High-throughput sequencing unveils tumor-immune interactions: From genomic alterations to clinical translation
High-throughput sequencing (HTS) has revolutionized tumor immunology by enabling precise dissection of tumor-immune interactions, directly informing the development of precision immunotherapies. This review highlights key advances in HTS technologies—including whole genome sequencing (WGS), RNA sequencing, assay for transposase-accessible chromatin using sequencing, and single-cell immunogenomics (scTCR-seq/scBCR-seq)—and their clinical translation in personalized cancer vaccines, engineered T-cell therapies, and combination regimens. We discuss how these tools decode tumor-specific mutations, immune evasion mechanisms, and therapeutic targets, while addressing challenges in data standardization, sample processing, and computational integration. Emerging breakthroughs such as spatial multiomics, real-time monitoring, and artificial intelligence-driven discovery are transforming the field by enabling dynamic, personalized treatment strategies. Finally, we outline future directions to overcome current barriers and expand equitable access to HTS-driven precision immunotherapies.
- Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58(4):586-597. doi: 10.1016/j.molcel.2015.05.004
- Lee JY. The principles and applications of high-throughput sequencing technologies. Dev Reprod. 2023;27(1):9-24. doi: 10.12717/DR.2023.27.1.9
- Vitorino R. Transforming clinical research: The power of high-throughput omics integration. Proteomes. 2024;12(3):25. doi: 10.3390/proteomes12030025
- Dongare DB, Nishad SS, Mastoli SY, Saraf SA, Srivastava N, Dey A. High-throughput sequencing: A breakthrough in molecular diagnosis for precision medicine. Funct Integr Genomics. 2025;25(1):22. doi: 10.1007/s10142-025-01529-w
- Zhao EY, Jones M, Jones SJM. Whole-genome sequencing in cancer. Cold Spring Harb Perspect Med. 2019;9(3):a034579. doi: 10.1101/cshperspect.a034579
- Brlek P, Bulić L, Bračić M, et al. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells. 2024;13(6):504. doi: 10.3390/cells13060504
- Akhoundova D, Rubin MA. The grand challenge of moving cancer whole-genome sequencing into the clinic. Nat Med. 2024;30(1):39-40. doi: 10.1038/s41591-023-02697-7
- Suvà ML, Tirosh I. Single-cell RNA sequencing in cancer: Lessons learned and emerging challenges. Mol Cell. 2019;75(1):7-12. doi: 10.1016/j.molcel.2019.05.003
- Tirosh I, Suva ML. Cancer cell states: Lessons from ten years of single-cell RNA-sequencing of human tumors. Cancer Cell. 2024;42(9):1497-1506. doi: 10.1016/j.ccell.2024.08.005
- Zhang L, Yang Y, Tan J. Applications and emerging challenges of single-cell RNA sequencing technology in tumor drug discovery. Drug Discov Today. 2025;30(2):104290. doi: 10.1016/j.drudis.2025.104290
- Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas. 2019;156:29. doi: 10.1186/s41065-019-0105-9
- Sahu SK, Basu A, Tiwari VK. Measuring chromatin accessibility: ATAC-Seq. Methods Mol Biol. 2021;2351:105-121. doi: 10.1007/978-1-0716-1597-3_6
- Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022;17(6):1518-1552. doi: 10.1038/s41596-022-00692-9
- Addala V, Newell F, Pearson JV, et al. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol. 2024;21(1):28-46. doi: 10.1038/s41571-023-00830-6
- Wu Y, Wu F, Li J, Zhou H, Ma L, Yao X. scTCR-seq and HTS reveal a special novel TRBD2-TRBJ1 rearrangement in mammalian TRB CDR3 repertoire. BMC Genomics. 2025;26(1):341. doi: 10.1186/s12864-025-11506-z
- Zhu L, Peng Q, Wu Y, Yao X. scBCR-seq revealed a special and novel IG H&L V(D)J allelic inclusion rearrangement and the high proportion dual BCR expressing B cells. Cell Mol Life Sci. 2023;80(11):319. doi: 10.1007/s00018-023-04973-8
- Nguyen BQT, Tran TPD, Nguyen HT, et al. Improvement in neoantigen prediction via integration of RNA sequencing data for variant calling. Front Immunol. 2023;14:1251603. doi: 10.3389/fimmu.2023.1251603
- Höllein A, Twardziok SO, Walter W, et al. The combination of WGS and RNA-Seq is superior to conventional diagnostic tests in multiple myeloma: Ready for prime time? Cancer Genet. 2020;242:15-24. doi: 10.1016/j.cancergen.2020.01.001
- Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods. 2021;18(8):881-892. doi: 10.1038/s41592-021-01201-8
- Zhang C, Li S, Shen L, et al. Single-cell sequencing of tumour infiltrating T cells efficiently identifies tumour-specific T cell receptors based on the T cell activation score. Cancer Immunol Immunother. 2024;73(7):123. doi: 10.1007/s00262-024-03710-9
- Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta. 2021;1141:144-162. doi: 10.1016/j.aca.2020.10.038
- Ivanisevic T, Sewduth RN. Multi-omics integration for the design of novel therapies and the identification of novel biomarkers. Proteomes. 2023;11(4):34. doi: 10.3390/proteomes11040034
- Kosugi S, Terao C. Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data. Hum Genome Var. 2024;11(1):18. doi: 10.1038/s41439-024-00276-x
- Coutelier M, Holtgrewe M, Jäger M, et al. Combining callers improves the detection of copy number variants from whole-genome sequencing. Eur J Hum Genet. 2022;30(2):178-186. doi: 10.1038/s41431-021-00983-x
- Lu Y, Li M, Gao Z, et al. Advances in whole genome sequencing: Methods, tools, and applications in population genomics. Int J Mol Sci. 2025;26(1):372. doi: 10.3390/ijms26010372
- Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 2019;19(1):359. doi: 10.1186/s12885-019-5572-x
- Wang S, He Z, Wang X, Li H, Liu XS. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. Elife. 2019;8:e49020. doi: 10.7554/eLife.49020
- Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer. 2019;19(8):465-478. doi: 10.1038/s41568-019-0162-4
- Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: Key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121-32. doi: 10.1038/nrg3642
- Borges MG, Rocha CS, Carvalho BS, Lopes-Cendes I. Methodological differences can affect sequencing depth with a possible impact on the accuracy of genetic diagnosis. Genet Mol Biol. 2020;43(2):e20190270. doi: 10.1590/1678-4685-GMB-2019-0270
- Do Valle ÍF, Giampieri E, Simonetti G, et al. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinformatics. 2016;17(Suppl 12):341. doi: 10.1186/s12859-016-1190-7
- Tate JG, Bamford S, Jubb HC, et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941-D947. doi: 10.1093/nar/gky1015
- Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform. 2021;22(3):bbaa148. doi: 10.1093/bib/bbaa148
- Phan L, Zhang H, Wang Q, et al. The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 2025;53(D1):D925-D931. doi: 10.1093/nar/gkae977
- Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10(12):1808-1825. doi: 10.1158/2159-8290.CD-20-0522
- Guan H, Wu Y, Li LU, et al. Tumor neoantigens: Novel strategies for application of cancer immunotherapy. Oncol Res. 2023;31(4):437-448. doi: 10.32604/or.2023.029924
- Kim JY, Kronbichler A, Eisenhut M, et al. Tumor mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers (Basel). 2019;11(11):1798. doi: 10.3390/cancers11111798
- Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022; 23(5):660-670. doi: 10.1038/s41590-022-01141-1
- Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39(2):154-173. doi: 10.1016/j.ccell.2020.10.001
- Hu C, Zhao L, Liu W, et al. Genomic profiles and their associations with TMB, PD-L1 expression, and immune cell infiltration landscapes in synchronous multiple primary lung cancers. J Immunother Cancer. 2021;9(12):e003773. doi: 10.1136/jitc-2021-003773
- Lu YC, Zheng Z, Robbins PF, et al. An efficient single-Cell RNA-seq approach to identify neoantigen-specific T cell receptors. Mol Ther. 2018;26(2):379-389. doi: 10.1016/j.ymthe.2017.10.018
- Rieder D, Fotakis G, Ausserhofer M, et al. nextNEOpi: A comprehensive pipeline for computational neoantigen prediction. Bioinformatics. 2022;38(4):1131-1132. doi: 10.1093/bioinformatics/btab759
- Tan X, Xu L, Jian X, et al. PGNneo: A proteogenomics-based neoantigen prediction pipeline in noncoding regions. Cells. 2023;12(5):782. doi: 10.3390/cells12050782
- Shao XM, Bhattacharya R, Huang J, et al. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. Cancer Immunol Res. 2020;8(3):396-408. doi: 10.1158/2326-6066.CIR-19-0464
- Hundal J, Kiwala S, McMichael J, et al. pVACtools: A Computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8(3):409-420. doi: 10.1158/2326-6066.CIR-19-0401
- Schmidt J, Smith AR, Magnin M, et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep Med. 2021;2(2):100194. doi: 10.1016/j.xcrm.2021.100194
- Bouvet M, Reid TR, Larson C, Oronsky B, Carter C, Morris JC. Extended treatment with MY-NEOVAX, personalized neoantigen-enhanced oncolytic viruses, for two end-stage cancer patients. Oxf Med Case Reports. 2019;2019(11):461-463. doi: 10.1093/omcr/omz105
- Huff AL, Longway G, Mitchell JT, et al. CD4 T cell-activating neoantigens enhance personalized cancer vaccine efficacy. JCI Insight. 2023;8(23):e174027. doi: 10.1172/jci.insight.174027
- Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144-150. doi: 10.1038/s41586-023-06063-y
- Borgers JSW, Lenkala D, Kohler V, et al. Personalized, autologous neoantigen-specific T cell therapy in metastatic melanoma: A phase 1 trial. Nat Med. 2025;31(3):881-893. doi: 10.1038/s41591-025-03896-0
- Liu C, Zheng S, Wang Z, et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond). 2022;42(9):828-847. doi: 10.1002/cac2.12327
- Pang Z, Lu MM, Zhang Y, et al. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res. 2023;11(1):104. doi: 10.1186/s40364-023-00534-0
- Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823-1833. doi: 10.1056/NEJMoa1606774
- Fujita T, Kuroki T, Hayama N, et al. Pembrolizumab for previously untreated patients with advanced non-small-cell lung cancer and preexisting interstitial lung disease. Intern Med. 2020;59(16):1939-1945. doi: 10.2169/internalmedicine.4552-20
- Birnboim-Perach R, Benhar I. Using combination therapy to overcome diverse challenges of immune checkpoint inhibitors treatment. Int J Biol Sci. 2024;20(10):3911-3922. doi: 10.7150/ijbs.93697
- Thind AS, Monga I, Thakur PK, et al. Demystifying emerging bulk RNA-Seq applications: The application and utility of bioinformatic methodology. Brief Bioinform. 2021;22(6):bbab259. doi: 10.1093/bib/bbab259
- Liu L, Zhao Q, Cheng C, et al. Analysis of Bulk RNA sequencing data reveals novel transcription factors associated with immune infiltration among multiple cancers. Front Immunol. 2021;12:644350. doi: 10.3389/fimmu.2021.644350
- Estimate. Available from: https://bioinformatics. mdanderson.org/public-software/estimate [Last accessed on 2025 Nov 05].
- Wahl C, Bochtler P, Chen L, Schirmbeck R, Reimann J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology. 2008;135(3):980-988. doi: 10.1053/j.gastro.2008.05.076
- Tanemoto S, Sujino T, Miyamoto K, et al. Single-cell transcriptomics of human gut T cells identifies cytotoxic CD4+CD8A+ T cells related to mouse CD4 cytotoxic T cells. Front Immunol. 2022;13:977117. doi: 10.3389/fimmu.2022.977117
- Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining human regulatory T cells beyond FOXP3: The need to combine phenotype with function. Cells. 2024;13(11):941. doi: 10.3390/cells13110941
- Khoja L, Atenafu EG, Suciu S, et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: An international rare cancers initiative (IRCI) ocular melanoma study. Ann Oncol. 2019;30(8):1370-1380. doi: 10.1093/annonc/mdz176
- Memmott RM, Wolfe AR, Carbone DP, Williams TM. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors. J Thorac Oncol. 2021;16(7):1086-1098. doi: 10.1016/j.jtho.2021.03.017
- Liu S, Wu F, Li X, et al. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/ PD-L1 based immunotherapy in EGFR common mutation NSCLC. Front Oncol. 2021;11:639947. doi: 10.3389/fonc.2021.639947
- Liu W, Lin N, Feng X, et al. Long-term survival benefit of anti-PD-1 therapy in patients with relapsed or refractory classical Hodgkin lymphoma. Signal Transduct Target Ther. 2023;8(1):356. doi: 10.1038/s41392-023-01600-7
- Shimabukuro-Vornhagen A, Draube A, Liebig TM, Rothe A, Kochanek M, von Bergwelt-Baildon MS. The immunosuppressive factors IL-10, TGF-β, and VEGF do not affect the antigen-presenting function of CD40-activated B cells. J Exp Clin Cancer Res. 2012;31(1):47. doi: 10.1186/1756-9966-31-47
- Saleh R, Taha RZ, Toor SM, et al. Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother. 2020;69(10):1989-1999. doi: 10.1007/s00262-020-02593-w
- Chen H, Ye F, Guo G. Revolutionizing immunology with single-cell RNA sequencing. Cell Mol Immunol. 2019;16(3):242-249. doi: 10.1038/s41423-019-0214-4
- Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022;12(3):e694. doi: 10.1002/ctm2.694
- Chen Z, Ji Z, Ngiow SF, et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 2019;51(5):840-855.e5. doi: 10.1016/j.immuni.2019.09.013
- Sekine T, Perez-Potti A, Nguyen S, et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci Immunol. 2020;5(49):eaba7918. doi: 10.1126/sciimmunol.aba7918
- Van der Heide V, Humblin E, Vaidya A, Kamphorst AO. Advancing beyond the twists and turns of T cell exhaustion in cancer. Sci Transl Med. 2022;14(670):eabo4997. doi: 10.1126/scitranslmed.abo4997
- Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577(7791):549-555. doi: 10.1038/s41586-019-1922-8
- Nellimarla S, Kesanakurti P. Next-generation sequencing: A promising tool for vaccines and other biological products. Vaccines (Basel). 2023;11(3):527. doi: 10.3390/vaccines11030527
- Castellanos-Rueda R, Di Roberto RB, Schlatter FS, Reddy ST. Leveraging single-cell sequencing for chimeric antigen receptor T cell therapies. Trends Biotechnol. 2021;39(12):1308-1320. doi: 10.1016/j.tibtech.2021.03.005
- Ren X, Zhang L, Zhang Y, Li Z, Siemers N, Zhang Z. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu Rev Immunol. 2021;39:583-609. doi: 10.1146/annurev-immunol-110519-071134
- Hornburg M, Desbois M, Lu S, et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 2021;39(7):928-944.e6. doi: 10.1016/j.ccell.2021.04.004
- Shashikant T, Ettensohn CA. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol. 2019;151:219-235. doi: 10.1016/bs.mcb.2018.11.002
- Luo L, Gribskov M, Wang S. Bibliometric review of ATAC-Seq and its application in gene expression. Brief Bioinform. 2022;23(3):bbac061. doi: 10.1093/bib/bbac061
- Bian X, Wang W, Abudurexiti M, et al. Integration analysis of single-cell multi-omics reveals prostate cancer heterogeneity. Adv Sci (Weinh). 2024;11(18):e2305724. doi: 10.1002/advs.202305724
- Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology. 2013;139(3):285-293. doi: 10.1111/imm.12100
- Ellmeier W, Seiser C. Histone deacetylase function in CD4+ T cells. Nat Rev Immunol. 2018;18(10):617-634. doi: 10.1038/s41577-019-0153-4
- Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931-21936. doi: 10.1073/pnas.1016071107
- Zhang L, Xiong D, Liu Q, et al. Genome-wide histone H3K27 acetylation profiling identified genes correlated with prognosis in papillary thyroid carcinoma. Front Cell Dev Biol. 2021;9:682561. doi: 10.3389/fcell.2021.682561
- Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer. 2020;6(7):580-592. doi: 10.1016/j.trecan.2020.02.003
- Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer. 2021;20(1):171. doi: 10.1186/s12943-021-01464-x
- Braun DA, Wu CJ. Tumor-infiltrating T cells - A portrait. N Engl J Med. 2022;386(10):992-994. doi: 10.1056/NEJMcibr2119477
- Zhang H, Yue X, Chen Z, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 2023;22(1):159. doi: 10.1186/s12943-023-01860-5
- Baek S, Lee I. Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Comput Struct Biotechnol J. 2020;18:1429-1439. doi: 10.1016/j.csbj.2020.06.012
- Wu X, Lu M, Yun D, et al. Single-cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Hum Mol Genet. 2022;31(3):321-333. doi: 10.1093/hmg/ddab006
- Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017;45(1):229-236. doi: 10.1042/BST20160387
- Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD transcription factors in cancer biology. Cells. 2019;8(6):600. doi: 10.3390/cells8060600
- Tewari D, Nabavi SF, Nabavi SM, et al. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366-375. doi: 10.1016/j.phrs.2017.09.014
- Atsaves V, Leventaki V, Rassidakis GZ, Claret FX. AP-1 Transcription factors as regulators of immune responses in cancer. Cancers (Basel). 2019;11(7):1037. doi: 10.3390/cancers11071037
- Sun Y, Hu L, Tao Z, et al. Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells. Nat Commun. 2022;13(1):6744. doi: 10.1038/s41467-022-34559-0
- Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res. 2023;13(7):2041-2056. doi: 10.1007/s13346-023-01308-9
- Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92. doi: 10.3389/fonc.2018.00092
- Walsh RJ, Sundar R, Lim JSJ. Immune checkpoint inhibitor combinations-current and emerging strategies. Br J Cancer. 2023;128(8):1415-1417. doi: 10.1038/s41416-023-02181-6
- Allen TA. The role of circulating tumor cells as a liquid biopsy for cancer: Advances, biology, technical challenges, and clinical relevance. Cancers (Basel). 2024;16(7):1377. doi: 10.3390/cancers16071377
- Qureshi Z, Altaf F, Khanzada M, et al. Liquid biopsies for early detection and monitoring of cancer: Advances, challenges, and future directions. Ann Med Surg (Lond). 2025;87(6):3244-3253. doi: 10.1097/MS9.0000000000002776
- Wang Y, Li R, Tong R, et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat Immunol. 2025;26(2):308-322. doi: 10.1038/s41590-024-02059-6
- Wang P, Xu Z, Zhou W, et al. Identification of potential vaccine targets for COVID-19 by combining single-cell and bulk TCR sequencing. Clin Transl Med. 2021;11(5):e430. doi: 10.1002/ctm2.430
- Depuydt MAC, Schaftenaar FH, Prange KHM, et al. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat Cardiovasc Res. 2023;2(2):112-125. doi: 10.1038/s44161-022-00208-4
- Lecuelle J, Boidot R, Mananet H, et al. TCR Clonality and genomic instability signatures as prognostic biomarkers in high grade serous ovarian cancer. Cancers (Basel). 2021;13(17):4394. doi: 10.3390/cancers13174394
- Finke C, Mohr P. BRAFV600E metastatic melanoma journey: A perspective from a patient and his oncologist. Adv Ther. 2024;41(7):2576-2585. doi: 10.1016/j.bbmt.2020.04.026
- Leick M, Gittelman RM, Yusko E, et al. T Cell clonal dynamics determined by high-resolution TCR-β sequencing in recipients after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020;26(9):1567-1574. doi: 10.1016/j.bbmt.2020.04.026
- Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol. 2016;36:73-85. doi: 10.1016/j.intimp.2016.04.018
- Ochoa MC, Minute L, Rodriguez I, et al. Antibody-dependent cell cytotoxicity: Immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol. 2017;95(4):347-355. doi: 10.1038/icb.2017.6
- Zuo T, Gautam A, Saghaei S, et al. Somatic hypermutation generates antibody specificities beyond the primary repertoire. Immunity. 2025;58(6):1396-1410.e7. doi: 10.1016/j.immuni.2025.04.014
- Burger JA, Wiestner A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat Rev Cancer. 2018;18(3):148-167. doi: 10.1038/nrc.2017.121
- Haber L, Olson K, Kelly MP, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep. 2021;11(1):14397. doi: 10.1038/s41598-021-93842-0
- Yeh CH, Finney J, Okada T, Kurosaki T, Kelsoe G. Primary germinal center-resident T follicular helper cells are a physiologically distinct subset of CXCR5hiPD-1hi T follicular helper cells. Immunity. 2022;55(2):272-289.e7. doi: 10.1016/j.immuni.2021.12.015
- Wu X, Yang X, Dai Y, et al. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res. 2024;12(1):110. doi: 10.1186/s40364-024-00643-4
- Perrinjaquet M, Richard Schlegel C. Personalized neoantigen cancer vaccines: An analysis of the clinical and commercial potential of ongoing development programs. Drug Discov Today. 2023;28(11):103773. doi: 10.1016/j.drudis.2023.103773
- Wu DW, Jia SP, Xing SJ, et al. Personalized neoantigen cancer vaccines: Current progression, challenges and a bright future. Clin Exp Med. 2024;24(1):229. doi: 10.1007/s10238-024-01436-7
- Chen JW, Shrestha L, Green G, Leier A, Marquez-Lago TT. The hitchhikers’ guide to RNA sequencing and functional analysis. Brief Bioinform. 2023;24(1):bbac529. doi: 10.1093/bib/bbac529
- Saichi M, Ladjemi MZ, Korniotis S, et al. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol. 2021;23(5):538-551. doi: 10.1038/s41556-021-00681-2
- Karasaki T, Nagayama K, Kuwano H, et al. Prediction and prioritization of neoantigens: Integration of RNA sequencing data with whole-exome sequencing. Cancer Sci. 2017;108(2):170-177. doi: 10.1111/cas.13131
- Lu RJ, Liu YT, Huang CW, Yen MR, Lin CY, Chen PY. ATACgraph: Profiling genome-wide chromatin accessibility from ATAC-seq. Front Genet. 2021;11:618478. doi: 10.3389/fgene.2020.618478
- Zhang H, Qin Z, Yue X, et al. Proteome-wide profiling of transcriptional machinery on accessible chromatin with biotinylated transposons. Sci Adv. 2021;7(43):eabh1022. doi: 10.1126/sciadv.abh1022
- Satpathy AT, Saligrama N, Buenrostro JD, et al. Transcript-indexed ATAC-seq for precision immune profiling. Nat Med. 2018;24(5):580-590. doi: 10.1038/s41591-018-0008-8
- Spear TT, Evavold BD, Baker BM, Nishimura MI. Understanding TCR affinity, antigen specificity, and cross-reactivity to improve TCR gene-modified T cells for cancer immunotherapy. Cancer Immunol Immunother. 2019;68(11):1881-1889. doi: 10.1007/s00262-019-02401-0
- Andreatta M, Gueguen P, Borcherding N, Carmona SJ. T Cell clonal analysis using single-cell RNA sequencing and reference maps. Bio Protoc. 2023;13(16):e4735. doi: 10.21769/BioProtoc.4735
- Füchsl F, Untch J, Kavaka V, et al. High-resolution profile of neoantigen-specific TCR activation links moderate stimulation to increased resilience of engineered TCR-T cells. Nat Commun. 2024;15(1):10520. doi: 10.1038/s41467-024-53911-0
- Janelle V, Delisle JS. T-cell dysfunction as a limitation of adoptive immunotherapy: Current concepts and mitigation strategies. Cancers (Basel). 2021;13(4):598. doi: 10.3390/cancers13040598
- Zebley CC, Zehn D, Gottschalk S, Chi H. T cell dysfunction and therapeutic intervention in cancer. Nat Immunol. 2024;25(8):1344-1354. doi: 10.1038/s41590-024-01896-9
- Deng W, Ma Y, Su Z, et al. Single-cell RNA-sequencing analyses identify heterogeneity of CD8+ T cell subpopulations and novel therapy targets in melanoma. Mol Ther Oncolytics. 2020;20:105-118. doi: 10.1016/j.omto.2020.12.003
- Mann JE, Lucca L, Austin MR, et al. ScRNA-seq defines dynamic T-cell subsets in longitudinal colon and peripheral blood samples in immune checkpoint inhibitor-induced colitis. J Immunother Cancer. 2023;11(8):e007358. doi: 10.1136/jitc-2023-007358
- Lan X, Mi T, Alli S, et al. Antitumor progenitor exhausted CD8+ T cells are sustained by TCR engagement. Nat Immunol. 2024;25(6):1046-1058. doi: 10.1038/s41590-024-01843-8
- Wu A, Jiang W. Progenitor exhausted T cells contribute to the formation of immunological memory. Nat Rev Immunol. 2025;25(6):405. doi: 10.1038/s41577-025-01182-1
- Zhang H, Pang Y, Yi L, et al. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics. 2025;17(1):51. doi: 10.1186/s13148-025-01856-6
- Vatapalli R, Rossi AP, Chan HM, Zhang J. Cancer epigenetic therapy: Recent advances, challenges, and emerging opportunities. Epigenomics. 2025;17(1):59-74. doi: 10.1080/17501911.2024.2430169
- Hu C, Liu X, Zeng Y, Liu J, Wu F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application. Clin Epigenetics. 2021;13(1):166. doi: 10.1186/s13148-021-01154-x
- Zhang Z, Wang G, Li Y, et al. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front Pharmacol. 2022;13:1072651. doi: 10.3389/fphar.2022.1072651
- Li Y, Guo C, Zhang F, et al. DNMT1 inhibition improves the activity of memory-like natural killer cells by enhancing the level of autophagy. Mol Biol Rep. 2024;52(1):68. doi: 10.1007/s11033-024-10181-9
- Prinzing B, Zebley CC, Petersen CT, et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci Transl Med. 2021;13(620):eabh0272. doi: 10.1126/scitranslmed.abh0272
- Kim DJ. The Role of the DNA methyltransferase family and the therapeutic potential of DNMT inhibitors in tumor treatment. Curr Oncol. 2025;32(2):88. doi: 10.3390/curroncol32020088
- Thapa B, Kato S, Nishizaki D, et al. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev. 2024;43(3):1001-1013. doi: 10.1007/s10555-024-10184-9
- Zhou H, Ma Y, Li Y, et al. Anti-OX40 antibody BAT6026 in patients with advanced solid tumors: A multi-center phase I study. iScience. 2025;28(6):112270. doi: 10.1016/j.isci.2025.112270
- Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020;10(3):414-433. doi: 10.1016/j.apsb.2019.08.010
- Marfil-Cantón M, Prados-Carmona A, Cebolla-Verdugo M, Husein-ElAhmed H, Campos F, Ruiz-Villaverde R. Anti-OX40 biological therapies in the treatment of atopic dermatitis: A comprehensive review. J Clin Med. 2024;13(22):6925. doi: 10.3390/jcm13226925
- Li Z, Liu L, Chen X, et al. A novel anti-OX40 human monoclonal antibody that blocks OX40/OX40L signaling and depletes OX40+ T cells. Mar Life Sci Technol. 2025;7(2):328-339. doi: 10.1007/s42995-025-00284-y
- De-Kayne R, Frei D, Greenway R, Mendes SL, Retel C, Feulner PGD. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol Ecol Resour. 2021;21(3):653-660. doi: 10.1111/1755-0998.13309
- Zhang T, Zhou J, Gao W, Jia Y, Wei Y, Wang G. Complex genome assembly based on long-read sequencing. Brief Bioinform. 2022;23(5):bbac305. doi: 10.1093/bib/bbac305
- Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson ARA. NeoPredPipe: High-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics. 2019;20(1):264. doi: 10.1186/s12859-019-2876-4
- Chuang CC, Liu YC, Ou YY. DeepNeoAG: Neoantigen epitope prediction from melanoma antigens using a synergistic deep learning model combining protein language models and multi-window scanning convolutional neural networks. Int J Biol Macromol. 2024;281(Pt 1):136252. doi: 10.1016/j.ijbiomac.2024.136252
- Shao Y, Gao Y, Wu LY, Ge SG, Wen PB. TumorAgDB1.0: Tumor neoantigen database platform. Database (Oxford). 2025;2025:baaf010. doi: 10.1093/database/baaf010
- Spjuth O, Bongcam-Rudloff E, Hernández GC, et al. Experiences with workflows for automating data-intensive bioinformatics. Biol Direct. 2015;10:43. doi: 10.1186/s13062-015-0071-8
- Chen X, Chang JT. Planning bioinformatics workflows using an expert system. Bioinformatics. 2017;33(8):1210-1215. doi: 10.1093/bioinformatics/btw817
- Bageritz J, Raddi G. Single-Cell RNA sequencing with drop-seq. Methods Mol Biol. 2019;1979:73-85. doi: 10.1007/978-1-4939-9240-9_6
- Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631-643.e4. doi: 10.1016/j.molcel.2017.01.023
- Ju S, Chen C, Zhang J, et al. Detection of circulating tumor cells: Opportunities and challenges. Biomark Res. 2022;10(1):58. doi: 10.1186/s40364-022-00403-2
- Zhang Y, Scholten D, Qiang W, et al. Circulation tumor cell isolation and enrichment technologies. Int Rev Cell Mol Biol. 2025;392:119-149. doi: 10.1016/bs.ircmb.2025.01.009
- Zaki HA, Albaroudi B, Shaban EE, et al. Advancement in pleura effusion diagnosis: A systematic review and meta-analysis of point-of-care ultrasound versus radiographic thoracic imaging. Ultrasound J. 2024;16(1):3. doi: 10.1186/s13089-023-00356-z
- Tanjo T, Kawai Y, Tokunaga K, Ogasawara O, Nagasaki M. Practical guide for managing large-scale human genome data in research. J Hum Genet. 2021;66(1):39-52. doi: 10.1038/s10038-020-00862-1
- Spisarová M, Študentová H, Holá K, Melichar B. Pleural effusion as a sample matrix for laboratory analyses in cancer management: A perspective. Clin Chem Lab Med. 2025;63(6):1069-1074. doi: 10.1515/cclm-2025-0197
- Kumar P, Paul RK, Roy HS, Yeasin M, Ajit, Paul AK. Big data analysis in computational biology and bioinformatics. Methods Mol Biol. 2024;2719:181-197. doi: 10.1007/978-1-0716-3461-5_11
- Shafin K, Pesout T, Chang PC, et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat Methods. 2021;18(11):1322-1332. doi: 10.1038/s41592-021-01299-w
- Pereira WJ, Almeida FM, Conde D, et al. Asc-Seurat: Analytical single-cell Seurat-based web application. BMC Bioinformatics. 2021;22(1):556. doi: 10.1186/s12859-021-04472-2
- Hippen AA, Omran DK, Weber LM, et al. Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors. Genome Biol. 2023;24(1):239. doi: 10.1186/s13059-023-03077-7
- Zhu L, Jiang M, Wang H, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann Transl Med. 2021;9(16):1351. doi: 10.21037/atm-21-1948
- Scheibner J, Raisaro JL, Troncoso-Pastoriza JR, et al. Revolutionizing medical data sharing using advanced privacy-enhancing technologies: Technical, legal, and ethical synthesis. J Med Internet Res. 2021;23(2):e25120. doi: 10.2196/25120
- Jackson BR, Kaplan B, Schreiber R, et al. Ethical dimensions of clinical data sharing by U.S. health care organizations for purposes beyond direct patient care: Interviews with health care leaders. Appl Clin Inform. 2025;16(1):90-100. doi: 10.1055/a-2432-0329
- Li L, Sun M, Wang J, Wan S. Multi-omics based artificial intelligence for cancer research. Adv Cancer Res. 2024;163:303-356. doi: 10.1016/bs.acr.2024.06.005
- Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021;19:3735-3746. doi: 10.1016/j.csbj.2021.06.030
- Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Brief Bioinform. 2022;23(1):bbab454. doi: 10.1093/bib/bbab454
- Cao J, Li C, Cui Z, et al. Spatial transcriptomics: A powerful tool in disease understanding and drug discovery. Theranostics. 2024;14(7):2946-2968. doi: 10.7150/thno.95908
- Peng Z, Ye M, Ding H, Feng Z, Hu K. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med. 2022;20(1):302. doi: 10.1186/s12967-022-03510-8
- Wang C, Lu M, Chen C, et al. Integrating scRNA-seq and Visium HD for the analysis of the tumor microenvironment in the progression of colorectal cancer. Int Immunopharmacol. 2025;145:113752. doi: 10.1016/j.intimp.2024.113752
- Pu Y, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 2022;13:874589. doi: 10.3389/fimmu.2022.874589
- Wang B, Cheng D, Ma D, et al. Mutual regulation of PD-L1 immunosuppression between tumor-associated macrophages and tumor cells: A critical role for exosomes. Cell Commun Signal. 2024;22(1):21. doi: 10.1186/s12964-024-01473-5
- Wang L, Guo W, Guo Z, et al. PD-L1-expressing tumor-associated macrophages are immunostimulatory and associate with good clinical outcome in human breast cancer. Cell Rep Med. 2024;5(2):101420. doi: 10.1016/j.xcrm.2024.101420
- Lammi MJ, Qu C. Spatial transcriptomics, proteomics, and epigenomics as tools in tissue engineering and regenerative medicine. Bioengineering (Basel). 2024;11(12):1235. doi: 10.3390/bioengineering11121235
- Breckels LM, Hutchings C, Ingole KD, et al. Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations. Cell Chem Biol. 2024;31(9):1665-1687. doi: 10.1016/j.chembiol.2024.08.008
- Wu M, Tao H, Xu T, et al. Spatial proteomics: Unveiling the multidimensional landscape of protein localization in human diseases. Proteome Sci. 2024;22(1):7. doi: 10.1186/s12953-024-00231-2
- Horvath P, Coscia F. Spatial proteomics in translational and clinical research. Mol Syst Biol. 2025;21(6):526-530. doi: 10.1038/s44320-025-00101-9
- Zhang D, Deng Y, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature. 2023;616(7955):113-122. doi: 10.1038/s41586-023-05795-1
- Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell. 2022;185(23):4448-4464.e17. doi: 10.1016/j.cell.2022.09.035
- Pandey S, Yadav P. Liquid biopsy in cancer management: Integrating diagnostics and clinical applications. Pract Lab Med. 2024;43:e00446. doi: 10.1016/j.plabm.2024.e00446
- Adashek JJ, Janku F, Kurzrock R. Signed in blood: Circulating tumor DNA in cancer diagnosis, treatment and screening. Cancers (Basel). 2021;13(14):3600. doi: 10.3390/cancers13143600
- Parums DV. A review of circulating tumor DNA (ctDNA) and the liquid biopsy in cancer diagnosis, screening, and monitoring treatment response. Med Sci Monit. 2025;31:e949300. doi: 10.12659/MSM.949300
- Guigal-Stephan N, Lockhart B, Moser T, Heitzer E. A perspective review on the systematic implementation of ctDNA in phase I clinical trial drug development. J Exp Clin Cancer Res. 2025;44(1):79. doi: 10.1186/s13046-025-03328-4
- Ernst SM, Aldea M, von der Thüsen JH, et al. Utilizing ctDNA to discover mechanisms of resistance to targeted therapies in patients with metastatic NSCLC: Towards more informative trials. Nat Rev Clin Oncol. 2025;22(5):371-378. doi: 10.1038/s41571-025-01011-3
- Rapanotti MC, Cenci T, Scioli MG, et al. Circulating tumor cells: Origin, role, current applications, and future perspectives for personalized medicine. Biomedicines. 2024;12(9):2137. doi: 10.3390/biomedicines12092137
- Eslami-S Z, Cortés-Hernández LE, Thomas F, Pantel K, Alix-Panabières C. Functional analysis of circulating tumour cells: The KEY to understand the biology of the metastatic cascade. Br J Cancer. 2022;127(5):800-810. doi: 10.1038/s41416-022-01819-1
- Sajdik C, Schuster E, Holzer B, et al. Comparison of microfluidic platforms for the enrichment of circulating tumor cells in breast cancer patients. Breast Cancer Res Treat. 2022;196(1):75-85. doi: 10.1016/j.addr.2018.01.011
- Riethdorf S, O’Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev. 2018;125:102-121. doi: 10.1016/j.addr.2018.01.011
- Miller MC, Robinson PS, Wagner C, O’Shannessy DJ. The Parsortix™ cell separation system-a versatile liquid biopsy platform. Cytometry A. 2018;93(12):1234-1239. doi: 10.1002/cyto.a.23571
- Chopra H, Annu, Shin DK, et al. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int J Surg. 2023;109(12):4211-4220. doi: 10.1097/JS9.0000000000000705
- Li T, Li Y, Zhu X, et al. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin Cancer Biol. 2023;91:50-69. doi: 10.1016/j.semcancer.2023.02.007
- Müller M, Huber F, Arnaud M, et al. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction. Immunity. 2023;56(11):2650-2663.e6. doi: 10.1016/j.immuni.2023.09.002
- Machaca V, Goyzueta V, Cruz MG, et al. Transformers meets neoantigen detection: A systematic literature review. J Integr Bioinform. 2024;21(2):20230043. doi: 10.1515/jib-2023-0043
- Umirzakova S, Muksimova S, Baltayev J, Cho YI. Force map-enhanced segmentation of a lightweight model for the early detection of cervical cancer. Diagnostics (Basel). 2025;15(5):513. doi: 10.3390/diagnostics15050513
- He XH, Li JR, Xu J, et al. AI-driven antibody design with generative diffusion models: current insights and future directions. Acta Pharmacol Sin. 2025;46(3):565-574. doi: 10.1038/s41401-024-01380-y
- Oulmalme C, Nakouri H, Jaafar F. A systematic review of generative AI approaches for medical image enhancement: Comparing GANs, transformers, and diffusion models. Int J Med Inform. 2025;199:105903. doi: 10.1016/j.ijmedinf.2025.105903
- Arango-Argoty G, Bikiel DE, Sun GJ, et al. AI-driven predictive biomarker discovery with contrastive learning to improve clinical trial outcomes. Cancer Cell. 2025;43(5):875-890.e8. doi: 10.1016/j.ccell.2025.03.029
- Zhang T, Zhang L, Payne PRO, Li F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol. 2021;2194:223-238. doi: 10.1007/978-1-0716-0849-4_12
- Chen J, Lin A, Jiang A, et al. Computational frameworks transform antagonism to synergy in optimizing combination therapies. NPJ Digit Med. 2025;8(1):44. doi: 10.1038/s41746-025-01435-2
- He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 2023;88:187-200. doi: 10.1016/j.semcancer.2022.12.009
- Tong L, Shi W, Isgut M, et al. Integrating multi-Omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng. 2024;17:80-97. doi: 10.1109/RBME.2023.3324264
- Liu Y, Singh AK. Microfluidic platforms for single-cell protein analysis. J Lab Autom. 2013;18(6):446-454. doi: 10.1177/2211068213494389
- Liu L, Bi M, Wang Y, et al. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale. 2021;13(46):19352-19366. doi: 10.1039/d1nr06195j
- Adamson B, Norman TM, Jost M, et al. A Multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 2016;167(7):1867-1882.e21. doi: 10.1016/j.cell.2016.11.048
- Cheng J, Lin G, Wang T, et al. Massively parallel CRISPR-based genetic perturbation screening at single-cell resolution. Adv Sci (Weinh). 2023;10(4):e2204484. doi: 10.1002/advs.202204484
- Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol (Weinh). 2021;5(6):e2000024. doi: 10.1002/adbi.202000024
- Du Y, Wang YR, Bao QY, et al. Personalized vascularized tumor organoid-on-a-chip for tumor metastasis and therapeutic targeting assessment. Adv Mater. 2025;37(6):e2412815. doi: 10.1002/adma.202412815
- Yuan X, Ouaskioud O, Yin X, et al. Epidermal wearable biosensors for the continuous monitoring of biomarkers of chronic disease in interstitial fluid. Micromachines (Basel). 2023;14(7):1452. doi: 10.3390/mi14071452
- Xian X. Frontiers of wearable biosensors for human health monitoring. Biosensors (Basel). 2023;13(11):964. doi: 10.3390/bios13110964
