AccScience Publishing / GTM / Volume 3 / Issue 4 / DOI: 10.36922/gtm.4698
REVIEW ARTICLE

Sustainable innovations in biomedical materials: A review of eco-friendly synthesis approaches

Narsimha Mamidi1* Jesús Fernando Flores Otero2
Show Less
1 Wisconsin Center for NanoBiosystems, School of Pharmacy, Wisconsin University-Madison, Wisconsin, United States of America
2 Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo Leon, Mexico
Global Translational Medicine 2024, 3(4), 4698 https://doi.org/10.36922/gtm.4698
Submitted: 29 August 2024 | Accepted: 30 October 2024 | Published: 28 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In recent years, the biomedical field has witnessed significant advancements at the intersection of technology and biology. Metallic, polymeric, and carbonaceous materials have emerged as crucial components in developing and enhancing cutting-edge technologies. The properties of these materials, such as particle size, stability, and surface chemistry, are determined by their synthesis methods, which, in turn, enable specific applications. These materials are primarily synthesized through top-down and bottom-up techniques, each characterized by distinct preparation conditions, precursor materials, and catalytic processes. However, conventional synthesis methods often require substantial energy consumption, hazardous solvents, and non-renewable precursors, leading to environmental concerns and long-term costs. This review aims to provide an overview of the primary approaches and recent efforts to optimize the production and preparation processes of nanomaterials for biomedical applications. It addresses the advantages and limitations of green synthesis methods compared to traditional chemical and physical methods, offering an objective overview of green synthesis. In addition, it provides insights into the pre-clinical and clinical statuses of various nanomaterials. These efforts aim to mitigate the environmental impact of biomedical material synthesis by adopting eco-friendly strategies, such as minimizing energy consumption, utilizing environmentally friendly precursors, and embracing environmentally benign catalytic methodologies, while still leveraging traditional techniques.

Keywords
Green synthesis
Biomedical applications
Nanomaterials
Eco-friendly materials
Carbonaceous materials
Funding
None.
Conflict of interest
Narsimha Mamidi is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Ghadi R, Jain A, Khan W, Domb AJ. In: Ågren MS, editor. Microparticulate Polymers and Hydrogels for Wound Healing. Ch. 10. United Kingdom: Woodhead Publishing; 2016. p. 203-25. doi: 10.1016/B978-1-78242-456-7.00010-6

 

  1. McNamara K, Tofail SA. Nanoparticles in biomedical applications. Adv Phys. 2017;2(1):54-88. doi: 10.1080/23746149.2016.1254570

 

  1. Hyman P. Bacteriophages and nanostructured materials. In: Laskin AI, Sariaslani S, Gadd GM, editors. In: Advances in Applied Microbiology. Ch. 3. United States: Academic Press; 2012. p. 55-73. doi: 10.1016/B978-0-12-394805-2.00003-8

 

  1. Mamidi N, Flores Otero JF. Metallic and carbonaceous nanoparticles for dentistry applications. Curr Opin Biomed Eng. 2023;25:100436. doi: 10.1016/j.cobme.2022.100436

 

  1. Mamidi N, García RG, Martínez JDH, et al. Recent advances in designing fibrous biomaterials for the domain of biomedical. Clinical, and environmental applications. ACS Biomater Sci Eng. 2022;8(9):3690-3716. doi: 10.1021/acsbiomaterials.2c00786

 

  1. Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev. 2024;44:1-53. doi: 10.1002/med.22082

 

  1. Mamidi N, Zuníga AE, Villela-Castrejón J. Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Mater Sci Eng C Mater Biol Appl. 2020;112:110928. doi: 10.1016/j.msec.2020.110928

 

  1. Mamidi N, De Silva FF, Vacas AB, et al. Multifaceted hydrogel scaffolds: Bridging the gap between biomedical needs and environmental sustainability. Adv Healthc Mater. 2024;13(27):e2401195. doi: 10.1002/adhm.202401195

 

  1. Morris VJ. In: Motarjemi YB, editor. Food Technologies: Nanotechnology and Food Safety. Waltham: Academic Press; 2014. p. 208-210. doi: 10.1016/B978-0-12-378612-8.00277-8

 

  1. Suchomel P, Kvitek L, Prucek R, et al. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep. 2018;8(1):4589. doi: 10.1038/s41598-018-22976-5

 

  1. Zhang X, Li P, Barreda Á, et al. Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics. Nanoscale Horiz. 2016;1(1):75-80. doi: 10.1039/C5NH00062A

 

  1. Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821-1871. doi: 10.1039/D0MA00807A

 

  1. Bedlovičová Z. Green synthesis of silver nanoparticles using actinomycetes. In: Abd-Elsalam KA, Prasad R, editors. Nanobiotechnology for Plant Protection. Ch. 21. Netherlands: Elsevier; 2022. p. 47-69. doi: 10.1016/B978-0-12-824508-8.00001-0

 

  1. Britto-Hurtado R, Cortez-Valadez M. Green synthesis approaches for metallic and carbon nanostructures. In: Shanker U, Hussain CM, Rani M, editors. Micro and Nano Technologies. Netherlands: Elsevier; 2022. p. 83-127. doi: 10.1016/B978-0-12-823137-1.00002-6

 

  1. Tabassum Z, Mohan A, Mamidi N, et al. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol. 2023;17(3):127-153. doi: 10.1049/nbt2.12122

 

  1. Saratale RG, Karuppusamy I, Saratale GD, et al. A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids Surf B Biointerfaces. 2018;170:20-35. doi: 10.1016/j.colsurfb.2018.05.045

 

  1. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; 2000. doi: 10.1093/oso/9780198506980.001.0001

 

  1. Das RK, Pachapur VL, Lonappan L, et al. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol Environ Eng. 2017;2(1):18. doi: 10.1007/s41204-017-0029-4

 

  1. Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol. 2019;103:2913-2935. doi: 10.1007/s00253-019-09675-5

 

  1. Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 2020;8:799. doi: 10.3389/fchem.2020.00799

 

  1. Sabarees G, Velmurugan V, Tamilarasi GP, Alagarsamy V, Raja Solomon V. Recent advances in silver nanoparticles containing nanofibers for chronic wound management. Polymers (Basel). 2022;14(19):3994. doi: 10.3390/polym14193994

 

  1. Gudikandula K, Vadapally P, Singara Charya MA. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano. 2017;2:64-78. doi: 10.1016/j.onano.2017.07.002

 

  1. Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J Nanotechnol. 2021;12:102-136. doi: 10.3762/bjnano.12.9

 

  1. Sana SS, Hou T, Li H, et al. Crude polysaccharide produces silver nanoparticles with inherent antioxidant and antibacterial activity. ChemistrySelect. 2023;8(18):e202203658. doi: 10.1002/slct.202203658

 

  1. Barreto GP, Morales G, Quintanilla MLL. Microwave assisted synthesis of ZnO nanoparticles: Effect of precursor reagents, temperature, irradiation time, and additives on Nano-ZnO morphology development. J Mater. 2013;2013(1):478681. doi: 10.1155/2013/478681

 

  1. Streubel R, Barcikowski S, Gökce B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt Lett. 2016;41(7):1486-1489. doi: 10.1364/OL.41.001486

 

  1. Ghiuță I, Cristea D, Croitoru C, et al. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl Surf Sci. 2018;438:66-73. doi: 10.1016/j.apsusc.2017.09.163

 

  1. Rautela A, Rani J, Debnath (Das) M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol. 2019;10(1):5. doi: 10.1186/s40543-018-0163-z

 

  1. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep. 2016;6(1):20414. doi: 10.1038/srep20414

 

  1. Seku K, Gangapuram BR, Pejjai B, Kadimpati KK, Golla N. Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. J Nanostructure Chem. 2018;8(2):179-188. doi: 10.1007/s40097-018-0264-7

 

  1. Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8(1):2445. doi: 10.1038/s41598-018-20728-z

 

  1. Moschini E, Colombo G, Chirico G, Capitani G, Dalle- Donne I, Mantecca P. Biological mechanism of cell oxidative stress and death during short-term exposure to nano CuO. Sci Rep. 2023;13(1):2326. doi: 10.1038/s41598-023-28958-6

 

  1. Niżnik Ł, Noga M, Kobylarz D, et al. Gold nanoparticles (AuNPs)-toxicity, safety and green synthesis: A critical review. Int J Mol Sci. 2024;25(7):4057. doi: 10.3390/ijms25074057

 

  1. Nagar V, Singh T, Tiwari Y, et al. ZnO Nanoparticles: Exposure, toxicity mechanism and assessment. Mater Today Proc. 2022;69:56-63. doi: 10.1016/j.matpr.2022.09.001

 

  1. O’Gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? J Hosp Infect. 2012;81(4):217-223. doi: 10.1016/j.jhin.2012.05.009

 

  1. Ali M, Ijaz M, Ikram M, Ul-Hamid A, Avais M, Anjum AA. Biogenic synthesis, characterization and antibacterial potential evaluation of copper oxide nanoparticles against Escherichia coli. Nanoscale Res Lett. 2021;16(1):148. doi: 10.1186/s11671-021-03605-z

 

  1. Usman M, Ahmed A, Yu B, Peng Q, Shen Y, Cong H. Photocatalytic potential of bio-engineered copper nanoparticles synthesized from Ficus carica extract for the degradation of toxic organic dye from waste water: Growth mechanism and study of parameter affecting the degradation performance. Mater Res Bull. 2019;120:110583. doi: 10.1016/j.materresbull.2019.110583

 

  1. Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of copper nanoparticles in dentistry. Nanomaterials (Basel). 2022;12(5):805. doi: 10.3390/nano12050805

 

  1. Van Hengel IAJ, Tierolf MWAM, Valerio VPM, et al. Self-defending additively manufactured bone implants bearing silver and copper nanoparticles. J Mater Chem B. 2020;8(8):1589-1602. doi: 10.1039/C9TB02434D

 

  1. Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J. Effectiveness of copper nanoparticles in wound healing process using in vivo and in vitro studies: A systematic review. Pharmaceutics. 2022;14(9):1838. doi: 10.3390/pharmaceutics14091838

 

  1. Liu R, Zhan D, Wang D, et al. Surface plasmon resonance effect of noble metal (Ag and Au) nanoparticles on BiVO4 for photoelectrochemical water splitting. Inorganics (Basel). 2023;11(5):206. doi: 10.3390/inorganics11050206

 

  1. Betancourt-Galindo R, Reyes-Rodriguez PY, Puente- Urbina BA, et al. Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J Nanomater. 2014;2014:980545. doi: 10.1155/2014/980545

 

  1. Aguilar MS, Esparza R, Rosas G. Synthesis of Cu nanoparticles by chemical reduction method. Trans Nonferrous Met Soc China. 2019;29(7):1510-1515. doi: 10.1016/S1003-6326(19)65058-2

 

  1. Suri S, Ruan G, Winter J, Schmidt CE. Microparticles and nanoparticles. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials Science: An Introduction to Materials. 3rd ed., Ch. I.2.19. United States: Academic Press; 2013. p. 360-388. doi: 10.1016/B978-0-08-087780-8.00034-6

 

  1. Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep (Amst). 2020;27:e00518. doi: 10.1016/j.btre.2020.e00518

 

  1. Jiménez-Rodríguez A, Sotelo E, Martínez L, et al. Green synthesis of starch-capped Cu2O nanocubes and their application in the direct electrochemical detection of glucose. RSC Adv. 2021;11(23):13711-13721. doi: 10.1039/D0RA10054D

 

  1. Zhou M, Zhang X, Quan Y, Tian Y, Chen J, Li L. Visible light-induced photocatalytic and antibacterial adhesion properties of superhydrophilic TiO2 nanoparticles. Sci Rep. 2024;14(1):7940. doi: 10.1038/s41598-024-58660-0

 

  1. Oi LE, Yee C, Lee H, Ong HC, Abd Hamid SB, Juan JC. Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Adv. 2016;6:108741-54. doi: 10.1039/C6RA22894A

 

  1. Horváth E, Gabathuler J, Bourdiec G, et al. Solar water purification with photocatalytic nanocomposite filter based on TiO2 nanowires and carbon nanotubes. NPJ Clean Water. 2022;5(1):10. doi: 10.1038/s41545-022-00157-2

 

  1. Gohari G, Mohammadi A, Akbari A, et al. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep. 2020;10(1):912. doi: 10.1038/s41598-020-57794-1

 

  1. Ullattil S, Periyat P. Sol-Gel Synthesis of Titanium Dioxide. Cham: Springer; 2017. p. 271-283. doi: 10.1007/978-3-319-50144-4_9

 

  1. Keerthana BGT, Solaiyammal T, Muniyappan S, Murugakoothan P. Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents. Mater Lett. 2018;220:20-23. doi: 10.1016/j.matlet.2018.02.119

 

  1. Aravind M, Amalanathan M, Mary MSM. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci. 2021;3(4):409. doi: 10.1007/s42452-021-04281-5

 

  1. Sethy NK, Arif Z, Mishra PK, Kumar P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process Synth. 2020;9(1):171-181. doi: 10.1515/gps-2020-0018

 

  1. Auld DS, Bergman T. Medium-and short-chain dehydrogenase/reductase gene and protein families : The role of zinc for alcohol dehydrogenase structure and function. Cell Mol Life Sci. 2008;65(24):3961-3970. doi: 10.1007/s00018-008-8593-1

 

  1. Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997;74(1):1-20. doi: 10.1016/s0163-7258(96)00198-2

 

  1. Wisz G, Virt I, Sagan P, Potera P, Yavorskyi R. Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res Lett. 2017;12(1):253. doi: 10.1186/s11671-017-2033-9

 

  1. Hou T, Sankar Sana S, Li H, et al. Development of plant protein derived tri angular shaped nano zinc oxide particles with inherent antibacterial and neurotoxicity properties. Pharmaceutics. 2022;14(10):2155. doi: 10.3390/pharmaceutics14102155

 

  1. Siddiqi KS, Ur Rahman A, Tajuddin, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13(1):141. doi: 10.1186/s11671-018-2532-3

 

  1. Malhotra BD, Ali MA. Nanomaterials in biosensors: Fundamentals and applications. In: Nanomaterials for Biosensors. Norwich, NY: William Andrew; 2018. p. 1-74. doi: 10.1016/B978-0-323-44923-6.00001-7

 

  1. Paltusheva ZU, Ashikbayeva Z, Tosi D, Gritsenko LV. Highly sensitive zinc oxide fiber-optic biosensor for the detection of CD44 protein. Biosensors (Basel). 2022;12(11):1015. doi: 10.3390/bios12111015

 

  1. Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed Pharmacother. 2019;109:2561-2572. doi: 10.1016/j.biopha.2018.11.116

 

  1. Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol. 2016;44(2):672-679. doi: 10.3109/21691401.2014.978980

 

  1. Hasnidawani JN, Azlina HN, Norita H, Bonnia NN, Ratim S, Ali ES. Synthesis of ZnO nanostructures using Sol- Gel method. Procedia Chem. 2016;19:211-216. doi: 10.1016/j.proche.2016.03.095

 

  1. Sana SS, Vadde R, Kumar R, et al. Eco-friendly and facile production of antibacterial zinc oxide nanoparticles from Grewia flavescens (G. flavescens) leaf extract for biomedical applications. J Drug Deliv Sci Technol. 2023;80:104186. doi: 10.1016/j.jddst.2023.104186

 

  1. Jayachandran A, Aswathy TR, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep. 2021;26:100995. doi: 10.1016/j.bbrep.2021.100995

 

  1. Gad G, Hegazy M. Optoelectronic properties of gold nanoparticles synthesized by using wet chemical method. Mater Res Express. 2019;6:85024. doi: 10.1088/2053-1591/ab1bb8

 

  1. Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 2020;11(4):923-936. doi: 10.1039/C9SC06497D

 

  1. Srivastava KR, Awasthi S, Mishra PK, Srivastava PK. Biosensors/molecular tools for detection of waterborne pathogens. In: Vara Prasad MN, Grobelak ABT, editors. Waterborne Pathogen. United Kingdom: Butterworth- Heinemann; 2020. p. 237-277. doi: 10.1016/B978-0-12-818783-8.00013-X

 

  1. Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors (Basel). 2015;15(5):10481-1510. doi: 10.3390/s150510481

 

  1. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537-556. doi: 10.1016/j.talanta.2018.02.088

 

  1. Zukauskas S, Rucinskiene A, Ratautaite V, et al. Electrochemical biosensor for the determination of specific antibodies against SARS-CoV-2 spike protein. Int J Mol Sci. 2023;24(1):718. doi: 10.3390/ijms24010718

 

  1. Ali MRK, Wu Y, El-Sayed MA. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Physical Chem C. 2019;123(25):15375-15393. doi: 10.1021/acs.jpcc.9b01961

 

  1. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11(0):55-75. doi: 10.1039/DF9511100055

 

  1. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20-22. doi: 10.1038/physci241020a0

 

  1. Li S, Al-Misned FA, El-Serehy HA, Yang L. Green synthesis of gold nanoparticles using aqueous extract of Mentha longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arab J Chem. 2021;14(2):102931. doi: 10.1016/j.arabjc.2020.102931

 

  1. Rajasekar T, Karthika K, Muralitharan G, et al. Green synthesis of gold nanoparticles using extracellular metabolites of fish gut microbes and their antimicrobial properties. Braz J Microbiol. 2020;51(3):957-967. doi: 10.1007/s42770-020-00263-8

 

  1. Muddapur UM, Alshehri S, Ghoneim MM, et al. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules. 2022;27(4):1391. doi: 10.3390/molecules27041391

 

  1. Hutchinson N, Wu Y, Wang Y, et al. Green synthesis of gold nanoparticles using upland cress and their biochemical characterization and assessment. Nanomaterials (Basel). 2021;12(1):28. doi: 10.3390/nano12010028

 

  1. Santhosh PB, Genova J, Chamati H. Green synthesis of gold nanoparticles: An eco-friendly approach. Chemistry (Easton). 2022;4(2):345-369. doi: 10.3390/chemistry4020026

 

  1. Raheem AA, Thangasamy P, Sathish M, Praveen C. Supercritical water assisted preparation of recyclable gold nanoparticles and their catalytic utility in cross-coupling reactions under sustainable conditions. Nanoscale Adv 2019;1(8):3177-3191. doi: 10.1039/C9NA00240E

 

  1. Haro-González PG, Ramírez-Rico DS, Larios-Durán ER. Synthesis of gold nanoparticles in aqueous solutions by electrochemical reduction using poly(ethylen glicol) as stabilizer. Int J Electrochem Sci. 2019;14(10):9704-9710. doi: 10.20964/2019.10.10

 

  1. Irfan M, Moniruzzaman M, Ahmad T, Mandal PC, Abdullah B, Bhattacharjee S. Growth kinetic study of ionic liquid mediated synthesis of gold nanoparticles using Elaeis guineensis (oil palm) kernels extract under microwave irradiation. Arab J Chem. 2020;13(1):620-631. doi: 10.1016/j.arabjc.2017.07.005

 

  1. Koel M. Developments in analytical chemistry initiated from green chemistry. Sustain Chem Environ. 2024;5:100078. doi: 10.1016/j.scenv.2024.100078

 

  1. Gurusamy L, Anandan S, Wu JJ. In: Khan A, Verpoort F, Asiri AM, et al., editors. Nanomaterials Derived from Metal- Organic Frameworks for Energy Storage Supercapacitor Application. Ch. 18. Netherlands: Elsevier; 2021. p. 441-470. doi: 10.1016/B978-0-12-822099-3.00018-6

 

  1. Wang Q, Sun Y, Li S, Zhang P, Yao Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 2020;10(62):37600-37620. doi: 10.1039/D0RA07950B

 

  1. Chen S, Pang H, Sun J, Li K. Research advances and applications of ZIF-90 metal-organic framework nanoparticles in the biomedical field. Mater Chem Front. 2024;8(5):1195-1211. doi: 10.1039/D3QM01020A

 

  1. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci. 2006;103(27):10186-10191. doi: 10.1073/pnas.0602439103

 

  1. Zhang J, Tan Y, Song WJ. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review. Microchimica Acta. 2020;187:234. doi: 10.1007/s00604-020-4173-3

 

  1. Kouhdareh J, Karimi-Nami R, Keypour H, et al. Synthesis of a Au/Au NPs-PPy/l-CYs/ZIF-8 nanocomposite electrode for voltammetric determination of insulin in human blood. RSC Adv. 2023;13(35):24474-24486. doi: 10.1039/D3RA04064J

 

  1. Tran TV, Nguyen H, Le PHA, et al. Microwave-assisted solvothermal fabrication of hybrid zeolitic-imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. J Environ Chem Eng. 2020;8(4):104189. doi: 10.1016/j.jece.2020.104189

 

  1. Saini P, Chakinala N, Surolia PK, Gupta Chakinala A. Ultrasound-assisted enhanced adsorption of textile dyes with metal organic frameworks. Sep Purif Technol. 2025;354:128730. doi: 10.1016/j.seppur.2024.128730

 

  1. Kenyotha K, Chanapattharapol KC, McCloskey S, Jantaharn P. Water based synthesis of ZIF-8 assisted by hydrogen bond acceptors and enhancement of CO2 uptake by solvent assisted ligand exchange. Crystals (Basel). 2020;10(7):599. doi: 10.3390/cryst10070599

 

  1. Lo KH, Anuratha KS, Cheng CC, et al. In situ synthesis of ZIF-67 thin films using low temperature chemical vapor deposition to fabricate all-solid-state flexible interdigital in-planar microsupercapacitors. Int J Energy Res. 2023;2023(1):3754111. doi: 10.1155/2023/3754111

 

  1. Cai W, Zhang W, Chen Z. Magnetic Fe3O4@ZIF-8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids Surf B Biointerfaces. 2023;223:113170. doi: 10.1016/j.colsurfb.2023.113170

 

  1. Wiśniewska P, Haponiuk J, Saeb MR, Rabiee N, Bencherif SA. Mitigating metal-organic framework (MOF) toxicity for biomedical applications. Chem Eng J. 2023;471:144400. doi: 10.1016/j.cej.2023.144400

 

  1. Meng L, Xiao K, Zhang X, Du C, Chen J. A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens Bioelectron. 2020;150:111861. doi: 10.1016/j.bios.2019.111861

 

  1. Ren Q, Mou J, Guo Y, et al. Simple homogeneous electrochemical target-responsive aptasensor based on aptamer bio-gated and porous carbon nanocontainer derived from ZIF-8. Biosens Bioelectron. 2020;166:112448. doi: 10.1016/j.bios.2020.112448

 

  1. Anderson DE, Balapangu S, Fleischer HNA, et al. Investigating the influence of temperature on the kaolinite-base synthesis of zeolite and urease immobilization for the potential fabrication of electrochemical urea biosensors. Sensors (Basel). 2017;17(8):1831. doi: 10.3390/s17081831

 

  1. Li W, Yu Z, Zhang Y, et al. Scalable multifunctional MOFs-textiles via diazonium chemistry. Nat Commun. 2024;15(1):5297. doi: 10.1038/s41467-024-49636-9

 

  1. Gan N, Sun Q, Peng X, et al. MOFs-alginate/polyacrylic acid/poly (ethylene imine) heparin-mimicking beads as a novel hemoadsorbent for bilirubin removal in vitro and vivo models. Int J Biol Macromol. 2023;235:123868. doi: 10.1016/j.ijbiomac.2023.123868

 

  1. Lu J, Luan J, Li Y, He X, Chen L, Zhang Y. Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A. 2020;1615:460754. doi: 10.1016/j.chroma.2019.460754

 

  1. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56-58. doi: 10.1038/354056a0

 

  1. Patil TV, Patel DK, Dutta SD, Ganguly K, Randhawa A, Lim KT. Carbon nanotubes-based hydrogels for bacterial eradiation and wound-healing applications. Appl Sci. 2021;11(20):9550. doi: 10.3390/app11209550

 

  1. Mamidi N, Delgadillo RMV, Castrejón JV. Unconventional and facile production of a stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation. Environ Sci Nano. 20218(7):2081-2097. doi: 10.1039/D1EN00354B

 

  1. Mamidi N, Leija HM, Diabb JM, et al. Cytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites. J Biomed Mater Res A. 2017;105(11):3042-3049. doi: 10.1002/jbm.a.36168

 

  1. Mamidi N. Cytotoxicity Evaluation of Carbon Nanotubes for Biomedical and Tissue Engineering Applications. London: IntechOpen; 2019. doi: 10.5772/intechopen.85899

 

  1. Qian S, Yan Z, Xu Y, et al. Carbon nanotubes as electrophysiological building blocks for a bioactive cell scaffold through biological assembly to induce osteogenesis. RSC Adv. 2019;9(21):12001-12009. doi: 10.1039/C9RA00370C

 

  1. Gupta P, Gupta VK, Huseinov A, Rahm CE, Gazica K, Alvarez NT. Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set. Sens Actuators B Chem. 2021;348:130688. doi: 10.1016/j.snb.2021.130688

 

  1. Ajayan PM, Ebbesen TW. Nanometre-size tubes of carbon. Rep Progress Phys. 1997;60(10):1025. doi: 10.1088/0034-4885/60/10/001

 

  1. Shi Z, Lian Y, Zhou X, et al. Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon. 1999;37:1449-1453. doi: 10.1016/S0008-6223(99)00007-X

 

  1. Chan KF, Maznam NAM, Hazan MA, et al. Multi-walled carbon nanotubes growth by chemical vapour deposition: Effect of precursor flowing path and catalyst size. Carbon Trends. 2022;6:100142. doi: 10.1016/j.cartre.2021.100142

 

  1. Ding EX, Liu P, Khan AT, et al. Towards the synthesis of semiconducting single-walled carbon nanotubes by floating-catalyst chemical vapor deposition: Challenges of reproducibility. Carbon N Y. 2022;195:92-100. doi: 10.1016/j.carbon.2022.04.020

 

  1. Adeniran B, Mokaya R. Low temperature synthesized carbon nanotube superstructures with superior CO2 and hydrogen storage capacity. J Mater Chem A Mater. 2015;3(9):5148-5161. doi: 10.1039/C4TA06539E

 

  1. Tripathi N, Pavelyev V, Islam SS. Synthesis of carbon nanotubes using green plant extract as catalyst: Unconventional concept and its realization. Appl Nanosci. 2017;7(8):557-566. doi: 10.1007/s13204-017-0598-3

 

  1. Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D. Synthesis and applications of graphene oxide. Materials (Basel). 2022;15(3):920. doi: 10.3390/ma15030920

 

  1. Bai RG, Husseini GA. Graphene-based drug delivery systems. In: Unnithan AR, Sasikala ARK, Park CH, Kim CS, editors. Biomimetic Nanoengineered Materials for Advanced Drug Delivery. Ch. 11. Netherlands: Elsevier; 2019. p. 149-168. doi: 10.1016/B978-0-12-814944-7.00011-4

 

  1. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol. 2018;16(1):75. doi: 10.1186/s12951-018-0400-z

 

  1. Mamidi N, Velasco Delgadillo RM, Barrera EV, Ramakrishna S, Annabi N. Carbonaceous nanomaterials incorporated biomaterials: The present and future of the flourishing field. Compos B Eng. 2022;243:110150. doi: 10.1016/j.compositesb.2022.110150

 

  1. Özcan M, Volpato CAM, Hian L, Karahan BD, Cesar PF. Graphene for Zirconia and titanium composites in dental implants: Significance and predictions. Curr Oral Health Rep. 2022;9(3):66-74. doi: 10.1007/s40496-022-00310-3

 

  1. Shams SS, Zhang R. Graphene synthesis: A review. Mater Sci Poland. 2015;33:566-578. doi: 10.1515/msp-2015-0079

 

  1. Xu S, Zhang L, Wang B, Ruoff RS. Chemical vapor deposition of graphene on thin-metal films. Cell Rep Phys Sci. 2021;2(3):100372. doi: 10.1016/j.xcrp.2021.100372

 

  1. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem. 2018;8(2):123-137. doi: 10.1007/s40097-018-0265-6

 

  1. Gürünlü B, Taşdelen Yücedağ Ç, Bayramoğlu MR. Green synthesis of graphene from graphite in molten salt medium. J Nanomater. 2020;2020:7029601. doi: 10.1155/2020/7029601

 

  1. Bindumadhavan K, Srivastava S, Srivastava I. Green synthesis of graphene. J Nanosci Nanotechnol. 2013;13:4320-4324. doi: 10.1166/jnn.2013.7461

 

  1. Meka Chufa B, Abdisa Gonfa B, Yohannes Anshebo T, Adam Workneh G. A novel and simplest green synthesis method of reduced graphene oxide using methanol extracted Vernonia amygdalina: Large-scale production. Adv Condens Matter Phys. 2021;2021:6681710. doi: 10.1155/2021/6681710

 

  1. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig Investig. 2008;26(1):57-64. doi: 10.1016/j.urolonc.2007.03.015

 

  1. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi: 10.1186/1556-276X-8-102

 

  1. Luiz H, Oliveira Pinho J, Gaspar MM. Advancing medicine with lipid-based nanosystems-the successful case of liposomes. Biomedicines. 2023;11:435-447. doi: 10.3390/biomedicines11020435

 

  1. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:17-22. doi: 10.1007/978-1-4939-6591-5_2

 

  1. Istenič K, Cerc Korošec R, Poklar Ulrih N. Encapsulation of (−)-epigallocatechin gallate into liposomes and into alginate or chitosan microparticles reinforced with liposomes. J Sci Food Agric. 2016;96(13):4623-4632. doi: 10.1002/jsfa.7691

 

  1. Charcosset C, Juban A, Valour JP, Urbaniak S, Fessi H. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem Eng Res Design. 2015;94:508-515. doi: 10.1016/j.cherd.2014.09.008

 

  1. Hou K, Bao M, Xin C, et al. Green synthesis of gold nanoparticles coated doxorubicin liposomes using procyanidins for light-controlled drug release. Adv Powder Technol. 2020;31(8):3640-3649. doi: 10.1016/j.apt.2020.07.012

 

  1. Siyadatpanah A, Norouzi R, Mirzaei F, et al. Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis. J Microbiol Immunol Infect. 2022;56:150-162. doi: 10.1016/j.jmii.2022.06.006

 

  1. Rabiee N, Bagherzadeh M, Kiani M, et al. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int J Nanomed. 2020;15:3983-3999. doi: 10.2147/IJN.S255398

 

  1. Faisal S, Jan H, Shah SA, et al. Green synthesis of zinc oxide (zno) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 2021;6(14):9709-9722. doi: 10.1021/acsomega.1c00310

 

  1. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev. 2017;10(4):186-201. doi: 10.1080/17518253.2017.1339831

 

  1. Abbasi A, Mir Mohamad Sadeghi G, Ghasemi I, Shahrousvand M. Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/ graphene nanoplatelets: Synthesis, properties, and cell behavior. Polym Compos. 2018;39(11):4020-4033. doi: 10.1002/pc.24456

 

  1. Hemlata, Meena PR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activeity against cancer cell lines. ACS Omega. 2020;5(10):5520-5528. doi: 10.1021/acsomega.0c00155

 

  1. Ventrella A, Camisasca A, Fontana A, Giordani S. Synthesis of green fluorescent carbon dots from carbon nano-onions and graphene oxide. RSC Adv. 2020;10(60):36404-3612. doi: 10.1039/D0RA06172G

 

  1. Li H, Zhang N, Hao Y, et al. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: Characteristics and anticancer effects in vitro. Drug Deliv. 2014;21(5):379-387. doi: 10.3109/10717544.2013.848246

 

  1. Gupta RK, Patel SKS, Lee JK. Novel cofactor regeneration-based magnetic metal-organic framework for cascade enzymatic conversion of biomass-derived bioethanol to acetoin. Bioresour Technol. 2024;408:131175. doi: 10.1016/j.biortech.2024.131175
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing