AccScience Publishing / GTM / Volume 3 / Issue 4 / DOI: 10.36922/gtm.4619
Cite this article
22
Download
448
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW ARTICLE

Senescence in cardiovascular diseases: Insights into metabolic dysfunction in vascular cells

Ying Qu1,2,3 Anan Wang4 Caihua Long4 Qiuyue Gao1,2,3 Baoqi Yu1,2,3*
Show Less
1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
2 The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
3 Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
4 Department of Basic Medical Sciences, Capital Medical University, Beijing, China
Global Translational Medicine 2024, 3(4), 4619 https://doi.org/10.36922/gtm.4619
Submitted: 21 August 2024 | Accepted: 14 October 2024 | Published: 21 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Senescence is an independent risk factor and plays a critical role in altering vascular structure and functions. Reportedly, senescence accelerates pathological processes and notably increases the risk of cardiovascular diseases, such as atherosclerosis, which are the leading causes of mortality worldwide. Therefore, understanding vascular senescence mechanisms is essential for controlling the increasing incidence and mortality of cardiovascular diseases. This review highlights the progress in research on the various mechanisms underlying the senescence of endothelial cells, smooth muscle cells, and macrophages – such as stem cell senescence, metabolic dysregulation, mitochondrial autophagy (mitophagy) impairment, and ferroptosis – and summarizes various antisenescence strategies to target these mechanisms. Key interventions include restoration of the nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio and administration of metformin and acarbose to regulate blood glucose levels, which balances the cellular energy and redox. Further, stem cell therapies, rapamycin administration, and melatonin supplementation demonstrate substantial potential. In addition, exercise, dietary modification, and caloric restriction support senescence mitigation. These strategies illustrate the multifaceted nature of senescence and highlight the potential of integrated therapeutic approaches to extend the health span and delay age-related diseases. This review provides a comprehensive summary of age-related metabolic pathways and explores promising antisenescence therapeutic strategies, thereby providing valuable insights into the prevention, diagnosis, and treatment of senescence-related vascular diseases.

Keywords
Senescence
Cardiovascular disease
Vascular disease
Metabolism
Stem cells
Funding
This work was supported by a grant from the National Key Research and Development Program of China (2023YFC3606500) and the National Natural Science Foundation of China (32271231).
Conflict of interest
Baoqi Yu is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243-278. doi: 10.1016/j.cell.2022.11.001

 

  1. Lakatta EG, Levy D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation. 2003;107(1):139-146. doi: 10.1161/01.cir.0000048892.83521.58

 

  1. Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR. Aging is associated with greater nuclear NF Kappa B, reduced I Kappa B Alpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell. 2008;7(6):805-812. doi: 10.1111/j.1474-9726.2008.00438.x

 

  1. Consortium AB, Zhang L, Guo J, et al. A framework of biomarkers for vascular aging: A consensus statement by the Aging Biomarker Consortium. Life Med. 2023;2(4):lnad033. doi: 10.1093/lifemedi/lnad033

 

  1. Roger L, Tomas F, Gire V. Mechanisms and regulation of cellular senescence. Int J Mol Sci. 2021;22(23):13173. doi: 10.3390/ijms222313173

 

  1. Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187-195. doi: 10.1111/j.1474-9726.2006.00199.x

 

  1. Campisi J. Cellular senescence: Putting the paradoxes in perspective. Curr Opin Genet Dev. 2011;21(1):107-112. doi: 10.1016/j.gde.2010.10.005

 

  1. Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8(1):239. doi: 10.1038/s41392-023-01502-8

 

  1. Erusalimsky JD, Kurz DJ. Endothelial cell senescence. Handb Exp Pharmacol. 2006;(176 Pt 2):213-248. doi: 10.1007/3-540-36028-x_7

 

  1. Ritschka B, Storer M, Mas A, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31(2):172-183. doi: 10.1101/gad.290635.116

 

  1. Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38-51. doi: 10.1038/s41569-022-00739-0

 

  1. Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. doi: 10.1038/s41572-019-0106-z

 

  1. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28(6):436-453. doi: 10.1016/j.tcb.2018.02.001

 

  1. Liu M, Gomez D. Smooth muscle cell phenotypic diversity. Arterioscler Thromb Vasc Biol. 2019;39(9):1715-1723. doi: 10.1161/atvbaha.119.312131

 

  1. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: Implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590-600. doi: 10.1093/cvr/cvy010

 

  1. Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal. 2022;20(1):180. doi: 10.1186/s12964-022-00993-2

 

  1. Zhang L, Xu Z, Wu Y, Liao J, Zeng F, Shi L. Akt/eNOS and MAPK signaling pathways mediated the phenotypic switching of thoracic aorta vascular smooth muscle cells in aging/hypertensive rats. Physiol Res. 2018;67(4):543-553. doi: 10.33549/physiolres.933779

 

  1. Xu M, Wei X, Wang J, et al. The NRF2/ID2 axis in vascular smooth muscle cells: Novel insights into the interplay between vascular calcification and aging. Aging Dis. 2024. doi: 10.14336/ad.2024.0075

 

  1. Wang H, Fu H, Zhu R, et al. BRD4 contributes to LPS-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake. Aging (Albany NY). 2020;12(10):9240-9259. doi: 10.18632/aging.103200

 

  1. Abe JI, Imanishi M, Li S, et al. An ERK5-NRF2 axis mediates senescence-associated stemness and atherosclerosis. Circ Res. 2023;133(1):25-44. doi: 10.1161/circresaha.122.322017

 

  1. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354(6311):472-477. doi: 10.1126/science.aaf6659

 

  1. Wang L, Hong W, Zhu H, et al. Macrophage senescence in health and diseases. Acta Pharm Sin B. 2024;14(4):1508-1524. doi: 10.1016/j.apsb.2024.01.008

 

  1. Morrison SJ, Spradling AC. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598-611. doi: 10.1016/j.cell.2008.01.038

 

  1. Neves J, Sousa-Victor P, Jasper H. Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell. 2017;20(2):161-175. doi: 10.1016/j.stem.2017.01.008

 

  1. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166(4):822-839. doi: 10.1016/j.cell.2016.07.050

 

  1. Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141(22):4206-4218. doi: 10.1242/dev.107086

 

  1. Lourida KG, Louridas GE. Epigenetic perspective on atherosclerotic cardiovascular diseases: The holistic principle of systems biology and epigenetic reasoning. Glob Transl Med. 2023;2(4):1868. doi: 10.36922/gtm.1868

 

  1. Chakravarti D, LaBella KA, DePinho RA. Telomeres: History, health, and hallmarks of aging. Cell. 2021;184(2):306-322. doi: 10.1016/j.cell.2020.12.028

 

  1. Bao H, Cao J, Chen M, et al. Biomarkers of aging. Sci China Life Sci. 2023;66(5):893-1066. doi: 10.1007/s11427-023-2305-0

 

  1. O’Callaghan C, Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell. 2017;16(6):1208-1218. doi: 10.1111/acel.12685

 

  1. Zhang HN, Dai Y, Zhang CH, et al. Sirtuins family as a target in endothelial cell dysfunction: Implications for vascular ageing. Biogerontology. 2020;21(5):495-516. doi: 10.1007/s10522-020-09873-z

 

  1. Luna A, Aladjem MI, Kohn KW. SIRT1/PARP1 crosstalk: Connecting DNA damage and metabolism. Genome Integr. 2013;4(1):6. doi: 10.1186/2041-9414-4-6

 

  1. McReynolds MR, Chellappa K, Baur JA. Age-related NAD+ decline. Exp Gerontol. 2020;134:110888. doi: 10.1016/j.exger.2020.110888

 

  1. Vaidya H, Jeong HS, Keith K, et al. DNA methylation entropy as a measure of stem cell replication and aging. Genome Biol. 2023;24(1):27. doi: 10.1186/s13059-023-02866-4

 

  1. Bi S, Jiang X, Ji Q, et al. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev Cell. 2024;59(8):991-1009.e12. doi: 10.1016/j.devcel.2024.02.008

 

  1. Li H. Sirtuin 1 (SIRT1) and oxidative stress. In: Laher I, editior. Systems Biology of Free Radicals and Antioxidants. Berlin: Springer Berlin Heidelberg; 2014. p. 417-435.

 

  1. Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell. 2024;23(1):e13920. doi: 10.1111/acel.13920

 

  1. Zha S, Li Z, Cao Q, Wang F, Liu F. PARP1 inhibitor (PJ34) improves the function of aging-induced endothelial progenitor cells by preserving intracellular NAD+ levels and increasing SIRT1 activity. Stem Cell Res Ther. 2018;9(1):224. doi: 10.1186/s13287-018-0961-7

 

  1. Yu A, Yu R, Liu H, Ge C, Dang W. SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence. Geroscience. 2024;46(1):1107-1127. doi: 10.1007/s11357-023-00863-w

 

  1. Zhang Y, Wang X, Li XK, et al. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur Heart J. 2023;44(29):2746-2759. doi: 10.1093/eurheartj/ehad381

 

  1. Zhou L, Pinho R, Gu Y, Radak Z. The role of SIRT3 in exercise and aging. Cells. 2022;11(16):2596. doi: 10.3390/cells11162596

 

  1. Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur Heart J. 2015;36(48):3404-3412. doi: 10.1093/eurheartj/ehv290

 

  1. Sarvari P, Sarvari P. Mitochondria: The master regulator of aging. Innosc Theranostics Pharm Sci. 2024;7(2):1726. doi: 10.36922/itps.1726

 

  1. Wiley CD, Campisi J. The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nat Metab. 2021;3(10):1290-1301. doi: 10.1038/s42255-021-00483-8

 

  1. Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736-766. doi: 10.7150/thno.79876

 

  1. Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy. 2013;9(11):1750-1757. doi: 10.4161/auto.26122

 

  1. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. UBCH7 reactivity profile reveals parkin and HHARI to be RING/ HECT hybrids. Nature. 2011;474(7349):105-108. doi: 10.1038/nature09966

 

  1. Wu Y, Jiang T, Hua J, et al. PINK1/Parkin-mediated mitophagy in cardiovascular disease: From pathogenesis to novel therapy. Int J Cardiol. 2022;361:61-69. doi: 10.1016/j.ijcard.2022.05.025

 

  1. Sekine S, Youle RJ. PINK1 import regulation; A fine system to convey mitochondrial stress to the cytosol. BMC Biol. 2018;16(1):2. doi: 10.1186/s12915-017-0470-7

 

  1. Lampert MA, Orogo AM, Najor RH, et al. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation. Autophagy. 2019;15(7):1182-1198. doi: 10.1080/15548627.2019.1580095

 

  1. Muñoz-Espín D, Serrano M. Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482-496. doi: 10.1038/nrm3823

 

  1. Sun DY, Wu WB, Wu JJ, et al. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence. Nat Commun. 2024;15(1):1429. doi: 10.1038/s41467-024-45823-w

 

  1. Merry BJ. Oxidative stress and mitochondrial function with aging--the effects of calorie restriction. Aging Cell. 2004;3(1):7-12. doi: 10.1046/j.1474-9728.2003.00074.x

 

  1. Patgiri A, Skinner OS, Miyazaki Y, et al. An engineered enzyme that targets circulating lactate to alleviate intracellular NADH: NAD+ imbalance. Nat Biotechnol. 2020;38(3):309-313. doi: 10.1038/s41587-019-0377-7

 

  1. Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential dietary contribution to health. Curr Nutr Rep. 2023;12(3):445-464. doi: 10.1007/s13668-023-00475-y

 

  1. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119-141. doi: 10.1038/s41580-020-00313-x

 

  1. Li F, Wu C, Wang G. Targeting NAD metabolism for the therapy of age-related neurodegenerative diseases. Neurosci Bull. 2024;40(2):218-240. doi: 10.1007/s12264-023-01072-3

 

  1. Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: Growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol. 2023;11(4):261-281. doi: 10.1016/s2213-8587(23)00001-3

 

  1. Pulipaka S, Singuru G, Sahoo S, Shaikh A, Thennati R, Kotamraju S. Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation. Geroscience. 2024;46(2):2391-2408. doi: 10.1007/s11357-023-01015-w

 

  1. Kumari S, Bubak MT, Schoenberg HM, et al. Antecedent Metabolic Health and Metformin (ANTHEM) aging study: Rationale and study design for a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2022;77(12):2373-2377. doi: 10.1093/gerona/glab358

 

  1. Smith DL, Jr., Orlandella RM, Allison DB, Norian LA. Diabetes medications as potential calorie restriction mimetics-a focus on the alpha-glucosidase inhibitor acarbose. Geroscience. 2021;43(3):1123-1133. doi: 10.1007/s11357-020-00278-x

 

  1. Du N, Yang R, Jiang S, et al. Anti-aging drugs and the related signal pathways. Biomedicines. 2024;12(1):127. doi: 10.3390/biomedicines12010127

 

  1. Sbierski-Kind J, Grenkowitz S, Schlickeiser S, et al. Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome. 2022;10(1):57. doi: 10.1186/s40168-022-01249-4

 

  1. Liu B, Qu J, Zhang W, Izpisua Belmonte JC, Liu GH. A stem cell aging framework, from mechanisms to interventions. Cell Rep. 2022;41(3):111451. doi: 10.1016/j.celrep.2022.111451

 

  1. Müller P, Lemcke H, David R. Stem cell therapy in heart diseases - cell types, mechanisms and improvement strategies. Cell Physiol Biochem. 2018;48(6):2607-2655. doi: 10.1159/000492704

 

  1. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905-909. doi: 10.1126/science.1715094

 

  1. Blagosklonny MV. Cell senescence, rapamycin and hyperfunction theory of aging. Cell Cycle. 2022;21(14):1456-1467. doi: 10.1080/15384101.2022.2054636

 

  1. Zhang S, Zhang R, Qiao P, et al. Metformin-induced microrna-34a-3p downregulation alleviates senescence in human dental pulp stem cells by targeting CAB39 through the AMPK/mTOR signaling pathway. Stem Cells Int. 2021;2021:6616240. doi: 10.1155/2021/6616240

 

  1. Chung CL, Lawrence I, Hoffman M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: An exploratory, prospective, randomized trial. Geroscience. 2019;41(6):861-869. doi: 10.1007/s11357-019-00113-y

 

  1. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res. 2016;61(3):253-278. doi: 10.1111/jpi.12360

 

  1. Lee JH, Yoon YM, Song KH, Noh H, Lee SH. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell. 2020;19(3):e13111. doi: 10.1111/acel.13111

 

  1. Carrasco E, Gómez de las Heras MM, Gabandé- Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol. 2022;22(2):97-111. doi: 10.1038/s41577-021-00557-4

 

  1. Weaver KJ, Holt RA, Henry E, Lyu Y, Pletcher SD. Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science. 2023;380(6645):625-632. doi: 10.1126/science.ade1662

 

  1. Ortega-Molina A, Lebrero-Fernández C, Sanz A, et al. A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan. Nat Aging. 2024;4:1102-1120. doi: 10.1038/s43587-024-00635-x

 

  1. Ferrucci L, Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505-522. doi: 10.1038/s41569-018-0064-2

 

  1. Kapasi A, DeCarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017;134(2):171-186. doi: 10.1007/s00401-017-1717-7

 

  1. Zhu ZQ, Chen LS, Wang H, et al. Carotid stiffness and atherosclerotic risk: Non-invasive quantification with ultrafast ultrasound pulse wave velocity. European Radiol. 2019;29(3):1507-1517. doi: 10.1007/s00330-018-5705-7

 

  1. Matsushima H, Hosomi N, Hara N, et al. Ability of the ankle brachial index and brachial-ankle pulse wave velocity to predict the 3-month outcome in patients with non-cardioembolic stroke. J Atheroscler Thromb. 2017;24(11):1167-1173. doi: 10.5551/jat.38901

 

  1. Miname MH, Bittencourt MS, Pereira AC, et al. Vascular age derived from coronary artery calcium score on the risk stratification of individuals with heterozygous familial hypercholesterolaemia. Eur Heart J Cardiovasc Imaging. 2019;21(3):251-257. doi: 10.1093/ehjci/jez280

 

  1. Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571):1070-1075. doi: 10.1126/science.abi5200

 

  1. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801-817. doi: 10.1016/j.molcel.2017.05.015

 

  1. Fulop GA, Ramirez-Perez FI, Kiss T, et al. IGF-1 deficiency promotes pathological remodeling of cerebral arteries: A potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging. J Gerontol A Biol Sci Med Sci. 2019;74(4):446-454. doi: 10.1093/gerona/gly144
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing