Perspectives on the small ribonucleic acid drugs for pancreatic cancer

Pancreatic cancer (PC) remains one of the most lethal forms of cancer. Unfortunately, existing drugs for PC would cause significant side effects, and the tumor may develop resistance to these treatments. Therefore, there is an urgent need to develop new drugs to provide more treatment options for PC patients. Compared to traditional protein-targeted and DNA-based drugs, ribonucleic acid (RNA)-based therapies have gained significant attention in recent years due to their unique physicochemical and physiological properties. Various strategies have been developed to enhance the metabolic stability and intracellular delivery of small RNA drugs, making them a key focus in cancer drug development in recent years. To explore the therapeutic potential of small RNA drugs in PC, an overview of the status of small RNA drug development is provided, including 17 approved small RNA drugs and 43 small RNA drug candidates in clinical trials. In addition, genetic factors involved in PC progression are examined, identifying 17 protein-coding genes and 15 microRNA genes. Finally, six strategies for developing small RNA drugs for PC are discussed.
- Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607-620. doi: 10.1016/s0140-6736(10)62307-0
- Luo YH, Luo L, Wampfler JA, et al. 5-year overall survival in patients with lung cancer eligible or ineligible for screening according to US PREVENTIVE SERVICES TASK FORCE criteria: A prospective, observational cohort study. Lancet Oncol. 2019;20(8):1098-1108. doi: 10.1016/s1470-2045(19)30329-8
- Wang R, Lian J, Wang X, et al. Survival rate of colorectal cancer in China: A systematic review and meta-analysis. Front Oncol. 2023;13:1033154. doi: 10.3389/fonc.2023.1033154
- Maleki Z, Vali M, Nikbakht HA, et al. Survival rate of ovarian cancer in Asian countries: A systematic review and meta-analysis. BMC Cancer. 2023;23(1):558. doi: 10.1186/s12885-023-11041-8
- Wang Z, Liu Z, Qu J, Sun Y, Zhou WJAMM. Role of natural products in tumor therapy from basic research and clinical perspectives. Acta Mater Med. 2024;3:163-206. doi: 10.15212/AMM-2023-0050
- Padillo-Ruiz J, Suarez G, Pereira S, et al. Circulating tumor cells enumeration from the portal vein for risk stratification in early pancreatic cancer patients. Cancers (Basel). 2021;13(24):6153. doi: 10.3390/cancers13246153
- Bu LL, Yan J, Wang Z, et al. Advances in drug delivery for post-surgical cancer treatment. Biomaterials. 2019;219:119182. doi: 10.1016/j.biomaterials.2019.04.027
- Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab. 2019;29(2):501. doi: 10.1016/j.cmet.2019.01.001
- Yu AM, Choi YH, Tu MJ. RNA drugs AND RNA targets for small molecules: Principles, progress, and challenges. Pharmacol Rev. 2020;72(4):862-898. doi: 10.1124/pr.120.019554
- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820
- Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11): 2913-2921. doi: 10.1158/0008-5472.Can-14-0155
- Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA A Cancer J Clin. 2023;73(1):17-48. doi: 10.3322/caac.21763
- Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2(1):16022. doi: 10.1038/nrdp.2016.22
- Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20(18):4504. doi: 10.3390/ijms20184504
- Sarvepalli D, Rashid MU, Rahman AU, et al. Gemcitabine: A review of chemoresistance in pancreatic cancer. Crit Rev Oncog. 2019;24(2):199-212. doi: 10.1615/CritRevOncog.2019031641
- Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl J Med. 2011;364(19):1817-1825. doi: 10.1056/NEJMoa1011923
- Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: Results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol. 2013;31(1):23-29. doi: 10.1200/jco.2012.44.4869
- Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New Engl J Med. 2013;369(18):1691-1703. doi: 10.1056/NEJMoa1304369
- Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6(8): 2969-2972.
- Notta F, Chan-Seng-Yue M, Lemire M, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538(7625):378-382. doi: 10.1038/nature19823
- Corcoran RB, Contino G, Deshpande V, et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 2011;71(14):5020-5029. doi: 10.1158/0008-5472.Can-11-0908
- Mello SS, Flowers BM, Mazur PK, et al. Multifaceted role for p53 in pancreatic cancer suppression. Proc Natl Acad Sci U S A. 2023;120(10):e2211937120. doi: 10.1073/pnas.2211937120
- Doyle A, Kubler MM, Harris AC, et al. The impact of CDKN2A mutations on overall survival in pancreatic adenocarcinoma. J Clin Oncol. 2019;37(4_suppl):278-278. doi: 10.1200/JCO.2019.37.4_suppl.278
- Xia X, Wu W, Huang C, et al. SMAD4 and its role in pancreatic cancer. Tumour Biol. 2015;36(1):111-119. doi: 10.1007/s13277-014-2883-z
- Xu Y, Lin Z, Ji Y, et al. Pan-cancer analysis identifies RNF43 as a prognostic, therapeutic and immunological biomarker. Eur J Med Res. 2023;28(1):438. doi: 10.1186/s40001-023-01383-1
- Ishii N, Araki K, Yokobori T, et al. Reduced FBXW7 expression in pancreatic cancer correlates with poor prognosis and chemotherapeutic resistance via accumulation of MCL1. Oncotarget. 2017;8(68):112636-112646. doi: 10.18632/oncotarget.22634
- Ellenrieder V, Alber B, Lacher U, et al. Role of MT-MMPs and MMP-2 in pancreatic cancer progression. Int J Cancer. 2000;85(1):14-20. doi: 10.1002/(sici)1097-0215(20000101)85:1<14:aid-ijc3>3.0.co;2-o
- Hui B, Ji H, Xu Y, et al. RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 2019;10(3):207. doi: 10.1038/s41419-019-1384-9
- Silke J, O’Reilly LA. NF-κB and pancreatic cancer; Chapter and verse. Cancers (Basel). 2021;13(18):4510. doi: 10.3390/cancers13184510
- Du Z, Zhang Q, Xiang X, et al. RRM2 promotes liver metastasis of pancreatic cancer by stabilizing YBX1 and activating the TGF-beta pathway. iScience. 2024;27(10):110864. doi: 10.1016/j.isci.2024.110864
- Li R, Liu R, Xu Y, et al. Suppressing pancreatic cancer survival and immune escape via nanoparticle-modulated STING/ STAT3 axis regulation. Bioconjug Chem. 2024;35(11): 1815-1822. doi: 10.1021/acs.bioconjchem.4c00379
- Martinez S, Wu S, Geuenich M, et al. In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer. Nat Commun. 2024;15(1):5266. doi: 10.1038/s41467-024-49450-3
- Gu A, Li J, Li MY, Liu Y. Patient-derived xenograft model in cancer: Establishment and applications. MedComm (2020). 2025;6(2):e70059. doi: 10.1002/mco2.70059
- Raffenne J, Nicolle R, Puleo F, et al. hENT1 testing in pancreatic ductal adenocarcinoma: Are we ready? A multimodal evaluation of hENT1 status. Cancers (Basel). 2019;11(11):1808. doi: 10.3390/cancers11111808
- Elander NO, Aughton K, Ghaneh P, et al. Expression of dihydropyrimidine dehydrogenase (DPD) and hENT1 predicts survival in pancreatic cancer. Br J Cancer. 2018;118(7):947-954. doi: 10.1038/s41416-018-0004-2
- Arana MR, Altenberg GA. ATP-binding cassette exporters: Structure and mechanism with a focus on P-glycoprotein and MRP1. Curr Med Chem. 2019;26(7):1062-1078. doi: 10.2174/0929867324666171012105143
- Kohan HG, Boroujerdi M. Time and concentration dependency of P-gp, MRP1 and MRP5 induction in response to gemcitabine uptake in Capan-2 pancreatic cancer cells. Xenobiotica. 2015;45(7):642-652. doi: 10.3109/00498254.2014.1001809
- Adamska A, Elaskalani O, Emmanouilidi A, et al. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul. 2018;68:77-87. doi: 10.1016/j.jbior.2017.11.007
- Gu A, Li J, Qiu S, et al. Pancreatic cancer environment: From patient-derived models to single-cell omics. Mol Omics. 2024;20(4):220-233. doi: 10.1039/d3mo00250k
- Zhang Y, Xu M. Research advances in the mechanism of tumor microenvironment in pancreatic cancer and related targeted therapy. J Clin Hepatol. 2022;38(4):965-968. doi: 10.3969/j.issn.1001-5256.2022.04.046
- Cencioni C, Malatesta S, Vigiano Benedetti V, et al. The GLP-1R agonist semaglutide reshapes pancreatic cancer associated fibroblasts reducing collagen proline hydroxylation and favoring T lymphocyte infiltration. J Exp Clin Cancer Res. 2025;44(1):18. doi: 10.1186/s13046-024-03263-w
- Li Y, VandenBoom TG 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704-6712. doi: 10.1158/0008-5472.Can-09-1298
- Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4(8):e6816. doi: 10.1371/journal.pone.0006816
- Kent OA, Fox-Talbot K, Halushka MK. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene. 2013;32(20):2576-2585. doi: 10.1038/onc.2012.266
- Fujioka S, Sclabas GM, Schmidt C, et al. Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res. 2003;9(1):346-354.
- Li Y, Vandenboom TG 2nd, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70(4):1486-1495. doi: 10.1158/0008-5472.Can-09-2792
- Yan H, Wu J, Liu W, et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Human Gene Ther. 2010;21(12):1723-1734. doi: 10.1089/hum.2010.061
- Zhao G, Zhang JG, Shi Y, et al. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One. 2013;8(9):e73803. doi: 10.1371/journal.pone.0073803
- Zou Y, Li J, Chen Z, et al. miR-29c suppresses pancreatic cancer liver metastasis in an orthotopic implantation model in nude mice and affects survival in pancreatic cancer patients. Carcinogenesis. 2015;36(6):676-684. doi: 10.1093/carcin/bgv027
- Xu J, Wang T, Cao Z, et al. MiR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget. 2014;5(16):6983-6993. doi: 10.18632/oncotarget.2184
- Li L, He Z, Zhu C, et al. MiR-137 promotes anoikis through modulating the AKT signaling pathways in pancreatic cancer. J Cancer. 2020;11(21):6277-6285. doi: 10.7150/jca.44037
- Zuo H. MicroRNA Expression in Pancreatic Cancer. China: Sun Yat-sen University; 2008.
- Li R, Hu Y, Hou S. An exploration of oral-gut pathogens mediating immune escape of pancreatic cancer via miR-21/ PTEN axis. Front Microbiol. 2022;13:928846. doi: 10.3389/fmicb.2022.928846
- Wang J, Guo J, Fan H. MiR-155 regulates the proliferation and apoptosis of pancreatic cancer cells through targeting SOCS3. Eur Rev Med Pharmacol Sci. 2019;23(12): 5168-5175. doi: 10.26355/eurrev_201906_18181
- Xu Q, Li P, Chen X, et al. miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget. 2015;6(16):14153-14164. doi: 10.18632/oncotarget.3686
- Sun XJ, Liu BY, Yan S, et al. MicroRNA-29a promotes pancreatic cancer growth by inhibiting tristetraprolin. Cell Physiol Biochem. 2015;37(2):707-718. doi: 10.1159/000430389
- Lian M, Mortoglou M, Uysal-Onganer P. Impact of hypoxia-induced miR-210 on pancreatic cancer. Curr Issues Mol Biol. 2023;45(12):9778-9792. doi: 10.3390/cimb45120611
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. doi: 10.1016/j.cell.2004.12.035
- Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20-51. doi: 10.1016/j.cell.2018.03.006
- Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: Biogenesis, function and regulation. Nat Rev 10.1038/s41576-023-00611-y Genet. 2023;24(12):816-833. doi: 10.1038/s41576-023-00611-y
- Alshaer W, Zureigat H, Al Karaki A, et al. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;905:174178. doi: 10.1016/j.ejphar.2021.174178
- Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J Clin Med. 2020;9(6):2004. doi: 10.3390/jcm9062004
- Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004;279(17):17181-17189. doi: 10.1074/jbc.M311683200
- Yin W, Rogge M. Targeting RNA: A transformative therapeutic strategy. Clin Transl Sci. 2019;12(2):98-112. doi: 10.1111/cts.12624
- Bennett CF, Swayze EE. RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Ann Rev Pharmacol Toxicol. 2010;50:259-293. doi: 10.1146/annurev.pharmtox.010909.105654
- Passini MA, Bu J, Richards AM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3(72):72ra18. doi: 10.1126/scitranslmed.3001777
- Chai C, Xie Z, Grotewold E. SELEX (systematic evolution of ligands by exponential enrichment), as a powerful tool for deciphering the protein-DNA interaction space. Methods Mol Biol. 2011;754:249-258. doi: 10.1007/978-1-61779-154-3_14
- Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941. doi: 10.3390/molecules24050941
- Khan S, Hussain A, Fahimi H, et al. A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. Arab J Chem. 2022;15(2):103626. doi: 10.1016/j.arabjc.2021.103626
- Kim YK. RNA therapy: Rich history, various applications and unlimited future prospects. Exp Mol Med. 2022;54(4): 455-465. doi: 10.1038/s12276-022-00757-5
- Gragoudas ES, Adamis AP, Cunningham ET Jr., Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351(27):2805-2816. doi: 10.1056/NEJMoa042760
- Gryziewicz L. Regulatory aspects of drug approval for macular degeneration. Adv Drug Deliv Rev. 2005;57(14):2092-2098. doi: 10.1016/j.addr.2005.09.009
- Morrow T. For patients who inherit homozygous familial hypercholesterolemia, 2 new treatments available. Manag Care. 2013;22(3):47-48.
- Stein CA. Eteplirsen approved for duchenne muscular dystrophy: The FDA faces a difficult choice. Mol Ther. 2016;24(11):1884-1885. doi: 10.1038/mt.2016.188
- Syed YY. Eteplirsen: First global approval. Drugs. 2016;76(17):1699-1704. doi: 10.1007/s40265-016-0657-1
- Ottesen EW. ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci. 2017;8:1-6. doi: 10.1515/tnsci-2017-0001
- Keam SJ. Inotersen: First global approval. Drugs. 2018;78(13):1371-1376. doi: 10.1007/s40265-018-0968-5
- Saad FA, Siciliano G, Angelini C. Advances in dystrophinopathy diagnosis and therapy. Biomolecules. 2023;13(9):1319. doi: 10.3390/biom13091319
- Chen W, Xu J, Wu Y, et al. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci. 2023;19(9):2879-2896. doi: 10.7150/ijbs.84994
- Wood H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol. 2018;14(10):570. doi: 10.1038/s41582-018-0065-0
- Scott LJ. Givosiran: First approval. Drugs. 2020;80(3): 335-339. doi: 10.1007/s40265-020-01269-0
- Gang X, Liu F, Mao J. Lumasiran for primary hyperoxaluria type 1: What we have learned? Front Pediatr. 2022;10:1052625. doi: 10.3389/fped.2022.1052625
- Keam SJ. vutrisiran: First approval. Drugs. 2022;82(13):1419- 1425. doi: 10.1007/s40265-022-01765-5
- Perry CM, Balfour JA. Fomivirsen. Drugs. 1999;57(3):375- 380; discussion 381. doi: 10.2165/00003495-199957030-00010
- Frampton JE. Inclisiran: A review in hypercholesterolemia. Am J Cardiovasc Drugs. 2023;23(2):219-230. doi: 10.1007/s40256-023-00568-7
- Lamb YN. Inclisiran: First approval. Drugs. 2021;81(3):389-395. doi: 10.1007/s40265-021-01473-6
- Fitzgerald K, White S, Borodovsky A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41-51. doi: 10.1056/NEJMoa1609243
- Simoens S, Huys I. Market access of Spinraza (Nusinersen) for spinal muscular atrophy: Intellectual property rights, pricing, value and coverage considerations. Gene Ther. 2017;24(9):539-541. doi: 10.1038/gt.2017.79
- Burgart AM, Magnus D, Tabor HK, et al. Ethical challenges confronted when providing nusinersen treatment for spinal muscular atrophy. JAMA Pediatr. 2018;172(2):188-192. doi: 10.1001/jamapediatrics.2017.4409
- Ho PY, Yu AM. Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdiscip Rev RNA. 2016;7(2):186-197. doi: 10.1002/wrna.1324
- Yu AM, Batra N, Tu MJ, Sweeney C. Novel approaches for efficient in vivo fermentation production of noncoding RNAs. Appl Microbiol Biotechnol. 2020;104(5):1927-1937. doi: 10.1007/s00253-020-10350-3
- Bramsen JB, Kjems J. Development of therapeutic-grade small interfering RNAs by chemical engineering. Front Genet. 2012;3:154. doi: 10.3389/fgene.2012.00154
- Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238-248. doi: 10.1038/nbt.3765
- Yu AM, Jian C, Yu AH, Tu MJ. RNA therapy: Are we using the right molecules? Pharmacol Ther. 2019;196:91-104. doi: 10.1016/j.pharmthera.2018.11.011
- Wan WB, Seth PP. The medicinal chemistry of therapeutic oligonucleotides. J Med Chem. 2016;59(21):9645-9667. doi: 10.1021/acs.jmedchem.6b00551
- Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24(6):374-387. doi: 10.1089/nat.2014.0506
- Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421-446. doi: 10.1038/s41573-019-0017-4
- Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704-717. doi: 10.1021/jacs.5b09974
- Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222-229. doi: 10.1038/nbt.3802
- Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Med. 2017;9(1):60. doi: 10.1186/s13073-017-0450-0
- Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012
- Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68-96. doi: 10.1016/j.addr.2019.04.008
- Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: From concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146-157. doi: 10.1089/nat.2018.0721
- Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. J Control Release. 2015;203:1-15. doi: 10.1016/j.jconrel.2015.02.003
- Huang X, Leroux JC, Castagner B. Well-defined multivalent ligands for hepatocytes targeting via asialoglycoprotein receptor. Bioconju Chem. 2017;28(2):283-295. doi: 10.1021/acs.bioconjchem.6b00651
- Wang J, Liao ZX. Research progress of microrobots in tumor drug delivery. Food Med Homology. 2024;1(2):9420025. doi: 10.26599/FMH.2024.9420025
- Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: A comprehensive review. Mol Cancer Res. 2020;18(1):3-19. doi: 10.1158/1541-7786.Mcr-19-0582
- Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated oligonucleotides: Recent developments and therapeutic applications. Bioconjug Chem. 2019;30(2):366-383. doi: 10.1021/acs.bioconjchem.8b00761
- Mullard A. Antibody-oligonucleotide conjugates enter the clinic. Nat Rev Drug Discov. 2022;21(1):6-8. doi: 10.1038/d41573-021-00213-5
- Varghese AM, Ang C, Dimaio CJ, Javle MM, O’Reilly EMJJoCO. A phase II study of siG12D-LODER in combination with chemotherapy in patients with locally advanced pancreatic cancer (PROTACT). J Clin Oncol. 2020;38(15_Suppl):TPS4672. doi: 10.1200/JCO.2020.38.15_suppl.TPS4672
- Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A. 2014;111(31):11449-11454. doi: 10.1073/pnas.1411393111
- Duurland CL, Gunst T, den Boer HC, et al. INT-1B3, an LNP formulated miR-193a-3p mimic, promotes anti-tumor immunity by enhancing T cell mediated immune responses via modulation of the tumor microenvironment and induction of immunogenic cell death. Oncotarget. 2024;15:470-485. doi: 10.18632/oncotarget.28608
- Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: Function, clinical utility, and characterization. Oncogene. 2021;40(9):1570-1577. doi: 10.1038/s41388-020-01630-3
- Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113-1120. doi: 10.1038/ng.2764
- Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503-508. doi: 10.1038/s41586-019-1186-3
- Dhawan A, Scott JG, Harris AL, Buffa FM. Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun. 2018;9(1):5228. doi: 10.1038/s41467-018-07657-1
- Ding L, Lan Z, Xiong X, et al. The dual role of MicroRNAs in colorectal cancer progression. Int J Mol Sci. 2018;19(9):2791. doi: 10.3390/ijms19092791