AccScience Publishing / GTM / Volume 3 / Issue 4 / DOI: 10.36922/gtm.5082
Cite this article
21
Download
257
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Pathogenesis and current therapeutic approaches for Parkinson’s disease

Raxida Umar1 Hao Lyu2*
Show Less
1 Department of Clinical Medicine, School of Medicine, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
2 Department of Neurosurgery, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
Global Translational Medicine 2024, 3(4), 5082 https://doi.org/10.36922/gtm.5082
Submitted: 8 October 2024 | Accepted: 2 December 2024 | Published: 27 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder among the elderly, characterized by a spectrum of motor and non-motor symptoms. Motor symptoms, including resting tremor, bradykinesia, rigidity, and postural instability, typically emerge as the predominant clinical features in advanced stages, signifying irreversible neurodegenerative changes. Early detection, accurate diagnosis, and timely intervention are crucial for improving prognosis and quality of life in patients with PD. Treatment options for PD remain a hot topic within the medical community. Pharmacotherapeutic approaches have expanded beyond traditional agents such as levodopa, monoamine oxidase inhibitors, and dopamine agonists to include novel drugs, including α-synuclein misfolding inhibitors and glucagon-like peptide 1 receptor agonists, which have demonstrated promising efficacy. Surgical interventions, particularly deep brain stimulation, continue to play a pivotal role in symptom management and are widely applied in clinical practice. Recent advancements in understanding the pathogenesis of PD have catalyzed the development of innovative treatment strategies. Emerging therapies, including gene therapy and stem cell therapy, offer transformative potential by addressing the underlying disease mechanisms. These therapies hold distinct advantages, such as controlling the pathological progression of PD, restoring damaged brain function, and minimizing treatment-associated adverse effects, positioning them as promising candidates for future standard-of-care approaches. This review summarizes the latest research progress in the understanding of PD pathogenesis and treatment, aiming to provide guidance for the clinical management of PD.

Keywords
Parkinson’s disease
Pathogenesis
Deep brain stimulation
Gene therapy
Stem cell therapy
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Zhu J, Cui Y, Zhang J, et al. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024;5(7):e464-e479. doi: 10.1016/S2666-7568(24)00094-1

 

  1. Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1-12. doi: 10.1016/J.CGER.2019.08.002

 

  1. Dextera DT, Jenner P. Parkinson disease: From pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132-144. doi: 10.1016/J.FREERADBIOMED.2013.01.018

 

  1. McGregor MM, Nelson AB. Circuit mechanisms of Parkinson’s disease. Neuron. 2019;101(6):1042-1056. doi: 10.1016/J.NEURON.2019.03.004

 

  1. Yan J, Zhang P, Tan J, et al. Cdk5 phosphorylation-induced SIRT2 nuclear translocation promotes the death of dopaminergic neurons in Parkinson’s disease. NPJ Parkinsons Dis. 2022;8(1):46. doi: 10.1038/S41531-022-00311-0

 

  1. Shen T, Cui G, Chen H, et al. TREM-1 mediates interaction between substantia nigra microglia and peripheral neutrophils. Neural Regen Res. 2024;19(6):1375-1384. doi: 10.4103/1673-5374.385843

 

  1. Chen G, Ahn EH, Kang SS, et al. UNC5C receptor proteolytic cleavage by active AEP promotes dopaminergic neuronal degeneration in Parkinson’s disease. Adv Sci (Weinh). 2022;9(7):e2103396. doi: 10.1002/ADVS.202103396

 

  1. Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Singh SP. NF-κB-mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotox Res. 2020;37(3):491-507. doi: 10.1007/s12640-019-00147-2

 

  1. Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest. 2001;107(3):247-254. doi: 10.1172/JCI11916

 

  1. Kim TW, Koo SY, Riessland M, et al. TNF-NF-κB-p53 axis restricts in vivo survival of hPSC-derived dopamine neurons. Cell. 2024;187(14):3671-3689.e23. doi: 10.1016/J.CELL.2024.05.030

 

  1. Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): New insight immune and aging. Immun Ageing. 2023;20(1):67. doi: 10.1186/s12979-023-00383-3

 

  1. Quan W, Liu Y, Li J, et al. Investigating the TLR4/TAK1/IRF7 axis in NLRP3-mediated pyroptosis in Parkinson’s disease. Inflammation. 2024;47(1):404-420. doi: 10.1007/S10753-023-01918-Y

 

  1. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548-569. doi: 10.1038/S41577-021-00524-Z

 

  1. Sliter DA, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018; 561(7722):258-262. doi: 10.1038/S41586-018-0448-9

 

  1. Zhao M, Wang B, Zhang C, et al. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease. Cell Death Differ. 2021;28(8):2517-2535. doi: 10.1038/S41418-021-00767-2

 

  1. Jiang SY, Tian T, Yao H, et al. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence. Cell Death Differ. 2023;30(10):2280-2292. doi: 10.1038/S41418-023-01216-Y

 

  1. Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: Implications for Parkinson’s disease. Brain. 2023;146(9):3587-3597. doi: 10.1093/brain/awad150

 

  1. Endo H, Ono M, Takado Y, et al. Imaging α-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron. 2024;112(15):2540-2557.e8. doi: 10.1016/J.NEURON.2024.05.006

 

  1. Xiang J, Tang J, Kang F, et al. Gut-induced alpha-Synuclein and Tau propagation initiate Parkinson’s and Alzheimer’s disease co-pathology and behavior impairments. Neuron. 2024;112:3585-3601.e5. doi: 10.1016/J.NEURON.2024.08.003

 

  1. Alqahtani T, Deore SL, Kide AA, et al. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis - An updated review. Mitochondrion. 2023;71:83-92. doi: 10.1016/J.MITO.2023.05.007

 

  1. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-491. doi: 10.3233/JPD-130230

 

  1. Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S26-S36; discussion S36-S38. doi: 10.1002/ANA.10483

 

  1. Wang BY, Ye YY, Qian C, et al. Stress increases MHC-I expression in dopaminergic neurons and induces autoimmune activation in Parkinson’s disease. Neural Regen Res. 2021;16(12):2521-2527. doi: 10.4103/1673-5374.313057

 

  1. Keeney MT, Rocha EM, Hoffman EK, et al. LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson’s disease. Sci Transl Med. 2024;16(767):17-20. doi: 10.1126/SCITRANSLMED.ADL3438

 

  1. Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics. 2024;21(1):e00292. doi: 10.1016/j.neurot.2023.10.002

 

  1. Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson’s disease. Biophys Chem. 2023;303:107122. doi: 10.1016/J.BPC.2023.107122

 

  1. Geibl FF, Henrich MT, Xie Z, et al. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson’s disease. bioRxiv [Preprint]. 2023. doi: 10.1101/2023.12.11.571045

 

  1. Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D. Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 2019;42(2):140-149. doi: 10.1016/J.TINS.2018.11.001

 

  1. Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and Parkinson’s disease: Clinical, molecular, and translational aspects. J Parkinsons Dis. 2021;1(1):45-60. doi: 10.3233/JPD-201981

 

  1. Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: Genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 2022;13(3):471. doi: 10.3390/GENES13030471

 

  1. Kamath T, Abdulraouf A, Burris SJ, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 2022;25(5):588-595. doi: 10.1038/S41593-022-01061-1

 

  1. Demailly A, Moreau C, Devos D. Effectiveness of continuous dopaminergic therapies in Parkinson’s disease: A review of L-DOPA pharmacokinetics/pharmacodynamics. J Parkinsons Dis. 2024;14:925-939. doi: 10.3233/jpd-230372

 

  1. Farzanehfar P, Woodrow H, Horne M. Assessment of wearing off in Parkinson’s disease using objective measurement. J Neurol. 2021;268(3):914-922. doi: 10.1007/s00415-020-10222-w

 

  1. Murakami H, Shiraishi T, Umehara T, Omoto S, Iguchi Y. Recent advances in drug therapy for Parkinson’s disease. Intern Med. 2023;62(1):33-42. doi: 10.2169/internalmedicine.8940-21

 

  1. LeWitt PA, Hauser RA, Pahwa R, et al. Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson’s disease: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol. 2019;18(2):145-154. doi: 10.1016/S1474-4422(18)30405-8

 

  1. Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease. J Enzyme Inhib Med Chem. 2023;38(1):2270781. doi: 10.1080/14756366.2023.2270781

 

  1. Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol. 2023;251:126158. doi: 10.1016/J.IJBIOMAC.2023.126158

 

  1. Tan YY, Jenner P, Di Chen S. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J Parkinsons Dis. 2022;12(2):477-493. doi: 10.3233/JPD-212976

 

  1. Jenner P, Rocha JF, Ferreira JJ, Rascol O, Soares-da-Silva P. Redefining the strategy for the use of COMT inhibitors in Parkinson’s disease: The role of opicapone. Expert Rev Neurother. 2021;21(9):1019-1033. doi: 10.1080/14737175.2021.1968298

 

  1. Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opin Drug Discov. 2020;15(1):53-62. doi: 10.1080/17460441.2020.1691165

 

  1. Fabbri M, Ferreira JJ, Rascol O. COMT Inhibitors in the management of Parkinson’s disease. CNS Drugs. 2022;36(3):261-282. doi: 10.1007/S40263-021-00888-9

 

  1. Woitalla D, Buhmann C, Hilker-Roggendorf R, et al. Role of dopamine agonists in Parkinson’s disease therapy. J Neural Transm (Vienna). 2023;130(6):863-873. doi: 10.1007/S00702-023-02647-0

 

  1. Jing XZ, Yang HJ, Taximaimaiti R, Wang XP. Advances in the therapeutic use of non-ergot dopamine agonists in the treatment of motor and non-motor symptoms of Parkinson’s disease. Curr Neuropharmacol. 2023;21(5):1224-1240. doi: 10.2174/1570159X20666220915091022

 

  1. Gray R, Ives N, Rick C, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): A large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196-1205. doi: 10.1016/S0140-6736(14)60683-8

 

  1. Rose EP, Osterberg VR, Gorbunova V, Unni VK. Alpha-synuclein modulates the repair of genomic DNA double-strand breaks in a DNA-PKcs-regulated manner. Neurobiol Dis. 2024;201:106675 doi: 10.1016/j.nbd.2024.106675

 

  1. Price DL, Khan A, Angers R, et al. In vivo effects of the alpha-synuclein misfolding inhibitor minzasolmin supports clinical development in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1):114. doi: 10.1038/S41531-023-00552-7

 

  1. Hariz M, Blomstedt P. Deep brain stimulation for Parkinson’s disease. J Intern Med. 2022;292(5):764-778. doi: 10.1111/JOIM.13541

 

  1. Hacker ML, Turchan M, Heusinkveld LE, et al. Deep brain stimulation in early-stage Parkinson disease: Five-year outcomes. Neurology. 2020;95(4):E393-E401. doi: 10.1212/WNL.0000000000009946

 

  1. Kremer NI, van Laar T, Lange SF, et al. STN-DBS electrode placement accuracy and motor improvement in Parkinson’s disease: Systematic review and individual patient meta-analysis. J Neurol Neurosurg Psychiatry. 2023;94(3):236-244. doi: 10.1136/JNNP-2022-329192

 

  1. Krishna V, Fishman PS, Eisenberg HM, et al. Trial of globus pallidus focused ultrasound ablation in Parkinson’s disease. N Engl J Med. 2023;388(8):683-693. doi: 10.1056/NEJMOA2202721

 

  1. Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci. 2023;334:122240. doi: 10.1016/j.lfs.2023.122240

 

  1. Boika A, Aleinikava N, Chyzhyk V, Zafranskaya M, Nizheharodava D, Ponomarev V. Mesenchymal stem cells in Parkinson’s disease: Motor and nonmotor symptoms in the early posttransplant period. Surg Neurol Int. 2020;11:380. doi: 10.25259/SNI_233_2020

 

  1. Park JM, Rahmati M, Lee SC, Shin JI, Kim YW. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson’s disease: A systematic review and meta-analysis. Neural Regen Res. 2024;19(7):1584-1592. doi: 10.4103/1673-5374.387976

 

  1. Park S, Park CW, Eom JH, et al. Preclinical and dose-ranging assessment of hESC-derived dopaminergic progenitors for a clinical trial on Parkinson’s disease. Cell Stem Cell. 2024;31(1):25-38.e8. doi: 10.1016/J.STEM.2023.11.009

 

  1. Jiang S, Wang H, Yang C, et al. Phase 1 study of safety and preliminary efficacy of intranasal transplantation of human neural stem cells (ANGE-S003) in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2024;95:1102-1111. doi: 10.1136/JNNP-2023-332921

 

  1. Zheng X, Han D, Liu W, et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson’s disease. Theranostics. 2023;13(8):2673-2692. doi: 10.7150/THNO.80271

 

  1. Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091-1102. doi: 10.1016/S1474-4422(19)30320-5

 

  1. Day JO, Mullin S. The genetics of parkinson’s disease and implications for clinical practice. Genes (Basel). 2021;12(7):1006. doi: 10.3390/genes12071006

 

  1. Kang L, Jin S, Wang J, et al. AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release. 2023;355:458-473. doi: 10.1016/J.JCONREL.2023.01.067

 

  1. Grote J, Patel N, Bates C, Parmar MS. From lab bench to hope: A review of gene therapies in clinical trials for Parkinson’s disease and challenges. Neurol Sci. 2024;45:4699-4710. doi: 10.1007/S10072-024-07599-1

 

  1. Chen Y, Hong Z, Wang J, et al. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson’s disease model. Cell. 2023;186(24):5394-5410.e18. doi: 10.1016/J.CELL.2023.10.004

 

  1. Fan JQ, Lu WJ, Tan WQ, et al. Effectiveness of acupuncture for anxiety among patients with parkinson disease: A randomized clinical trial. JAMA Netw Open. 2022;5(9):e2232133. doi: 10.1001/jamanetworkopen.2022.32133

 

  1. Yan M, Fan J, Liu X, et al. Acupuncture and sleep quality among patients with Parkinson disease: A randomized clinical trial. JAMA Netw Open. 2024;7(6):e2417862. doi: 10.1001/jamanetworkopen.2024.17862

 

  1. Jang JH, Park S, An J, et al. Gait disturbance improvement and cerebral cortex rearrangement by acupuncture in Parkinson’s disease: A pilot assessor-blinded, randomized, controlled, parallel-group trial. Neurorehabil Neural Repair. 2020;34(12):1111-1123. doi: 10.1177/1545968320969942

 

  1. Oh JY, Lee H, Jang SY, et al. Central role of hypothalamic circuits for acupuncture’s anti-parkinsonian effects. Adv Sci (Weinh). 2024;11:e2403245. doi: 10.1002/ADVS.202403245
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing