AccScience Publishing / GTM / Online First / DOI: 10.36922/gtm.3974
REVIEW ARTICLE

Post-traumatic stress disorder: Cerebral and extracerebral processing of traumatic memories and treatment strategies

Adonis Sfera1,2,3 Jacob J. Anton4 Jasper H. C. Luong5 Zisis Kozlakidis6*
Show Less
1 Patton State Hospital, Patton, CA, United States of America
2 Department of Psychiatry, University of California Riverside, Riverside, CA, United States of America
3 Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States of America
4 Department of Health Sciences, California Baptist University, Riverside, CA, United States of America
5 Smoke-Free and Healthy Life Association of Macau, Macau SAR, China
6 International Agency for Research on Cancer, World Health Organization, Lyon, Rhone Alpes, France
Global Translational Medicine, 3974 https://doi.org/10.36922/gtm.3974
Submitted: 19 June 2024 | Accepted: 18 September 2024 | Published: 22 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Post-traumatic stress disorder (PTSD) is a severe neuropsychiatric condition characterized by anxiety-related symptoms, including intrusive memories. However, the exact anatomic location of traumatic memories remains unclear. Traumatic imagery may involve the amygdala and posterior cingulate cortex, rather than the hippocampus. Besides the central nervous system, cells and even proteins can process information and store memories. For instance, >36% of cardiac transplant recipients inherit donor personality traits, emphasizing that tissues can store and recall memories. Moreover, physical therapists mention “musculofascial memories,” that is, the ability of muscles and fascia to retain the memory of past injuries and adapt their function accordingly. Immune cells record previous infections, demonstrating the broader perspective of memory storage in the body. At the cellular level, psychological stress induces premature cellular senescence, a survival program characterized by proliferation arrest; resistance to apoptosis; and a toxic secretome known as the senescence-associated secretory phenotype (SASP). SASP contains brain-derived neurotropic factor (BDNF), a neurotrophin linked to fear memory that is frequently elevated in the peripheral blood of patients with PTSD. Endothelial cells (ECs), the tiles paving the lumen of large and small vessels, age earlier than other cells in patients with severe mental illness, including PTSD. Senescent ECs release SASP directly into the systemic circulation, spreading senescence throughout the body. In this narrative review, we hypothesize that ECs store traumatic memories and SASP-associated BDNF activates traumatic imagery. We also discuss membrane lipid replacement, mitochondrial transplantation and transfer, and several natural and synthetic compounds that may counteract endothelial senescence and SASP.

Graphical abstract
Keywords
PTSD
Psychological trauma
Traumatic amnesia
Traumatic hypermnesia
Cellular senescence
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. van der Hart O, Piedfort-Marin O. Amnesia and hypermnesia as a paradigm of non-realization in trauma-related dissociation: Pierre Janet’s case of Irène. Eur J Trauma Dissoc. 2023;7(4):100357. doi: 10.1016/j.ejtd.2023.100357

 

  1. Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry. 2020;25(10):2251-2274. doi: 10.1038/s41380-019-0639-2

 

  1. Guo S, Kim WJ, Lok J, et al. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci U S A. 2008;105(21):7582-7587. doi: 10.1073/pnas.0801105105

 

  1. El Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci. 2019;39(13):2369-2382. doi: 10.1523/JNEUROSCI.1661-18.2019

 

  1. Green CR, Corsi-Travali S, Neumeister A. The role of BDNF-TrkB signaling in the pathogenesis of PTSD. J Depress Anxiety. 2013;2013(S4):006. doi: 10.4172/2167-1044.S4-006

 

  1. Teng KK, Hempstead BL. Neurotrophins and their receptors: Signaling trios in complex biological systems. Cell Mol Life Sci. 2004;61:35-48. doi: 10.1007/s00018-003-3099-3

 

  1. Hughes KC, Shin LM. Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev Neurother. 2011;11(2):275-285. doi: 10.1586/ern.10.198

 

  1. Wang J, Cui Y, Yu Z, et al. Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell. 2019;25(6):754-767.e9. doi: 10.1016/j.stem.2019.09.009

 

  1. Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929-11947. doi: 10.1523/jneurosci.1860-14.2014

 

  1. Wu Y, Hu H, Liu W, et al. Hippocampal lactate-infusion enhances spatial memory correlated with monocarboxylate transporter 2 and lactylation. Brain Sci. 2024;14:327. doi: 10.3390/brainsci14040327

 

  1. Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent developments in protein lactylation in PTSD and CVD: Novel strategies and targets. BioTech (Basel). 2023;12(2):38. doi: 10.3390/biotech12020038

 

  1. Quick S, Moss J, Rajani RM, Williams A. A vessel for change: Endothelial dysfunction in cerebral small vessel disease. Trends Neurosci. 2021;44(4):289-305. doi: 10.1016/j.tins.2020.11.003

 

  1. Yousefzadeh MJ, Zhao J, Bukata C, et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell. 2020;19:e13094. doi: 10.1111/acel.13094

 

  1. Lehmann ML, Poffenberger CN, Elkahloun AG, Herkenham M. Analysis of cerebrovascular dysfunction caused by chronic social defeat in mice. Brain Behav Immun. 2020;88:735-747. doi: 10.1016/j.bbi.2020.05.030

 

  1. Beristianos MH, Yaffe K, Cohen B, Byers AL. PTSD and risk of incident cardiovascular disease in aging veterans. Am J Geriatr Psychiatry. 2016;24(3):192-200. doi: 10.1016/j.jagp.2014.12.003

 

  1. Rentschler C. From danger to trauma. In: Frosh P, Pinchevski A, editors. Media Witnessing. London: Palgrave Macmillan; 2009. doi: 10.1057/9780230235762_8

 

  1. Zhao Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener. 2022;11(1):39. doi: 10.1186/s40035-022-00313-1

 

  1. Yang X, Yang W, McVey DG, et al. FURIN expression in vascular endothelial cells is modulated by a coronary artery disease-associated genetic variant and influences monocyte transendothelial migration. J Am Heart Assoc. 2020;9(4):e014333. doi: 10.1161/JAHA.119.014333

 

  1. AbdelMassih AF, Ye J, Kamel A, et al. A multicenter consensus: A role of furin in the endothelial tropism in obese patients with COVID-19 infection. Obes Med. 2020;19:100281. doi: 10.1016/j.obmed.2020.100281

 

  1. Anerillas C, Herman AB, Munk R, et al. A BDNF-TrkB autocrine loop enhances senescent cell viability. Nat Commun. 2022;13(1):6228. doi: 10.1038/s41467-022-33709-8. Erratum in: Nat Commun. 2022;13(1):7540.

 

  1. Farkas CB, Dudás G, Babinszky GC, Földi L. Analysis of the virus SARS-CoV-2 as a potential bioweapon in light of international literature. Mil Med. 2023;188(3-4):531-540. doi: 10.1093/milmed/usac123

 

  1. Thomas, G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002;3:753-766. doi: 10.1038/nrm934

 

  1. Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology. 2019;8(8):e1073. doi: 10.1002/cti2.1073

 

  1. Chourpiliadis C, Zeng Y, Lovik A, et al. Metabolic profile and long-term risk of depression, anxiety, and stress-related disorders. JAMA Netw Open. 2024;7(4):e244525. doi: 10.1001/jamanetworkopen.2024.4525

 

  1. Mojtabavi H, Saghazadeh A, van den Heuvel L, Bucker J, Rezaei N. Peripheral blood levels of brain-derived neurotrophic factor in patients with post-traumatic stress disorder (PTSD): A systematic review and meta-analysis. PLoS One. 2020;15(11):e0241928. doi: 10.1371/journal.pone.0241928

 

  1. Sfera A, Osorio C, Rahman L, et al. PTSD as an endothelial disease: Insights from COVID-19. Front Cell Neurosci. 2021;15:770387. doi: 10.3389/fncel.2021.770387

 

  1. Wu GWY, Wolkowitz OM, Reus VI, et al. Serum brain-derived neurotrophic factor remains elevated after long term follow-up of combat veterans with chronic post-traumatic stress disorder. Psychoneuroendocrinology. 2021;134:105360. doi: 10.1016/j.psyneuen.2021.105360

 

  1. Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed J. 2023;46(5):100624. doi: 10.1016/j.bj.2023.100624

 

  1. Perl O, Duek O, Kulkarni KR, et al. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nat Neurosci. 2023;26(12):2226-2236. doi: 10.1038/s41593-023-01483-5

 

  1. Iyadurai L, Visser RM, Lau-Zhu A, Porcheret K, Horsch A, Holmes EA, James EL. Intrusive memories of trauma: A target for research bridging cognitive science and its clinical application. Clin Psychol Rev. 2019;69:67-82. doi: 10.1016/j.cpr.2018.08.005

 

  1. van der Kolk BA. The body keeps the score: Memory and the evolving psychobiology of posttraumatic stress. Harv Rev Psychiatry. 1994;1(5):253-265. doi: 10.3109/10673229409017088

 

  1. Andrews JA, Neises KD. Cells, biomarkers, and post-traumatic stress disorder: Evidence for peripheral involvement in a central disease. J Neurochem. 2012;120(1):26-36. doi: 10.1111/j.1471-4159.2011.07545.x

 

  1. Benedict TM, Keenan PG, Nitz AJ, Moeller-Bertram T. Post-traumatic stress disorder symptoms contribute to worse pain and health outcomes in veterans with PTSD compared to those without: A systematic review with meta-analysis. Mil Med. 2020;185(9-10):e1481-e1491. doi: 10.1093/milmed/usaa052

 

  1. Dussutour A. Learning in single cell organisms. Biochem Biophys Res Commun. 2021;564:92-102. doi: 10.1016/j.bbrc.2021.02.018

 

  1. Cheikhi A, Wallace C, St Croix C, et al. Mitochondria are a substrate of cellular memory. Free Radic Biol Med. 2019;130:528-541. doi: 10.1016/j.freeradbiomed.2018.11.028

 

  1. Agnati LF, Zunarelli E, Genedani S, Fuxe K. On the existence of a global molecular network enmeshing the whole central nervous system: Physiological and pathological implications. Curr Protein Pept Sci. 2006;7(1):3-15. doi: 10.2174/138920306775474086

 

  1. Miyamoto T, Razavi S, DeRose R, Inoue T. Synthesizing biomolecule-based Boolean logic gates. ACS Synth Biol. 2013;2(2):72-82. doi: 10.1021/sb3001112

 

  1. Al-Juhani A, Imran M, Aljaili ZK, et al. Beyond the pump: A narrative study exploring heart memory. Cureus. 2024;16(4):e59385. doi: 10.7759/cureus.59385

 

  1. Carter B, Khoshnaw L, Simmons M, Hines L, Wolfe B, Liester M. Personality changes associated with organ transplants. Transplantology. 2024;5:12-26. doi: 10.3390/transplantology5010002

 

  1. Feng Y, Shen J, He J, Lu M. Schizophrenia and cell senescence candidate genes screening, machine learning, diagnostic models, and drug prediction. Front Psychiatry. 2023;14:1105987. doi: 10.3389/fpsyt.2023.1105987

 

  1. Solana C, Pereira D, Tarazona R. Early senescence and leukocyte telomere shortening in SCHIZOPHRENIA: A role for cytomegalovirus infection? Brain Sci. 2018;8:188. doi: 10.3390/brainsci8100188

 

  1. Nelson PN, Carnegie PR, Martin J, et al. Demystified. Human endogenous retroviruses. Mol Pathol. 2003;56(1):11-18. doi: 10.1136/mp.56.1.11

 

  1. Charvet B, Brunel J, Pierquin J, et al. SARS-CoV-2 awakens ancient retroviral genes and the expression of proinflammatory HERV-W envelope protein in COVID- 19 patients. iScience. 2023;26(5):106604. doi: 10.1016/j.isci.2023.106604

 

  1. Gholami Barzoki M, Shatizadeh Malekshahi S, Heydarifard Z, et al. The important biological roles of Syncytin-1 of human endogenous retrovirus W (HERV-W) and Syncytin-2 of HERV-FRD in the human placenta development. Mol Biol Rep. 2023;50:7901-7907. doi: 10.1007/s11033-023-08658-0

 

  1. Sibarov DA, Tsytsarev V, Volnova A, et al. Arc protein, a remnant of ancient retrovirus, forms virus-like particles, which are abundantly generated by neurons during epileptic seizures, and affects epileptic susceptibility in rodent models. Front Neurol. 2023;14:1201104. doi: 10.3389/fneur.2023.1201104

 

  1. Shepherd JD. Arc - An endogenous neuronal retrovirus? Semin Cell Dev Biol. 2018;77:73-78. doi: 10.1016/j.semcdb.2017.09.029

 

  1. Liester MB. Personality changes following heart transplantation: The role of cellular memory. Med Hypotheses. 2020;135:109468. doi: 10.1016/j.mehy.2019.109468

 

  1. Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72-76. doi: 10.1038/35036093

 

  1. Martín-Fernández M, Aller R, Heredia-Rodríguez M, et al. Lipid peroxidation as a hallmark of severity in COVID- 19 patients. Redox Biol. 2021;48:102181. doi: 10.1016/j.redox.2021.102181

 

  1. Wertz J, Caspi A, Ambler A, et al. Association of history of psychopathology with accelerated aging at midlife. JAMA Psychiatry. 2021;78:530-539. doi: 10.1001/jamapsychiatry.2020.4626

 

  1. Qin S, Schulte BA, Wang GY. Role of senescence induction in cancer treatment. World J Clin Oncol. 2018;9(8):180-187. doi: 10.5306/wjco.v9.i8.180

 

  1. Essalmani R, Jain J, Susan-Resiga D, et al. Distinctive roles of Furin and TMPRSS2 in SARS-CoV-2 infectivity. J Virol. 2022;96(8):e0012822. doi: 10.1128/jvi.00128-22. Erratum in: J Virol. 2022;96 (13):e0074522. doi: 10.1128/jvi.00745-22

 

  1. Yuan Y, Ye HQ, Ren QC. Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol Rep. 2018;40(2):621-634. doi: 10.3892/or.2018.6515

 

  1. Pahl A, Wehrle A, Kneis S, Gollhofer A, Bertz H. Feasibility of whole body vibration during intensive chemotherapy in patients with hematological malignancies - a randomized controlled pilot study. BMC Cancer. 2018;18(1):920. doi: 10.1186/s12885-018-4813-8

 

  1. Furukawa S, Nagamatsu A, Nenoi M, et al. Space radiation biology for “living in space”. Biomed Res Int. 2020;2020:4703286. doi: 10.1155/2020/4703286

 

  1. Antipov VV, Delone NL, Parfyonov GP, Vysotsky VG. Results of biological experiments carried out under conditions of “Vostok” flights with the participation of cosmonauts. Life Sci Space Res. 1965;3:215-229.

 

  1. Hu X, Zhang H. Doxorubicin-induced cancer cell senescence shows a time delay effect and is inhibited by epithelial-mesenchymal transition (EMT). Med Sci Monit. 2019;25:3617-3623. doi: 10.12659/MSM.914295

 

  1. Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell. 2016;15:999-1017. doi: 10.1111/acel.12518

 

  1. Zhu B, Zhao L, Luo D, et al. Furin promotes dendritic morphogenesis and learning and memory in transgenic mice. Cell Mol Life Sci. 2018;75(13):2473-2488. doi: 10.1007/s00018-017-2742-3

 

  1. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15:525-534. doi: 10.1038/s41574-019-0228-0

 

  1. Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia- Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: Basic concepts and clinical implications. Front Behav Neurosci. 2018;12:127. doi: 10.3389/fnbeh.2018.00127

 

  1. Schneiderman N, Ironson G, Siegel SD. Stress and health: Psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607-628. doi: 10.1146/annurev.clinpsy.1.102803.144141

 

  1. Muscatell KA, Merritt CC, Cohen JR, Chang L, Lindquist KA. The stressed brain: Neural underpinnings of social stress processing in humans. Curr Top Behav Neurosci. 2022;54:373-392. doi: 10.1007/7854_2021_281

 

  1. Bremner JD. Traumatic stress: Effects on the brain. Dialogues Clin Neurosci. 2006;8:445-461. doi: 10.31887/DCNS.2006.8.4/jbremner

 

  1. Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychol Bull. 2014;140:256-282. doi: 10.1037/a0032671

 

  1. Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: Descending pathways to medullary cardiovascular nuclei. Clin Exp Pharmacol Physiol. 2005;32:450-456. doi: 10.1111/j.1440-1681.2005.04210.x

 

  1. Wellman LL, Forcelli PA, Aguilar BL, Malkova L. Bidirectional control of social behavior by activity within basolateral and central amygdala of primates. J Neurosci. 2016;36:8746-8756.

 

  1. Jackson KL, Palma-Rigo K, Nguyen-Huu TP, Davern PJ, Head GA. Major contribution of the medial amygdala to hypertension in BPH/2J genetically hypertensive mice. Hypertension. 2014;63:811-818. doi: 10.1161/HYPERTENSIONAHA.113.02020

 

  1. Jankowski M, Broderick TL, Gutkowska J. The role of oxytocin in cardiovascular protection. Front Psychol. 2020;11:2139. doi: 10.3389/fpsyg.2020.02139

 

  1. Panaro MA, Benameur T, Porro C. Hypothalamic neuropeptide brain protection: Focus on oxytocin. J Clin Med. 2020;9(5):1534. doi: 10.3390/jcm9051534

 

  1. McKay EC, Counts SE. Oxytocin receptor signaling in vascular function and stroke. Front Neurosci. 2020;14:574499. doi: 10.3389/fnins.2020.574499

 

  1. Lorenzetti V, Costafreda SG, Rimmer RM, Rasenick MM, Marangell LB, Fu CHY. Brain-derived neurotrophic factor association with amygdala response in major depressive disorder. J Affect Disord. 2020;267:103-106. doi: 10.1016/j.jad.2020.01.159

 

  1. Marazziti D, Baroni S, Mucci F, et al. Relationship between BDNF and oxytocin. Compr Psychoneuroendocrinol. 2023;16:100207. doi: 10.1016/j.cpnec.2023.100207

 

  1. Wichaiyo S, Koonyosying P, Morales NP. Functional roles of furin in cardio-cerebrovascular diseases. ACS Pharmacol Transl Sci. 2024;7(3):570-585. doi: 10.1021/acsptsci.3c00325

 

  1. d’Adda di Fagagna F. Living on a break: Cellular senescence as a DNA-damage response. Nat Rev Cancer. 2008;8:512-522. doi: 10.1038/nrc2440

 

  1. Xin M, Jin X, Cui X, et al. Dipeptidyl peptidase-4 inhibition prevents vascular aging in mice under chronic stress: Modulation of oxidative stress and inflammation. Chem Biol Interact. 2019;314:108842. doi: 10.1016/j.cbi.2019.108842

 

  1. Yao BC, Meng LB, Hao ML, Zhang YM, Gong T, Guo ZG. Chronic stress: A critical risk factor for atherosclerosis. J Int Med Res. 2019;47(4):1429-1440. doi: 10.1177/0300060519826820

 

  1. Su S, Xiao Z, Lin Z, Qiu Y, Jin Y, Wang Z. Plasma brain-derived neurotrophic factor levels in patients suffering from post-traumatic stress disorder. Psychiatry Res. 2015;229(1-2):365-369. doi: 10.1016/j.psychres.2015.06.038

 

  1. Lohr JB, Palmer BW, Eidt CA, et al. Is post-traumatic stress disorder associated with premature senescence? A review of the literature. Am J Geriatr Psychiatry. 2015;23(7):709-725. doi: 10.1016/j.jagp.2015.04.001

 

  1. Angelucci F, Veverova K, Katonová A, Vyhnalek M, Hort J. Plasminogen activator inhibitor-1 serum levels in frontotemporal lobar degeneration. J Cell Mol Med. 2024;28(5):e18013. doi: 10.1111/jcmm.18013

 

  1. Meselson M, Guillemin J, Hugh-Jones M, et al. The Sverdlovsk anthrax outbreak of 1979. Science. 1994;266:1202-1208. doi: 10.1126/science.7973702

 

  1. Fromer M, Roussos P, Sieberts SK, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19(11):1442-1453. doi: 10.1038/nn.4399

 

  1. Yang Y, He M, Tian X, et al. Transgenic overexpression of furin increases epileptic susceptibility. Cell Death Dis. 2018;9(11):1058. doi: 10.1038/s41419-018-1076-x

 

  1. Lin L, Zhou XF, Bobrovskaya L. Blockage of p75NTR ameliorates depressive-like behaviours of mice under chronic unpredictable mild stress. Behav Brain Res. 2021;396:112905. doi: 10.1016/j.bbr.2020.112905

 

  1. Moskaliuk VS, Kozhemyakina RV, Khomenko TM, et al. On associations between fear-induced aggression, Bdnf transcripts, and serotonin receptors in the brains of Norway Rats: An influence of antiaggressive drug TC-2153. Int J Mol Sci. 2023;24(2):983. doi: 10.3390/ijms24020983

 

  1. Malekan M, Nezamabadi SS, Samami E, Mohebalizadeh M, Saghazadeh A, Rezaei N. BDNF and its signaling in cancer. J Cancer Res Clin Oncol. 2023;149(6):2621-2636. doi: 10.1007/s00432-022-04365-8

 

  1. Cefis M, Chaney R, Quirié A, et al. Endothelial cells are an important source of BDNF in rat skeletal muscle. Sci Rep. 2022;12:311. doi: 10.1038/s41598-021-03740-8

 

  1. Hofhansel L, Weidler C, Votinov M, et al. Morphology of the criminal brain: gray matter reductions are linked to antisocial behavior in offenders. Brain Struct Funct. 2020;225:2017-2028. doi: 10.1007/s00429-020-02106-6

 

  1. Wei Z, Mahaman YAR, Zhu F, et al. GSK-3β and ERK1/2 incongruously act in tau hyperphosphorylation in SPS-induced PTSD rats. Aging (Albany NY). 2019;11(18):7978-7995. doi: 10.18632/aging.102303

 

  1. Craddock TJ, Tuszynski JA, Hameroff S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol. 2012;8(3):e1002421. doi: 10.1371/journal.pcbi.1002421

 

  1. Le TH, Oh JM, Rami FZ, Li L, Chun SK, Chung YC. Effects of social defeat stress on microtubule regulating proteins and tubulin polymerization. Clin Psychopharmacol Neurosci. 2024;22(1):129-138. doi: 10.9758/cpn.23.1077

 

  1. Al Abed AS, Ducourneau EG, Bouarab C, Sellami A, Marighetto A, Desmedt A. Preventing and treating PTSD-like memory by trauma contextualization. Nat Commun. 2020;11(1):4220. doi: 10.1038/s41467-020-18002-w

 

  1. Guadagna S, Esiri MM, Williams RJ, Francis PT. Tau phosphorylation in human brain: relationship to behavioral disturbance in dementia. Neurobiol Aging. 2012;33(12):2798-806. doi: 10.1016/j.neurobiolaging.2012.01.015

 

  1. Grube M. Violent behavior in cancer patients--a rarely addressed phenomenon in oncological treatment. J Interpers Violence. 2012;27(11):2163-2182. doi: 10.1177/0886260511431434

 

  1. Niu R, Xue X, Zhao Y, et al. Effects of fluoride on microtubule ultrastructure and expression of Tubα1a and Tubβ2a in mouse hippocampus. Chemosphere. 2015;139:422-427. doi: 10.1016/j.chemosphere.2015.07.011

 

  1. Baharikhoob P, Kolla NJ. Microglial dysregulation and suicidality: A stress-diathesis perspective. Front Psychiatry. 2020;11:781. doi: 10.3389/fpsyt.2020.00781

 

  1. Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience. 2022;25(10):105232. doi: 10.1016/j.isci.2022.105232

 

  1. Sfera A, Anton JJ, Imran H, Kozlakidis Z, Klein C, Osorio C. Of soldiers and their ghosts: Are we ready for a review of PTSD evidence? BioMed. 2023;3:484-506. doi: 10.3390/biomed3040039

 

  1. Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res. 2019;74:186-195. doi: 10.1016/j.plipres.2019.04.003

 

  1. Gu J, Chen L, Sun R, et al. Plasmalogens eliminate aging-associated synaptic defects and microglia-mediated neuroinflammation in mice. Front Mol Biosci. 2022;9:815320. doi: 10.3389/fmolb.2022.815320

 

  1. Yoon JH, Seo Y, Jo YS, et al. Brain lipidomics: From functional landscape to clinical significance. Sci Adv. 2022;8(37):eadc9317. doi: 10.1126/sciadv.adc9317

 

  1. Nicolson GL, Ash ME. Lipid replacement therapy: A natural medicine approach to replacing damaged lipids in cellularmembranes and organelles and restoring function. Biochim Biophys Acta. 2014;1838:1657-1679. doi: 10.1016/j.bbamem.2013.11.010

 

  1. Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. Curr Top Membr. 2019;84:67-98. doi: 10.1016/bs.ctm.2019.07.001

 

  1. An S, Cho SY, Kang J, et al. Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proc Natl Acad Sci U S A. 2020;117(49):31535-31546. doi: 10.1073/pnas.1920338117

 

  1. Emamian ES. AKT/GSK3 signaling pathway and schizophrenia. Front Mol Neurosci. 2012;5:33. doi: 10.3389/fnmol.2012.00033

 

  1. Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr. 2023;63(28):9580-9604. doi: 10.1080/10408398.2022.2067121

 

  1. Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules. 2019;24(12):2277. doi: 10.3390/molecules24122277

 

  1. Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11:298-344. doi: 10.2174/138955711795305335

 

  1. Agnarelli A, Natali M, Garcia-Gil M, et al. Cell-specific pattern of berberine pleiotropic effects on different human cell lines. Sci Rep. 2018;8:10599. doi: 10.1038/s41598-018-28952-3

 

  1. Dang Y, An Y, He J, et al. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. Aging Cell. 2020;19(1):e13060. doi: 10.1111/acel.13060

 

  1. Lee B, Shim I, Lee H, Hahm DH. Berberine alleviates symptoms of anxiety by enhancing dopamine expression in rats with post-traumatic stress disorder. Korean J Physiol Pharmacol. 2018;22(2):183-192. doi: 10.4196/kjpp.2018.22.2.183

 

  1. Wen X, Zhou X, Guo L. Berberine inhibits endothelial cell proliferation via repressing ERK1/2 pathway. Nat Prod Commun. 2023;18(3). doi: 10.1177/1934578X231152690

 

  1. Qattan MY, Khan MI, Alharbi SH, et al. Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways. Molecules. 2022;27:8864. doi: 10.3390/molecules27248864

 

  1. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005;51:117-123. doi: 10.1016/j.phrs.2004.06.002

 

  1. Singh S, Srivastava P. Molecular docking studies of myricetin and its analogues against human PDK-1 kinase as candidate drugs for cancer. Comput Mol Biosci. 2015;5:20. doi: 10.4236/cmb.2015.52004

 

  1. Qin J, Fu M, Wang J, et al. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncol Rep. 2020;43:1885-1896. doi: 10.3892/or.2020.7571

 

  1. Ren J, Yang J, Xu Y, Huang Q, Yang M, Hu K. Lupiwighteone induces cell cycle arrest and apoptosis and activates the Nrf2/ARE pathway in human neuroblastoma cells. Biomed Pharmacother. 2015;69:153-161. doi: 10.1016/j.biopha.2014.11.016

 

  1. Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab. 2016;13:49. doi: 10.1186/s12986-016-0108-8

 

  1. Issinger OG, Guerra B. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomed Pharmacother. 2021;139:111650. doi: 10.1016/j.biopha.2021.111650

 

  1. Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J Agric Food Chem. 1999;47:4649-4652. doi: 10.1021/jf990186p

 

  1. Khan M, Baussan Y, Hebert-Chatelain E. Connecting dots between mitochondrial dysfunction and depression. Biomolecules. 2023;13:695. doi: 10.3390/biom13040695

 

  1. Akbari M, Kirkwood TBL, Bohr VA. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev. 2019;54:100940. doi: 10.1016/j.arr.2019.100940

 

  1. Buettner D, Skemp S. Blue zones: Lessons from the world’s longest lived. Am J Lifestyle Med. 2016;10(5):318-321. doi: 10.1177/1559827616637066

 

  1. Ülgen DH, Ruigrok SR, Sandi C. Powering the social brain: Mitochondria in social behaviour. Curr Opin Neurobiol. 2023;79:102675. doi: 10.1016/j.conb.2022.102675

 

  1. Möller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH. Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun. 2013;30:156-167. doi: 10.1016/j.bbi.2012.12.011

 

  1. Trumpff C, Marsland AL, Basualto-Alarcón C, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019;106:268-276. doi: 10.1016/j.psyneuen.2019.03.026

 

  1. Tripathi A, Bartosh A, Whitehead C, et al. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry. 2023;28:3806-3815. doi: 10.1038/s41380-023-02189-7

 

  1. Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: Features of stress physiology and immune homeostasis. Trends Immunol. 2017;38(10):768-776. doi: 10.1016/j.it.2017.08.002

 

  1. Hummel EM, Piovesan K, Berg F, et al. Mitochondrial DNA as a marker for treatment-response in post-traumatic stress disorder. Psychoneuroendocrinology. 2023;148:105993. doi: 10.1016/j.psyneuen.2022.105993

 

  1. Blalock ZN, Wu GWY, Lindqvist D, et al. Circulating cell-free mitochondrial DNA levels and glucocorticoid sensitivity in a cohort of male veterans with and without combat-related PTSD. Transl Psychiatry. 2024;14:22. doi: 10.1038/s41398-023-02721-x

 

  1. Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol. 2019;49:842-848. doi: 10.1002/eji.201848009

 

  1. Clark MA, Shay JW. Mitochondrial transformation of mammalian cells. Nature, 1982;295(5850):605-607. doi: 10.1038/295605a0

 

  1. Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70-79. doi: 10.1016/j.mito.2017.05.007

 

  1. Kubat GB, Ulger O, Akin S. Requirements for successful mitochondrial transplantation. J Biochem Mol Toxicol. 2021;35(11):e22898. doi: 10.1002/jbt.22898

 

  1. Pour PA, Hosseinian S, Kheradvar A. Mitochondrial transplantation in cardiomyocytes: Foundation, methods, and outcomes. Am J Physiol Cell Physiol. 2021;321:C489-C503. doi: 10.1152/ajpcell.00152.2021

 

  1. Chen T, Majerníková NA, Marmolejo-Garza A, et al. Mitochondrial transplantation rescues neuronal cells from ferroptosis. Free Radical Biol Med. 2023;208:62-72. doi: 10.1016/j.freeradbiomed.2023.07.034

 

  1. Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med. 2024;56:66-85. doi: 10.1038/s12276-023-01141-7

 

  1. Wang Y, Ni J, Gao C, et al. Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry. 2019;93:240-249. doi: 10.1016/j.pnpbp.2019.04.010

 

  1. Borcherding N, Brestoff JR. The power and potential of mitochondria transfer. Nature. 2023;623(7986):283-291. doi: 10.1038/s41586-023-06537-z

 

  1. Noh SE, Lee SJ, Lee TG, Park KS, Kim JH. Inhibition of cellular senescence hallmarks by mitochondrial transplantation in senescence-induced ARPE-19 cells. Neurobiol Aging. 2023;121:157-165. doi: 10.1016/j.neurobiolaging.2022.11.00
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing