis of circulating tumour cells: The KEY to understand the biology of the metastatic cascade. Br J Cancer. 2022;127(5):800-810. doi: 10.1038/s41416-022-01819-1

 

  1. Sajdik C, Schuster E, Holzer B, et al. Comparison of microfluidic platforms for the enrichment of circulating tumor cells in breast cancer patients. Breast Cancer Res Treat. 2022;196(1):75-85. doi: 10.1016/j.addr.2018.01.011

 

  1. Riethdorf S, O’Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev. 2018;125:102-121. doi: 10.1016/j.addr.2018.01.011

 

  1. Miller MC, Robinson PS, Wagner C, O’Shannessy DJ. The Parsortix™ cell separation system-a versatile liquid biopsy platform. Cytometry A. 2018;93(12):1234-1239. doi: 10.1002/cyto.a.23571

 

  1. Chopra H, Annu, Shin DK, et al. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int J Surg. 2023;109(12):4211-4220. doi: 10.1097/JS9.0000000000000705

 

  1. Li T, Li Y, Zhu X, et al. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin Cancer Biol. 2023;91:50-69. doi: 10.1016/j.semcancer.2023.02.007

 

  1. Müller M, Huber F, Arnaud M, et al. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction. Immunity. 2023;56(11):2650-2663.e6. doi: 10.1016/j.immuni.2023.09.002

 

  1. Machaca V, Goyzueta V, Cruz MG, et al. Transformers meets neoantigen detection: A systematic literature review. J Integr Bioinform. 2024;21(2):20230043. doi: 10.1515/jib-2023-0043

 

  1. Umirzakova S, Muksimova S, Baltayev J, Cho YI. Force map-enhanced segmentation of a lightweight model for the early detection of cervical cancer. Diagnostics (Basel). 2025;15(5):513. doi: 10.3390/diagnostics15050513

 

  1. He XH, Li JR, Xu J, et al. AI-driven antibody design with generative diffusion models: current insights and future directions. Acta Pharmacol Sin. 2025;46(3):565-574. doi: 10.1038/s41401-024-01380-y

 

  1. Oulmalme C, Nakouri H, Jaafar F. A systematic review of generative AI approaches for medical image enhancement: Comparing GANs, transformers, and diffusion models. Int J Med Inform. 2025;199:105903. doi: 10.1016/j.ijmedinf.2025.105903

 

  1. Arango-Argoty G, Bikiel DE, Sun GJ, et al. AI-driven predictive biomarker discovery with contrastive learning to improve clinical trial outcomes. Cancer Cell. 2025;43(5):875-890.e8. doi: 10.1016/j.ccell.2025.03.029

 

  1. Zhang T, Zhang L, Payne PRO, Li F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol. 2021;2194:223-238. doi: 10.1007/978-1-0716-0849-4_12

 

  1. Chen J, Lin A, Jiang A, et al. Computational frameworks transform antagonism to synergy in optimizing combination therapies. NPJ Digit Med. 2025;8(1):44. doi: 10.1038/s41746-025-01435-2

 

  1. He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 2023;88:187-200. doi: 10.1016/j.semcancer.2022.12.009

 

  1. Tong L, Shi W, Isgut M, et al. Integrating multi-Omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng. 2024;17:80-97. doi: 10.1109/RBME.2023.3324264

 

  1. Liu Y, Singh AK. Microfluidic platforms for single-cell protein analysis. J Lab Autom. 2013;18(6):446-454. doi: 10.1177/2211068213494389

 

  1. Liu L, Bi M, Wang Y, et al. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale. 2021;13(46):19352-19366. doi: 10.1039/d1nr06195j

 

  1. Adamson B, Norman TM, Jost M, et al. A Multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 2016;167(7):1867-1882.e21. doi: 10.1016/j.cell.2016.11.048

 

  1. Cheng J, Lin G, Wang T, et al. Massively parallel CRISPR-based genetic perturbation screening at single-cell resolution. Adv Sci (Weinh). 2023;10(4):e2204484. doi: 10.1002/advs.202204484

 

  1. Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol (Weinh). 2021;5(6):e2000024. doi: 10.1002/adbi.202000024

 

  1. Du Y, Wang YR, Bao QY, et al. Personalized vascularized tumor organoid-on-a-chip for tumor metastasis and therapeutic targeting assessment. Adv Mater. 2025;37(6):e2412815. doi: 10.1002/adma.202412815

 

  1. Yuan X, Ouaskioud O, Yin X, et al. Epidermal wearable biosensors for the continuous monitoring of biomarkers of chronic disease in interstitial fluid. Micromachines (Basel). 2023;14(7):1452. doi: 10.3390/mi14071452

 

  1. Xian X. Frontiers of wearable biosensors for human health monitoring. Biosensors (Basel). 2023;13(11):964. doi: 10.3390/bios13110964
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing