AccScience Publishing / ESAM / Volume 2 / Issue 1 / DOI: 10.36922/ESAM025490033
REVIEW ARTICLE

Microstructure-controlled strengthening mechanisms and strategies in additively manufactured aluminum alloys: A review

Yingming Zhang1 Tianai Huang1 Xin He1 Xiaoming Wang1*
Show Less
1 School of Engineering Technology, Purdue University, West Lafayette, Indiana, United States of America
ESAM 2026, 2(1), 025490033 https://doi.org/10.36922/ESAM025490033
Received: 6 December 2025 | Revised: 23 December 2025 | Accepted: 29 December 2025 | Published online: 9 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Laser powder bed fusion (LPBF) has emerged as an important but challenging route for producing high-strength aluminum alloys. However, existing studies often treat individual alloy systems or specific defects in isolation, which obscures the overall links between microstructural evolution, strengthening mechanisms, and strengthening strategies. This review addresses that gap by establishing a comprehensive, mechanism-based framework for the rational design of LPBF processing and aluminum alloys. We organize the discussion around a systematic causal chain linking microstructure, strengthening mechanisms, and strengthening strategies. The strengthening contributions are classified into five categories: Grain-boundary, solid-solution, precipitation, dislocation, and load-bearing strengthening. On this basis, we distill three transferable classes of practical strategies—process optimization, alloy design, and post-heat treatment—and clarify how they tailor high strength across different alloy families. The resulting mechanism-based framework links LPBF processing conditions, microstructures, strengthening mechanisms, and strengthening strategies in a unified manner. It provides a common reference for researchers and practitioners designing high-strength LPBF-processed aluminum alloys and highlights key directions where further quantitative and mechanistic studies are needed.

Graphical abstract
Keywords
Laser powder bed fusion
Aluminum alloys
Microstructural evolution
Strengthening mechanisms
Strengthening strategies
Funding
None.
Conflict of interest
Xiaoming Wang serves as an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35(2):270-284. doi: 10.1016/j.jmst.2018.09.004

 

  1. Gibson I, Rosen D, Stucker B, Khorasani M. Development of additive manufacturing technology. In: Gibson I, Rosen D, Stucker B, Khorasani M, editors. Additive Manufacturing Technologies. Cham: Springer International Publishing; 2021. p. 23-51.

 

  1. Majumdar S, Sinha A, Das A, Datta P, Nag D. An insight view of evolution of advanced aluminum alloy for aerospace and automotive industry: Current status and future prospects. J Inst Eng (India) Series D. 2024. doi: 10.1007/s40033-024-00852-z

 

  1. Zhang H, Ni DR, Xiao BL, Liu FC, Ma ZY. Recent progress of aluminum alloys and aluminum matrix composites produced via laser powder bed fusion: A review. J Mater Sci. 2024;59(22):9857-9891. doi: 10.1007/s10853-024-09368-z

 

  1. Sharma SK, Grewal HS, Saxena KK, et al. Advancements in the additive manufacturing of magnesium and aluminum alloys through laser-based approach. Materials (Basel). 2022;15(22):8122. doi: 10.3390/ma15228122

 

  1. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:100578. doi: 10.1016/j.pmatsci.2019.100578

 

  1. Kotadia HR, Gibbons G, Das A, Howes PD. A review of laser powder bed fusion additive manufacturing of aluminium alloys: Microstructure and properties. Addit Manuf. 2021;46:102155. doi: 10.1016/j.addma.2021.102155

 

  1. Zhao L, Song L, Santos Macías JG, et al. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg. Addit Manuf. 2022;56:102914. doi: 10.1016/j.addma.2022.102914

 

  1. Kumar Ramavajjala A, Dandekar TR, Khatirkar RK, Joshi C, Chouhan RN, Agnihotri A. A review on the correlation between microstructure, heat treatment and mechanical properties of additively manufactured AlSi10Mg by LPBF. Crit Rev Solid State Mater Sci. 2025;50(3):239-274. doi: 10.1080/10408436.2024.2414012

 

  1. Liu Y, Li Y, Wang M, Chen Z. Review of laser powder bed fusion’s microstructure and mechanical characteristics for Al-Ce alloys. Materials. 2024;17(20):5085. doi: 10.3390/ma17205085

 

  1. Rometsch PA, Zhu Y, Wu X, Huang A. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater Des. 2022;219:110779. doi: 10.1016/j.matdes.2022.110779

 

  1. Dixit S, Liu S. Laser additive manufacturing of high-strength aluminum alloys: Challenges and strategies. J Manuf Mater Process. 2022;6(6):156. doi: 10.3390/jmmp6060156

 

  1. Qin H, Fallah V, Dong Q, Brochu M, Daymond MR, Gallerneault M. Solidification pattern, microstructure and texture development in laser powder bed fusion (LPBF) of Al10SiMg alloy. Mater Charact. 2018;145:29-38. doi: 10.1016/j.matchar.2018.08.025

 

  1. Gong J, Wei K, Liu M, Song W, Li X, Zeng X. Microstructure and mechanical properties of AlSi10Mg alloy built by laser powder bed fusion/direct energy deposition hybrid laser additive manufacturing. Addit Manuf. 2022;59:103160. doi: 10.1016/j.addma.2022.103160

 

  1. Wang X, Li A, Liu X. Fabrication of orientated micro porous metals: Control the melting process of powders by high scanning speed - ultra short hatch spacing scanning strategy. Mater Lett. 2023;335:133741. doi: 10.1016/j.matlet.2022.133741

 

  1. Thijs L, Kempen K, Kruth JP, Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61(5):1809-1819. doi: 10.1016/j.actamat.2012.11.052

 

  1. Ellendt N, Fabricius F, Toenjes A. Poreanalyzer-an open-source framework for the analysis and classification of defects in additive manufacturing. Appl Sci. 2021;11(13):6086. doi: 10.3390/app11136086

 

  1. Leung CLA, Marussi S, Towrie M, et al. Laser-matter interactions in additive manufacturing of stainless steel SS316L and 13-93 bioactive glass revealed by in situ X-ray imaging. Addit Manuf. 2018;24:647-657. doi: 10.1016/j.addma.2018.08.025

 

  1. Zhao C, Shi B, Chen S, et al. Laser melting modes in metal powder bed fusion additive manufacturing. Rev Modern Phys. 2022;94(4):045002. doi: 10.1103/RevModPhys.94.045002

 

  1. Fan H, Hu J, Wang Y, et al. A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties. Opt Laser Technol. 2024;175:110722. doi: 10.1016/j.optlastec.2024.110722

 

  1. Leis A, Weber R, Graf T. Process window for highly efficient laser-based powder bed fusion of AlSi10Mg with reduced pore formation. Materials (Basel). 2021;14(18):5255. doi: 10.3390/ma14185255

 

  1. Kramer S, Wexel H, Purwitasari A, Jarwitz M, Schulze V, Zanger F. Impact of different pore types on the tensile and fatigue properties of AlSi10Mg parts produced by laser powder bed fusion. Prog Addit Manuf. 2025;10(12): 11305-11317. doi: 10.1007/s40964-025-01288-x

 

  1. Wang X, Zhang D, Li A, Yi D, Li T. A review on traditional processes and laser powder bed fusion of aluminum alloy microstructures, mechanical properties, costs, and applications. Materials. 2024;17(11):2553. doi: 10.3390/ma17112553

 

  1. Zhu Z, Hu Z, Ng FL, Seet HL, Nai SML. Extending the mechanical property regime of laser powder bed fusion Sc- and Zr-modified Al6061 alloy by manipulating process parameters and heat treatment. Addit Manuf. 2024;85:104164. doi: 10.1016/j.addma.2024.104164

 

  1. Liang Y, Han Q, Sui Z, et al. Laser powder bed fusion of high-strength crack-free Al7075 alloy with the in-situ formation of TiB2/Al3Ti-reinforced phases and nucleation agents. Composites Part B Eng. 2025;289:111940. doi: 10.1016/j.compositesb.2024.111940

 

  1. Yuan C, Ding R, Hou X, Guo Q, Gao X. Laser powder bed fusion of crack-free 6061Al alloy using nano-sized TiO2 modified powders. Mater Sci Technol. 2024;40(2):141-151. doi: 10.1177/02670836231212808

 

  1. Lu Y, Zhang H, Xue P, et al. Microstructural evaluation and tensile properties of Al-Mg-Sc-Zr alloys prepared by LPBF. Crystals. 2023;13(6):913. doi: 10.3390/cryst13060913

 

  1. Song CR, Dong BX, Zhang SY, et al. Recent progress of Al-Mg alloys: Forming and preparation process, microstructure manipulation and application. J Mater Res Technol. 2024;31:3255-3286. doi: 10.1016/j.jmrt.2024.07.051

 

  1. Trivedi R, Kurz W. Solidification microstructures: A conceptual approach. Acta Metallurg Mater. 1994;42(1): 15-23. doi: 10.1016/0956-7151(94)90044-2

 

  1. Chouhan A, Mädler L, Ellendt N. Modeling of rapid solidification in laser powder bed fusion processes. Comput Mater Sci. 2024;238:112918. doi: 10.1016/j.commatsci.2024.112918

 

  1. Morris LR, Winegard WC. The cell to dendrite transition. J C Growth. 1969;6(1):61-66. doi: 10.1016/0022-0248(69)90093-1

 

  1. Kim G, Takaki T, Shibuta Y, Sakane S, Matsuura K, Ohno M. A parametric study of morphology selection in equiaxed dendritic solidification. Comput Mater Sci. 2019;162:76-81. doi: 10.1016/j.commatsci.2019.02.027

 

  1. Rasch M, Heberle J, Dechet MA, et al. Grain structure evolution of al-cu alloys in powder bed fusion with laser beam for excellent mechanical properties. Materials. 2019;13(1):82. doi: 10.3390/ma13010082

 

  1. Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Sci Rep. 2021;11(1):6423. doi: 10.1038/s41598-021-85047-2

 

  1. Mair P, Braun J, Kaserer L, et al. Unique microstructure evolution of a novel Ti-modified Al-Cu alloy processed using laser powder bed fusion. Mater Today Commun. 2022;31:103353. doi: 10.1016/j.mtcomm.2022.103353

 

  1. Guan RG, Tie D. A review on grain refinement of aluminum alloys: Progresses, challenges and prospects. Acta Metall Sin (Engl Lett). 2017;30(5):409-432. doi: 10.1007/s40195-017-0565-8

 

  1. Wang Q, Li Z, Pang S, Li X, Dong C, Liaw PK. Coherent precipitation and strengthening in compositionally complex alloys: A review. Entropy (Basel). 2018;20(11):878. doi: 10.3390/e20110878

 

  1. Kube CM. Elastic anisotropy of crystals. AIP Adv. 2016;6(9):095209. doi: 10.1063/1.4962996

 

  1. Hull D, Bacon DJ. Introduction to Dislocations. Netherlands: Elsevier; 2011.

 

  1. McElroy R, Szkopiak Z. Dislocation-substructure-strengthening and mechanical-thermal treatment of metals. Int Metallurgr Rev. 1972;17(1):175-202. doi: 10.1179/imtlr.1972.17.1.175

 

  1. Li G, Brodu E, Soete J, et al. Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys. Addit Manuf. 2021;47:102210. doi: 10.1016/j.addma.2021.102210

 

  1. Zhang X, Zhang X, Liu W, Jiang A, Long Y. Towards understanding formation mechanism of cellular structures in laser powder bed fused AlSi10Mg. Materials (Basel). 2024;17(9):2121. doi: 10.3390/ma17092121

 

  1. Eom YS, Park JM, Choi JW, et al. Fine-tuning of mechanical properties of additively manufactured AlSi10Mg alloys by controlling the microstructural heterogeneity. J Alloys Compd. 2023;956:170348. doi: 10.1016/j.jallcom.2023.170348

 

  1. Shen Z, Wagoner R, Clark W. Dislocation and grain boundary interactions in metals. Acta Metallurg. 1988;36(12): 3231-3242. doi: 10.1016/0001-6160(88)90058-2

 

  1. Hansen N. Hall-petch relation and boundary strengthening. Scrip Mater. 2004;51(8):801-806. doi: 10.1016/j.scriptamat.2004.06.002

 

  1. Lasalmonie A, Strudel J. Influence of grain size on the mechanical behaviour of some high strength materials. J Mater Sci. 1986;21(6):1837-1852. doi: 10.1007/BF00547918

 

  1. Snopiński P, Kotoul M, Petruška J, Rusz S, Żaba K, Hilšer O. Revealing the strengthening contribution of stacking faults, dislocations and grain boundaries in severely deformed LPBF AlSi10Mg alloy. Sci Rep. 2023;13(1):16166. doi: 10.1038/s41598-023-43448-5

 

  1. Fiocchi J, Tuissi A, Biffi CA. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review. Mater Des. 2021;204:109651. doi: 10.1016/j.matdes.2021.109651

 

  1. Knoop D, Lutz A, Mais B, Von Hehl A. A tailored AlSiMg alloy for laser powder bed fusion. Metals. 2020;10(4):514. doi: 10.3390/met10040514

 

  1. Collings E. Physics of Solid Solution Strengthening. Berlin: Springer Science and Business Media; 2012.

 

  1. Fleischer RL. Substitutional solution hardening. Acta Metallurgica. 1963;11(3):203-209. doi: 10.1016/0001-6160(63)90213-X

 

  1. Labusch R. A statistical theory of solid solution hardening. Phys Status Solidi. 1970;41(2):659-669. doi: 10.1002/pssb.19700410221

 

  1. Haché MJR, Cheng C, Zou Y. Nanostructured high-entropy materials. J Mater Res. 2020;35(8):1051-1075. doi: 10.1557/jmr.2020.33

 

  1. Zhu Z, Ng FL, Seet HL, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation. Mater Today. 2022;52:90-101. doi: 10.1016/j.mattod.2021.11.019

 

  1. Li Q, Li G, Lin X, et al. Development of a high strength Zr/Sc/ Hf-modified Al-Mn-Mg alloy using laser powder bed fusion: Design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms. Addit Manuf. 2022;57:102967. doi: 10.1016/j.addma.2022.102967

 

  1. Schuster M, De Luca A, Mathur A, Hosseini E, Leinenbach C. Precipitation in a 2xxx series Al-Cu-Mg-Zr alloy fabricated by laser powder bed fusion. Mater Des. 2021;211:110131. doi: 10.1016/j.matdes.2021.110131

 

  1. Keerthipalli T, Aepuru R, Biswas A. Review on precipitation, intermetallic and strengthening of aluminum alloys. Proc Instit Mech Eng Part B J Eng Manuf. 2023;237(6-7):833-850. doi: 10.1177/09544054221111901

 

  1. Megahed S, Bühring J, Duffe T, Bach A, Schröder KU, Schleifenbaum JH. Effect of heat treatment on ductility and precipitation size of additively manufactured AlSi10Mg. Metals. 2022;12(8):1311. doi: 10.3390/met12081311

 

  1. Ardell AJ. Precipitation hardening. Metallur Trans A. 1985;16(12):2131-2165. doi: 10.1007/BF02670416

 

  1. Smallman RE, Ngan AHW. Mechanical properties II - strengthening and toughening. In: Smallman RE, Ngan AHW, editors. Physical Metallurgy and Advanced Materials Engineering. 7th ed. Ch. 7., Oxford: Butterworth-Heinemann; 2007. p. 385-446.

 

  1. Maeshima T, Oh-Ishi K, Kadoura H. Microstructural evolution and hardening phenomenon caused by aging of AlSi10Mg alloy by laser powder bed fusion. Heliyon. 2024;10(6):e28006. doi: 10.1016/j.heliyon.2024.e28006

 

  1. Chung H, Choi WS, Jun H, et al. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy. Nat Commun. 2023;14(1):145. doi: 10.1038/s41467-023-35863-z

 

  1. Kempf A, Hilgenberg K. Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion. Mater Sci Eng A. 2020;776:138976. doi: 10.1016/j.msea.2020.138976

 

  1. Narutani T, Takamura J. Grain-size strengthening in terms of dislocation density measured by resistivity. Acta Metallurgica Mater. 1991;39(8):2037-2049. doi: 10.1016/0956-7151(91)90173-X

 

  1. Mughrabi H. On the current understanding of strain gradient plasticity. Mater Sci Eng A. 2004;387-389:209-213. doi: 10.1016/j.msea.2004.01.086

 

  1. Ashby MF. The deformation of plastically non-homogeneous materials. Philos Magazine A J Theor Exp Appl Phys. 1970;21(170):399-424. doi: 10.1080/14786437008238426

 

  1. Arsenlis A, Parks DM. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia. 1999;47(5):1597-1611. doi: 10.1016/S1359-6454(99)00020-8

 

  1. Nye JF. Some geometrical relations in dislocated crystals. Acta Metallurgica. 1953;1(2):153-162. doi: 10.1016/0001-6160(53)90054-6

 

  1. Hyer H, Zhou L, Park S, et al. Understanding the laser powder bed fusion of AlSi10Mg alloy. Metallogr Microstruct Anal. 2020;9(4):484-502. doi: 10.1007/s13632-020-00659-w

 

  1. Xiao Z, Yu W, Fu H, Deng Y, Wu Y, Zheng H. Recent progress on microstructure manipulation of aluminium alloys manufactured via laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2125880. doi: 10.1080/17452759.2022.2125880

 

  1. Liu H, Gu D, Xi L, et al. High-performance aluminum-based materials processed by laser powder bed fusion: Process, microstructure, defects and properties coordination. Addit Manuf Front. 2024;3(2):200145. doi: 10.1016/j.amf.2024.200145

 

  1. Yu Z, Tan Z, Xu R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites. Carbon. 2019;146: 155-161. doi: 10.1016/j.carbon.2019.01.108

 

  1. Harris B. Engineering Composite Materials. India: Institute of Materials; 1999.

 

  1. Minasyan T, Hussainova I. Laser powder-bed fusion of ceramic particulate reinforced aluminum alloys: A review. Materials (Basel). 2022;15(7):2467. doi: 10.3390/ma15072467

 

  1. Ji X, Li S, Liu H, et al. Process optimization of sic-reinforced aluminum matrix composites prepared using laser powder bed fusion and the effect of particle morphology on performance. Materials (Basel). 2024;17(5):1187. doi: 10.3390/ma17051187

 

  1. Sun T, Chen J, Wu Y, et al. Achieving excellent strength of the LPBF additively manufactured Al-Cu-Mg composite via in-situ mixing TiB2 and solution treatment. Mater Sci Eng A. 2022;850:143531. doi: 10.1016/j.msea.2022.143531

 

  1. Yang T, Liu T, Liao W, et al. Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties. J Alloys Compd. 2020;849:156300. doi: 10.1016/j.jallcom.2020.156300

 

  1. Headley CV, Herrera Del Valle RJ, Ma J, et al. The development of an augmented machine learning approach for the additive manufacturing of thermoelectric materials. J Manuf Process. 2024;116:165-175. doi: 10.1016/j.jmapro.2024.02.045

 

  1. Vaudreuil S, Bencaid SE, Vanaei HR, El Magri A. Effects of power and laser speed on the mechanical properties of AlSi7Mg0.6 manufactured by laser powder bed fusion. Mater (Basel). 2022;15(23):8640. doi: 10.3390/ma15238640

 

  1. Defanti S, Cappelletti C, Gatto A, Tognoli E, Fabbri F. Boosting productivity of laser powder bed fusion for AlSi10Mg. J Manuf Mater Process. 2022;6(5):112. doi: 10.3390/jmmp6050112

 

  1. Jatti VS, Saiyathibrahim A, Murali Krishnan R, Jatti AV, Suganya Priyadharshini G, Mohan DG. Investigating the effect of volumetric energy density on tensile characteristics of as‐built and heat‐treated AlSi10Mg alloy fabricated by laser powder bed fusion. Adv Eng Mater. 2025;27(4):2401924. doi: 10.1002/adem.202401924

 

  1. Shrestha S, Chou K. Formation of keyhole and lack of fusion pores during the laser powder bed fusion process. Manuf Lett. 2022;32:19-23. doi: 10.1016/j.mfglet.2022.01.005

 

  1. Shrestha S, Chou YK. A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process. In: ASME Manufacturing Science and Engineering Conference (MSEC2019); 2019. Erie, PA, USA. Paper No. MSEC2019-2987. doi: 10.1115/MSEC2019-2987

 

  1. Wang J, Zhu R, Liu Y, Zhang L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Adv Powder Mater. 2023;2(4):100137. doi: 10.1016/j.apmate.2023.100137

 

  1. Dai D, Gu D, Zhang H, et al. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts. Opt Laser Technol. 2018;99:91-100. doi: 10.1016/j.optlastec.2017.08.015

 

  1. Zhang H, Gu D, Dai D. Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy. Virtual Phys Prototyp. 2022;17(2):308-328. doi: 10.1080/17452759.2022.2036530

 

  1. Takata N, Kodaira H, Sekizawa K, Suzuki A, Kobashi M. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater Sci Eng A. 2017;704:218-228. doi: 10.1016/j.msea.2017.08.029

 

  1. Lin CW, Hung FY, Lui TS. Microstructure evolution and microstructural characteristics of Al-Mg-Si aluminum alloys fabricated by a modified strain-induced melting activation process. Metals. 2018;8(1):3. doi: 10.3390/met8010003

 

  1. Kimura T, Nakamoto T, Mizuno M, Araki H. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting. Mater Sci Eng A. 2017;682:593-602. doi: 10.1016/j.msea.2016.11.059

 

  1. Takata N, Liu M, Kodaira H, Suzuki A, Kobashi M. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al-Si-based alloys. Addit Manuf. 2020;33:101152. doi: 10.1016/j.addma.2020.101152

 

  1. Xi L, Li Z, Qi S, et al. Formation and influence mechanism of metal vapor on the powder spatter and denudation in laser additive manufacturing of Al alloys. J Phys D Appl Phys. 2025;58(24):245102. doi: 10.1088/1361-6463/addad3

 

  1. Wang D, Feng Y, Liu L, et al. Influence mechanism of process parameters on relative density, microstructure, and mechanical properties of low sc-content al-mg-sc-zr alloy fabricated by selective laser melting. Chin J Mech Eng Addit Manuf Front. 2022;1(4):100034. doi: 10.1016/j.cjmeam.2022.100034

 

  1. Spierings AB, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater Des. 2017;115:52-63. doi: 10.1016/j.matdes.2016.11.040

 

  1. Belelli F, Casati R, Andrianopoli C, Cuccaro F, Vedani M. Investigation and characterization of an Al-Mg-Zr-Sc alloy with reduced Sc content for laser powder bed fusion. J Alloys Compd. 2022;924:166519. doi: 10.1016/j.jallcom.2022.166519

 

  1. Ekubaru Y, Gokcekaya O, Ishimoto T, et al. Excellent strength-ductility balance of Sc-Zr-modified Al-Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion. Mater Des. 2022;221:110976. doi: 10.1016/j.matdes.2022.110976

 

  1. Wang QZ, Kang N, Lin X, et al. On the Si-induced microstructure evolution, solidification cracking healing and strengthening behavior of laser powder bed fusion additive manufactured Al-Cu-Mg/Si alloys. J Mater Process Technol. 2023;313:117860. doi: 10.1016/j.jmatprotec.2023.117860

 

  1. Aversa A, Marchese G, Manfredi D, et al. Laser powder bed fusion of a high strength Al-Si-Zn-Mg-Cu alloy. Metals. 2018;8(5):300. doi: 10.3390/met8050300

 

  1. Mair P, Kaserer L, Braun J, Weinberger N, Letofsky-Papst I, Leichtfried G. Microstructure and mechanical properties of a TiB2-modified Al-Cu alloy processed by laser powder-bed fusion. Mater Sci Eng A. 2021;799:140209. doi: 10.1016/j.msea.2020.140209

 

  1. Yu W, Xiao Z, Zhang X, et al. Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion. Mater Sci Addit Manuf. 2022;1(1):4. doi: 10.18063/msam.v1i1.4

 

  1. Yang T, Chen X, Liu T, et al. Crack-free high-strength AA-7075 fabricated by laser powder bed fusion with inoculations of metallic glass powders. Mater Sci Eng A. 2024;891:145916. doi: 10.1016/j.msea.2023.145916

 

  1. Uba CU, Ding H, Chen Y, Guo S, Raush JR. Enhancing the printability of laser powder bed fusion-processed aluminum 7xxx series alloys using grain refinement and eutectic solidification strategies. Materials. 2025;18(22):5089. doi: 10.3390/ma18225089

 

  1. Gao Z, Li H, Lai Y, Ou Y, Li D. Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Mater Sci Eng A. 2013;580:92-98. doi: 10.1016/j.msea.2013.05.035

 

  1. Spierings AB, Dawson K, Kern K, Palm F, Wegener K. SLM-processed Sc- and Zr- modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment. Mater Sci Eng A. 2017;701:264-273. doi: 10.1016/j.msea.2017.06.089

 

  1. Zhang X, Le Q, Zhao D, et al. Research status and prospect of grain refinement in aluminum alloy. J Mater Res Technol. 2025;34:1880-1893. doi: 10.1016/j.jmrt.2024.12.205

 

  1. Shi Y, Yang K, Kairy SK, Palm F, Wu X, Rometsch PA. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting. Mater Sci Eng A. 2018;732:41-52. doi: 10.1016/j.msea.2018.06.049

 

  1. Jia Q, Rometsch P, Cao S, Zhang K, Wu X. Towards a high strength aluminium alloy development methodology for selective laser melting. Mater Des. 2019;174:107775. doi: 10.1016/j.matdes.2019.107775

 

  1. Wang Z, Lin X, Kang N, et al. Laser powder bed fusion of high-strength Sc/Zr-modified Al-Mg alloy: Phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J Mater Sci Technol. 2021;95:40-56. doi: 10.1016/j.jmst.2021.03.069

 

  1. He P, Webster RF, Yakubov V, et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing. Acta Materialia. 2021;220:117312. doi: 10.1016/j.actamat.2021.117312

 

  1. Jia Q, Lu C, Yan Y, et al. Tensile deformation behaviors of laser powder bed fusion fabricated Al-Mn-Sc alloy with heterogeneous grain structure. Mater Sci Eng A. 2022;849:143447. doi: 10.1016/j.msea.2022.143447

 

  1. Qbau N, Nam ND, Ca NX, Hien NT. The crack healing effect of scandium in aluminum alloys during laser additive manufacturing. J Manuf Process. 2020;50:241-246. doi: 10.1016/j.jmapro.2019.12.050

 

  1. Zhang H, Zhang LC, Liu H, et al. Strong and ductile Al-Mn-Mg-Sc-Zr alloy achieved in fabrication-rate enhanced laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2250769. doi: 10.1080/17452759.2023.2250769

 

  1. Guo Y, Wei W, Shi W, et al. Microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloys fabricated by laser powder bed fusion. Mater Des. 2022;222:111064. doi: 10.1016/j.matdes.2022.111064

 

  1. Xiao Y, Chen H, Bian Z, et al. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles. J Mater Sci Technol. 2022;109:254-266. doi: 10.1016/j.jmst.2021.08.030

 

  1. Yao Z, Xie Z. Verification of the laser powder bed fusion performance of 2024 aluminum alloys modified using nano- LaB(6). Materials (Basel). 2024;17(13):3367. doi: 10.3390/ma17133367

 

  1. Mair P, Goettgens VS, Rainer T, et al. Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloy. J Alloys Compd. 2021;863:158714. doi: 10.1016/j.jallcom.2021.158714

 

  1. Liu X, Liu Y, Wang S, Du N, Yang S, Zhang B. Microstructure and mechanical properties of TiC-modified Al-Zn-Mg-Cu aluminum alloys fabricated by laser powder bed fusion. Mater Sci Eng A. 2025;944:148878. doi: 10.1016/j.msea.2025.148878

 

  1. Chen Y, Ren Y, Li K, Dang B, Jian Z. Laser powder bed fusion of oxidized microscale SiC-particle-reinforced AlSi10Mg matrix composites: Microstructure, porosity, and mechanical properties. Mater Sci Eng A. 2023;870:144860. doi: 10.1016/j.msea.2023.144860

 

  1. Gao C, Wu W, Shi J, Xiao Z, Akbarzadeh A. Simultaneous enhancement of strength, ductility, and hardness of TiN/ AlSi10Mg nanocomposites via selective laser melting. Addit Manuf. 2020;34:101378. doi: 10.1016/j.addma.2020.101378

 

  1. Dai D, Gu D, Xia M, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf Coat Technol. 2018;349:279-288. doi: 10.1016/j.surfcoat.2018.05.072

 

  1. Miao K, Zhou H, Gao Y, Deng X, Lu Z, Li D. Laser powder-bed-fusion of Si3N4 reinforced AlSi10Mg composites: Processing, mechanical properties and strengthening mechanisms. Mater Sci Eng A. 2021;825:141874. doi: 10.1016/j.msea.2021.141874

 

  1. Vasilev AA, Dzidziguri EL, Sivakova AO, et al. Laser powder bed fusion of AlSi10Mg alloy reinforced with Al2O3-CNF nanocomposite. Ceram Int. 2025;51(1):636-649. doi: 10.1016/j.ceramint.2024.11.042

 

  1. Zhang F, Zhang Z, Gu Q, et al. Microstructure and mechanical properties of nanoparticulate Y(2)O(3) modified AlSi10Mg alloys manufactured by selective laser melting. Materials (Basel). 2023;16(3):1222. doi: 10.3390/ma16031222

 

  1. Sun M, Yang Z, Zhang J, et al. Effects of ZrO2 nanoparticles on the microstructure and mechanical properties of ZrO2/ AlSi10Mg composites manufactured by laser powder bed fusion. Ceram Int. 2023;49(12):19673-19681. doi: 10.1016/j.ceramint.2023.03.080

 

  1. Rosito M, Vanzetti M, Padovano E, et al. Processability of A6061 aluminum alloy using laser powder bed fusion by in situ synthesis of grain refiners. Metals. 2023;13(6):1128. doi: 10.3390/met13061128

 

  1. Liu X, Liu Y, Zhou Z, Zhong H, Zhan Q. A combination strategy for additive manufacturing of AA2024 high-strength aluminium alloys fabricated by laser powder bed fusion: Role of hot isostatic pressing. Mater Sci Eng A. 2022;850:143597. doi: 10.1016/j.msea.2022.143597

 

  1. Pelevin IA, Ozherelkov DY, Nalivaiko AY, et al. AlSi10Mg/AlN interface grain structure after laser powder bed fusion. Metals. 2022;12(12):2152. doi: 10.3390/met12122152

 

  1. Yi J, Zhang X, Rao JH, Xiao J, Jiang Y. In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2 + TiC)/AlSi10Mg composites prepared by SLM-CS processing. J Alloys Compd. 2021;857:157553. doi: 10.1016/j.jallcom.2020.157553

 

  1. Yaru L, Tiejun M, Tounan J, et al. Aging temperature effects on microstructure and mechanical properties for additively manufactured AlSi10Mg. Mater Sci Technol. 2023;39(10):1223-1236. doi: 10.1080/02670836.2022.2164128

 

  1. Ghio E, Cerri E. Work hardening of heat-treated AlSi10Mg alloy manufactured by selective laser melting: Effects of layer thickness and hatch spacing. Materials. 2021;14(17):4901. doi: 10.3390/ma14174901

 

  1. Fiocchi J, Biffi C, Colombo C, Vergani L, Tuissi A. Ad Hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances. Jom. 2020;72(3):1118-1127. doi: 10.1007/s11837-019-03973-z

 

  1. Ghosh A, Pourkhorshid E, Rometsch P, Chen XG. Microstructure, processability, and strength of SiC-reinforced AlSi9Mg composite after laser surface remelting and post-heat treatment. J Manuf Mater Process. 2025;9(11):379. doi: 10.3390/jmmp9110379

 

  1. Yang F, Wang J, Wen T, et al. Manipulating microstructure and mechanical properties of laser powder bed fusion processed hypo-eutectic Al-13.3Mg2Si alloy via annealing. J Alloys Compd. 2023;967:171805. doi: 10.1016/j.jallcom.2023.171805

 

  1. Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al-3.5 Cu-1.5 Mg-1Si alloy produced by selective laser melting. Mater Sci Eng A. 2018;711:562-570. doi: 10.1016/j.msea.2017.11.063

 

  1. Zhou S, Su Y, Wang H, Enz J, Ebel T, Yan M. Selective laser melting additive manufacturing of 7xxx series Al-Zn- Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Addit Manuf. 2020;36:101458. doi: 10.1016/j.addma.2020.101458

 

  1. Patil T, Washimkar D, Pawar A, Naidu MJ, Shinde S, Salunkhe S. Enhanced mechanical properties of AA7075 alloy through friction stir processing: A review. Front Mech Eng. 2025;11:1656081. doi: 10.3389/fmech.2025.1656081

 

  1. Wang J, Yang F, Yang H, et al. Effect of heat treatment on the microstructure and mechanical properties of an Al-5Mg2Si- 2Mg alloy processed by laser powder bed fusion. J Alloys Compd. 2022;920:165944. doi: 10.1016/j.jallcom.2022.165944

 

  1. Ma R, Peng C, Cai Z, et al. Manipulating the microstructure and tensile properties of selective laser melted Al-Mg- Sc-Zr alloy through heat treatment. J Alloys Compd. 2020;831:154773. doi: 10.1016/j.jallcom.2020.154773
Share
Back to top
Engineering Science in Additive Manufacturing, Electronic ISSN: 3082-849X Published by AccScience Publishing