The PAI-1 4G/5G polymorphism, JAK2V617F mutation, and their associations with blood cells in Ph-negative myeloproliferative neoplasms
Factors influencing the urokinase-type plasminogen activator system play important roles in pathogenetic processes in Ph-negative myeloproliferative neoplasms (MPNs). In addition, the JAK2V617F mutation is a key determinant of outcomes in these diseases. This study evaluated complete blood count (CBC) parameters, the plasminogen activator inhibitor 1 (PAI-1) 4G/5G polymorphism, and the JAK2V617F mutation in patients with Ph-negative MPNs, aiming to identify possible associations between them. We analyzed results from 56 patients newly diagnosed with Ph-negative MPNs— essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF)—before treatment initiation. The CBC of 475 people from a diagnostic center database served as a population sample for comparison. In patients with Ph-negative MPNs, PAI-1 genotypes 4G/4G, 4G/5G, and 5G/5G were detected in 11 (19.6%), 29 (51.8%), and 16 (28.6%) cases, respectively. No significant differences in genotype distribution were found among ET, PV, and PMF patients. PMF patients with the 4G/5G genotype had a higher white blood cell (WBC) count compared to those with the 5G/5G genotype (P = 0.027). The JAK2V617F mutation was found in 44 (78.6%) patients. ET patients with this mutation (n = 13) exhibited significantly higher counts of platelets (PLTs), red blood cells (RBCs), and WBCs compared to those without it. The PLT/RBC ratio was significantly higher in all disease categories compared to the population sample, with the highest ratios in ET patients. The PLT/WBC ratio in ET and PV patients was also higher than in the population sample (P < 0.05). This relative thrombocytosis is likely clonal in origin, associated with genes responsible for PLT quantitative parameters, JAK-STAT signaling pathway proteins, and factors in the uPA-uPAR-PAI-1/PAI-2 system. These genes share common loci in chromosomes (1p34.1-p34.3, 7q21.1-q21.3, 9p24.1, 19p13.11-p13.2, and 19q13.31-q13.32). Due to their close spatial proximity, these genes can form genetic complexes and mutually influence their expression levels, thereby contributing to the unique pathogenesis of these diseases.
- Coltro G, Loscocco GG, Vannucchi AM. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities. Int Rev Cell Mol Biol. 2021;365:1-69. doi: 10.1016/bs.ircmb.2021.09.001
- Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: Integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228. doi: 10.1182/blood.2022015850
- Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129(6):680-692. doi: 10.1182/blood-2016-10-695957
- Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129(6):667-679. doi: 10.1182/blood-2016-10-695940
- Chachoua I, Pecquet C, El-Khoury M, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325-1335. doi: 10.1182/blood-2015-11-681932
- Falanga A, Marchetti M. Thrombosis in myeloproliferative neoplasms. Semin Thromb Hemost. 2014;40(3):348-358. doi: 10.1055/s-0034-1370794
- Chia YC, Siti Asmaa MJ, Ramli M, et al. Molecular genetics of thrombotic myeloproliferative neoplasms: Implications in precision oncology. Diagnostics (Basel). 2023;13(1):163. doi: 10.3390/diagnostics13010163
- Marin Oyarzún CP, Heller PG. Platelets as mediators of thromboinflammation in chronic myeloproliferative neoplasms. Front Immunol. 2019;10:1373. doi: 10.3389/fimmu.2019.01373
- Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533
- Bianconi E, Piovesan A, Facchin F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463-471. doi: 10.3109/03014460.2013.807878
- Li Santi A, Gorrasi A, Alfieri M, Montuori N, Ragno P. A novel oncogenic role for urokinase receptor in leukemia cells: Molecular sponge for oncosuppressor microRNAs. Oncotarget. 2018;9(45):27823-27834. doi: 10.18632/oncotarget.25597
- Santibanez JF. Urokinase type plasminogen activator and the molecular mechanisms of its regulation in cancer. Protein Pept Lett. 2017;24(10):936-946. doi: 10.2174/0929866524666170818161132
- Irmak-Yazicioglu MB, Ergun K. Role of plasminogen activator inhibitor-1 (PAI-1) in cancer stem cells. WCRJ. 2022;9:e2252. doi: 10.32113/wcrj_20223_2252
- Kunz C, Pebler S, Otte J, von der Ahe D. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res. 1995;23(18):3710-3717. doi: 10.1093/nar/23.18.3710
- Jensen MK, Riisbro R, Holten-Andersen MN, et al. Collagen metabolism and enzymes of the urokinase plasminogen activator system in chronic myeloproliferative disorders: Correlation between plasma-soluble urokinase plasminogen activator receptor and serum markers for collagen metabolism. Eur J Haematol. 2003;71(4):276-282. doi: 10.1034/j.1600-0609.2003.00134.x
- Westerhausen DR Jr., Hopkins WE, Billadello JJ. Multiple transforming growth factor-beta-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J Biol Chem. 1991;266(2):1092-1100.
- Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen activator inhibitor type-1 as a regulator of fibrosis. J Cell Biochem. 2018;119(1):17-27. doi: 10.1002/jcb.26146
- Teng F, Zhang JX, Chen Y, et al. LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via up-regulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol. 2021;15(4):1234-1255. doi: 10.1002/1878-0261.12911
- Prabhudesai A, Shetty S, Ghosh K, Kulkarni B. Investigation of plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphism in Indian venous thrombosis patients: A case-control study. Eur J Haematol. 2017;99(3):249-254. doi: 10.1111/ejh.12912
- Zhang X, Cai X, Pan J. Correlation between PAI-1 gene 4G/5G polymorphism and the risk of thrombosis in Ph chromosome-negative myeloproliferative neoplasms. Clin Appl Thromb Hemost. 2020;26:1076029620935207. doi: 10.1177/1076029620935207
- Gadomska G, Rość D, Stankowska K, Boinska J, Ruszkowska- Ciastek B, Wieczór R. Selected parameters of hemostasis in patients with myeloproliferative neoplasms. Blood Coagul Fibrinolysis. 2014;25(5):464-470. doi: 10.1097/MBC.0000000000000088
- Swerdlow SH, Campo E, Harris NL, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer; 2017.
- Van Egeren D, Kamaz B, Liu S, et al. Transcriptional differences between JAK2-V617F and wild-type bone marrow cells in patients with myeloproliferative neoplasms. Exp Hematol. 2022;107:14-19. doi: 10.1016/j.exphem.2021.12.364
- Makukh HV, Chorna LB, Hnateyko OZ, Zastavna DV. Molecular genetic diagnosis of hereditary factors of thrombophilia: mutations g1691a of the FV gene and g20210a of the FII gene, allelic polymorphism 675 4g/5g of the PAI-1 gene. Lab Diagn. 2012;1(59):32-37. (Article in Ukrainian)
- Kubala MH, DeClerck YA. The plasminogen activator inhibitor-1 paradox in cancer: A mechanistic understanding. Cancer Metastasis Rev. 2019;38(3):483-492. doi: 10.1007/s10555-019-09806-4
- Wang J, Peng Y, Guo H, Li C. PAI-1 polymorphisms have significant associations with cancer risk, especially feminine cancer. Technol Cancer Res Treat. 2021;20:15330338211037813. doi: 10.1177/15330338211037813
- Vassalli LC, Malafaia EC, Chauffaille ML, Kerbauy D. Leukocytosis can predict thrombotic events in myelofibrosis. Blood. 2015;126(23):5191. doi: 10.1182/blood.v126.23.5191.5191
- Ohyashiki K, Kiguchi T, Ito Y, et al. Leukocytosis is linked to thrombosis at diagnosis, while JAK2 V617F mutation is associated with thrombosis during the course of essential thrombocythemia. Int J Hematol. 2008;87:446-448. doi: 10.1007/s12185-008-0080-9
- Cerutti A, Custodi P, Duranti M, Noris P, Balduini CL. Thrombopoietin levels in patients with primary and reactive thrombocytosis. Br J Haematol. 1997;99(2):281-284. doi: 10.1046/j.1365-2141.1997.3823196.x
- Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337-351. doi: 10.1161/CIRCRESAHA.117.310795
- Vannucchi AM, Barbui T. Thrombocytosis and thrombosis. Hematology. 2007;1:363-370. doi: 10.1182/asheducation-2007.1.363
- Birdane A, Haznedaroğlu IC, Bavbek N, et al. The plasma levels of prostanoids and plasminogen activator inhibitor-1 in primary and secondary thrombocytosis. Clin Appl Thromb Hemost. 2005;11(2):197-201. doi: 10.1177/107602960501100209
- Brogren H, Wallmark K, Deinum J, Karlsson L, Jern S. Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS One. 2011;6(11):e26762. doi: 10.1371/journal.pone.0026762
- Corduan A, Plé H, Laffont B, et al. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thromb Haemost. 2015;113(5):1046-1059. doi: 10.1160/TH14-07-0622
- Bazzan M, Tamponi G, Gallo E, et al. Fibrinolytic imbalance in essential thrombocythemia: Role of platelets. Haemostasis. 1993;23(1):38-44. doi: 10.1159/000216850
- Robbie LA, Bennett B, Croll AM, Brown PA, Booth NA. Proteins of the fibrinolytic system in human thrombi. Thromb Haemost. 1996;75(1):127-133.
- Colucci M, Semeraro N, Semeraro F. Platelets and fibrinolysis. In: Gresele P, Kleiman N, Lopez J, Page C, editors. Platelets in Thrombotic and Non-Thrombotic Disorders. Cham, Switzerland: Springer; 2017.
- Zhu Y, Carmeliet P, Fay WP. Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation. 1999;99(23):3050-3055. doi: 10.1161/01.cir.99.23.3050
- Gieger C, Radhakrishnan A, Cvejic A, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201-208. doi: 10.1038/nature10659
- Soranzo N, Rendon A, Gieger C, et al. A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood. 2009;113(16):3831-3837. doi: 10.1182/blood-2008-10-184234
- Cotter FE, Johnson E. Chromosome 7 and haematological malignancies. Hematology. 1997;2(5):359-372. doi: 10.1080/10245332.1997.11746356
- Viny AD, Przychodzen B, O’Keefe CL et al. Various abnormalities at chromosome 7 carry distinct biologic and prognostic implications in myelodysplastic/ myeloproliferative syndromes and related marrow failures. Blood. 2010;116(21):2744-2744. doi: 10.1182/blood.v116.21.2744.2744
- Piguet PF, Vesin C, Da Laperousaz C, Rochat A. Role of plasminogen activators and urokinase receptor in platelet kinetics. Hematol J. 2000;1(3):199-205. doi: 10.1038/sj.thj.6200029
- Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000–2018. BMC Cancer. 2019;19:590. doi: 10.1186/s12885-019-5764-4
- Panova-Noeva M, Marchetti M, Buoro S, et al. JAK2V617F mutation and hydroxyurea treatment as determinants of immature platelet parameters in essential thrombocythemia and polycythemia vera patients. Blood. 2011;118:2599-2601. doi: 10.1182/blood-2011-02-339655
- Zini R, Guglielmelli P, Pietra D, et al. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer J. 2017;7:638. doi: 10.1038/s41408-017-0010-2
- Thomas S, Krishnan A. Platelet heterogeneity in myeloproliferative neoplasms. Arterioscler Thromb Vasc Biol. 2021;41(11):2661-2670. doi: 10.1161/ATVBAHA.121.316373