An interdisciplinary review of the development and applications of embedded three-dimensional printing technology
Embedded three-dimensional (3D) printing (EMB3D), also termed immersion 3D printing, overcomes the inherent limitations of extrusion-based methods by providing in situ support during deposition, thereby preventing structural collapse and enabling the fabrication of complex architectures from soft- or low-viscosity inks. This technology significantly enhances shape fidelity and expands the application of 3D printing in soft material systems. This review systematically examines the development, principles, classifications, and material properties of EMB3D, with a strong emphasis on its cross-disciplinary applications. While notable biomedical advances, such as tissue engineering, vascularized constructs, and patient-specific anatomical models, are thoroughly discussed, this review also highlights emerging uses in flexible electronics, soft robotics, and customized functional materials. By integrating the latest research and identifying underexplored avenues, this review offers a forward-looking perspective on the challenges and future trends of EMB3D, serving as a comprehensive and authoritative reference for researchers and engineers across multiple fields.
- Urbonaite G, Kibirkstis E, Miliunas V. 3D Print Technologies Analysis. Berlin: Springer; 2013. p. 244-247.
- Guo L, Qiu JX. Combination of cloud manufacturing and 3D printing: Research progress and prospect. Int J Adv Manuf Technol. 2018;96(5-8):1929-1942. doi: 10.1007/s00170-018-1717-3
- Lv JJ, Jia CZ, Yang JC, Zhang YF. Status of 3D printing technology for metal materials. Adv Eng Res. 2017;128:256-259.
- Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: Technological, materials, and applications. Proced Manuf. 2019;35:1286-1296. doi: 10.1016/j.promfg.2019.06.089
- Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthc Mater. 2018;7(8)1701161. doi: 10.1002/adhm.201701161
- Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J. 2017;12(8)1600671. doi: 10.1002/biot.201600671
- Dávila JL, D’Avila MA. Rheological evaluation of Laponite/ alginate inks for 3D extrusion-based printing. Int J Adv Manuf Technol. 2019;101(1-4):675-686. doi: 10.1007/s00170-018-2876-y
- Ren LQ, Zhou XL, Song ZY, et al. Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials (Basel). 2017;10(3)305. doi: 10.3390/ma10030305
- Wu Y, Yang X, Gupta D, et al. Dissecting the interplay mechanism among process parameters toward the biofabrication of high‐quality shapes in embedded bioprinting. Adv Funct Mater. 2024;34(21):2313088. doi: 10.1002/adfm.202313088
- Bas J, Dutta T, Llamas Garro I, Velázquez-González JS, Dubey R, Mishra SK. Retracted: Embedded sensors with 3D printing technology: Review. Sensors (Basel). 2024;24(6):1955. doi: 10.3390/s24061955
- McCormack A, Highley CB, Leslie NR, Melchels FPW. 3D printing in suspension baths: Keeping the promises of bioprinting afloat. Trends Biotechnol. 2020;38(6):584-593. doi: 10.1016/j.tibtech.2019.12.020
- Zhao J, He N. A mini-review of embedded 3D printing: Supporting media and strategies. J Mater Chem B. 2020;8(46):10474-10486. doi: 10.1039/d0tb01819h
- Greenwood TE, Hatch SE, Colton MB, Thomson SL. 3D printing low-stiffness silicone within a curable support matrix. Addit Manuf. 2021;37:101681. doi: 10.1016/j.addma.2020.101681
- Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng. 2021;5(1):010904. doi: 10.1063/5.0032777
- Bakirci E, Asghari Adib A, Ashraf SF, Feinberg AW. Advancing extrusion-based embedded 3D bioprinting via scientific, engineering, and process innovations. Biofabrication. 2025;17(2):023002. doi: 10.1088/1758-5090/adb7c3
- Deng X, Qi C, Meng S, et al. AllXaqueous embedded 3D printing for freeform fabrication of biomimetic 3D constructs. Adv Mater. 2024;36(50):e2406825. doi: 10.1002/adma.202406825
- Öztürk-Öncel MÖ, Leal-Martínez BH, Monteiro RF, Gomes ME, Domingues RMA. A dive into the bath: Embedded 3D bioprinting of freeform <i>in vitro</i> models. Biomater Sci. 2023;11(16):5462-5473. doi: 10.1039/d3bm00626c
- Hua W, Mitchell K, Raymond L, et al. Fluid bath-assisted 3D printing for biomedical applications: From pre- to postprinting stages. ACS Biomater Sci Eng. 2021;7(10):4736-4756. doi: 10.1021/acsbiomaterials.1c00910
- Zeng X, Meng Z, He J, et al. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomater. 2022;140:1-22. doi: 10.1016/j.actbio.2021.11.048
- Yogeshwaran S, Goodarzi Hosseinabadi H, Gendy DE, Miri AK. Design considerations and biomaterials selection in embedded extrusion 3D bioprinting. Biomater Sci. 2024;12(18):4506-4518. doi: 10.1039/d4bm00550c
- Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting - an emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater. 2024;32:356-384. doi: 10.1016/j.bioactmat.2023.10.012
- Karyappa R, Zhang D, Zhu Q, Ji R, Suwardi A, Liu H. Newtonian liquid-assisted material extrusion 3D printing: Progress, challenges and future perspectives. Addit Manuf. 2024;79:103903. doi: 10.1016/j.addma.2023.103903
- Duraivel S, Subramaniam V, Chisolm S, et al. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. Biophys Rev (Melville). 2022;3(3):031307. doi: 10.1063/5.0087387
- Zhou K, Sun Y, Yang J, Mao H, Gu Z. Hydrogels for 3D embedded bioprinting: A focused review on bioinks and support baths. J Mater Chem B. 2022;10(12):1897-1907. doi: 10.1039/d1tb02554f
- Wu Q, Song K, Zhang D, et al. Embedded extrusion printing in yield-stress-fluid baths. Matter. 2022;5(11):3775-3806. doi: 10.1016/j.matt.2022.09.003
- Wu W, Deconinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv Mater. 2011;23(24):H178-H183. doi: 10.1002/adma.201004625
- O’Bryan CS, Bhattacharjee T, Hart S, et al. Self-assembled micro-organogels for 3D printing silicone structures. Sci Adv. 2017;3(5):e1602800. doi: 10.1126/sciadv.1602800
- Zhang C, Hua W, Mitchell K, et al. Multiscale embedded printing of engineered human tissue and organ equivalents. Proc Natl Acad Sci U S A. 2024;121(9):e2313464121. doi: 10.1073/pnas.2313464121
- Duraivel S, Laurent D, Rajon DA, et al. A silicone-based support material eliminates interfacial instabilities in 3D silicone printing. Science. 2023;379(6638):1248-1252. doi: 10.1126/science.ade4441
- Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
- Zehnder J, Knoop E, Bächer M, Thomaszewski B. Metasilicone: Design and fabrication of composite silicone with desired mechanical properties. ACM Trans Graphics. 2017;36(6):1-13. doi: 10.1145/3130800.3130881
- Weeks RD, Truby RL, Uzel SGM, Lewis JA. Embedded 3D printing of multimaterial polymer lattices via graph-based print path planning. Adv Mater. 2022;35(5):e2206958. doi: 10.1002/adma.202206958
- Karyappa R, Ohno A, Hashimoto M. Immersion precipitation 3D printing (ip3DP). Mater Horiz. 2019;6(9):1834-1844. doi: 10.1039/c9mh00730j
- Zhou S, Tirichenko IS, Zhang X, et al. Embedded 3D printing of microstructured multi-material composites. Matter. 2024;7(2):668-684. doi: 10.1016/j.matt.2023.10.031
- Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307-6312. doi: 10.1002/adma.201400334
- Hui Y, Yao Y, Qian Q, et al. Three-dimensional printing of soft hydrogel electronics. Nat Electron. 2022;5(12):893-903. doi: 10.1038/s41928-022-00887-8
- Zhang W, Li J, Liu H, Jin G. Research on Embedded 3D Printing for Magnetic Soft Robots. United States: IEEE; 2021.
- Wehner M, Truby RL, Fitzgerald DJ, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature. 2016;536(7617):451-455. doi: 10.1038/nature19100
- Truby RL, Wehner M, Grosskopf AK, et al. Soft somatosensitive actuators via embedded 3D printing. Adv Mater. 2018;30(15):e1706383. doi: 10.1002/adma.201706383
- O’Bryan CS, Bhattacharjee T, Niemi SR, et al. Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull. 2017;42(08):571-577. doi: 10.1557/mrs.2017.167
- Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater. 2023;35(22):e2205082. doi: 10.1002/adma.202205082
- Shin S, Brunel LG, Cai B, et al. Gelation of uniform interfacial diffusant in embedded 3D printing. Adv Funct Mater. 2023;33(50):2307435. doi: 10.1002/adfm.202307435
- Tisato S, Vera G, Song Q, Nekoonam N, Helmer D. Additive manufacturing of multi-material and hollow structures by embedded extrusion-volumetric printing. Nat Commun. 2025;16(1):6730. doi: 10.1038/s41467-025-62057-6
- Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124-3130. doi: 10.1002/adma.201305506
- Lei IM, Zhang D, Gu W, Liu J, Zi Y, Huang YYS. Soft hydrogel shapeability via supportive bath matching in embedded 3D printing. Adv Mater Technol. 2023;8(15):230001 doi: 10.1002/admt.202300001
- Graziano R, Preziosi V, Uva D, et al. The microstructure of carbopol in water under static and flow conditions and its effect on the yield stress. J Colloid Interface Sci. 2021;582(Pt B):1067-1074. doi: 10.1016/j.jcis.2020.09.003
- Webb B, Doyle BJ. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting. 2017;8:8-12. doi: 10.1016/j.bprint.2017.09.001
- Grosskopf AK, Truby RL, Kim H, Perazzo A, Lewis JA, Stone HA. Viscoplastic matrix materials for embedded 3D printing. ACS Appl Mater Interfaces. 2018;10(27):23353-23361. doi: 10.1021/acsami.7b19818
- Jiang Z, Jin B, Liang Z, et al. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials. 2024;311:122681. doi: 10.1016/j.biomaterials.2024.122681
- Karyappa R, Liu H, Zhu Q, Hashimoto M. Printability of poly(lactic acid) ink by embedded 3D printing <i>via</ i> immersion precipitation. ACS Appl Mater Interfaces. 2023;15(17):21575-21584. doi: 10.1021/acsami.3c00149
- Wang J, Shou J, Liu D, et al. 3D printing of metals with subing μm resolution. Small. 2024;20:e2406518. doi: 10.1002/smll.202406518
- Raymond L, Bandala E, Hua W, et al. Hybrid 3D printing of functional smart hinges. Machines. 2023;11(7):686. doi: 10.3390/machines11070686
- Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. doi: 10.1126/science.aav9051
- Sun W, Tashman JW, Shiwarski DJ, Feinberg AW, Webster- Wood VA. Long-fiber embedded hydrogel 3D printing for structural reinforcement. ACS Biomater Sci Eng. 2022;8(1):303-313. doi: 10.1021/acsbiomaterials.1c00908
- Sun Y, Yu K, Nie J, et al. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. Biofabrication. 2021;13(3):035032. doi: 10.1088/1758-5090/aba413
- Yu K, Zhang X, Sun Y, et al. Printability during projection-based 3D bioprinting. Bioact Mater. 2022;11:254-267. doi: 10.1016/j.bioactmat.2021.09.021
- Antanitta SV, Patadiya J, Kandasubramanian B. Biopolymer-chitin products by direct ink writing (DIW): A review. Hybrid Adv. 2024;5:100115. doi: 10.1016/j.hybadv.2023.100115
- Li C, Feng C, Zhang L, Zhang L, Wang L. Direct ink writing of polymer‐based materials-a review. Polym Eng Sci. 2024;65(2):431-454. doi: 10.1002/pen.27038
- Cano-Vicent A, Tambuwala MM, Hassan SS, et al. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit Manuf. 2021;47:102378. doi: 10.1016/j.addma.2021.102378
- Ali S, Deiab I, Pervaiz S. State-of-the-art review on fused deposition modeling (FDM) for 3D printing of polymer blends and composites: Innovations, challenges, and applications. Int J Adv Manuf Technol. 2024;135(11- 12):5085-5113. doi: 10.1007/s00170-024-14820-0
- Qin Y, Fan L, Zhan L, et al. Biofabrication: Bioprinting process, printing materials, and the frontier applications in biomedicine. Addit Manuf Front. 2024;3(4):200175. doi: 10.1016/j.amf.2024.200175
- Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM. Biomaterials for hollow organ tissue engineering. Fibrogenesis Tissue Repair. 2016;9(1):3. doi: 10.1186/s13069-016-0040-6
- Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H. Development of human respiratory airway models: A review. Eur J Pharm Sci. 2020;145:105233. doi: 10.1016/j.ejps.2020.105233
- O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR. Engineering the multiscale complexity of vascular networks. Nat Rev Mater. 2022;7(9):702-716. doi: 10.1038/s41578-022-00447-8
- Schaupper M, Jeltsch M, Rohringer S, Redl H, Holnthoner W. Lymphatic vessels in regenerative medicine and tissue engineering. Tissue Eng Part B Rev. 2016;22(5):395-407. doi: 10.1089/ten.teb.2016.0034
- Göhner C, Svensson-Arvelund J, Pfarrer C, et al. The placenta in toxicology. Part IV. Toxicol Pathol. 2014;42(2):345-351. doi: 10.1177/0192623313482206
- Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater. 2022;34(2):e2103691. doi: 10.1002/adma.202103691
- Seymour AJ, Westerfield AD, Cornelius VC, Skylar- Scott MA, Heilshorn SC. Bioprinted microvasculature: Progressing from structure to function. Biofabrication. 2022;14(2):022002. doi: 10.1088/1758-5090/ac4fb5
- Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910-5917. doi: 10.1016/j.biomaterials.2009.06.034
- Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7(4):045012. doi: 10.1088/1758-5090/7/4/045012
- Li C, Ouyang L, Armstrong JPK, Stevens MM. Advances in the fabrication of biomaterials for gradient tissue engineering. Trends Biotechnol. 2021;39(2):150-164. doi: 10.1016/j.tibtech.2020.06.005
- Yang Z, Zhang W, Wu S, et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv. 2021;7(18):eabg3749. doi: 10.1126/sciadv.abg3749
- Ouyang L, Highley CB, Sun W, Burdick JA. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater. 2017;29(8):1604983. doi: 10.1002/adma.201604983
- Senior JJ, Cooke ME, Grover LM, Smith AM. Fabrication of complex hydrogel structures using suspended layer additive manufacturing (SLAM). Adv Funct Mater. 2019;29(49):1904845. doi: 10.1002/adfm.201904845
- Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926. doi: 10.1126/science.8493529
- Pan Y, Hu N, Wei X, et al. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/ matrigel-substrate impedance sensing. Biosens Bioelectr. 2019;130:344-351. doi: 10.1016/j.bios.2018.09.046
- Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12. doi: 10.1126/scitranslmed.3004890
- Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157-161. doi: 10.1016/s0167-7799(03)00033-7
- Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: Tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164-2174. doi: 10.1016/j.biomaterials.2008.12.084
- Zandonella C. T-ray specs. Nature. 2003;424(6950):721-722. doi: 10.1038/424721a
- Radisic M, Yang L, Boublik J, et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol. 2004;286(2):H507-H516. doi: 10.1152/ajpheart.00171.2003
- Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):921-926. doi: 10.1126/science.1226340
- Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-524. doi: 10.1038/nmat1421
- Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-2543. doi: 10.1016/s0142-9612(00)00121-6
- Reiffel AJ, Kafka C, Hernandez KA, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013;8(2):e56506. doi: 10.1371/journal.pone.0056506
- Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006;12(5):1325-1335. doi: 10.1089/ten.2006.12.1325
- Mannoor MS, Jiang Z, James T, et al. 3D printed bionic ears. Nano Lett. 2013;13(6):2634-2639. doi: 10.1021/nl4007744
- Shen EM, McCloskey KE. Affordable, high-resolution bioprinting with embedded concentration gradients. Bioprinting. 2021;21:e00113. doi: 10.1016/j.bprint.2020.e00113
- Caneparo C, Brownell D, Chabaud S, Bolduc S. Genitourinary tissue engineering: Reconstruction and research models. Bioengineering (Basel). 2021;8(7):99. doi: 10.3390/bioengineering8070099
- Jin Y, Chai W, Huang Y. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. Mater Sci Eng C Mater Biol Appl. 2017;80:313-325. doi: 10.1016/j.msec.2017.05.144
- Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv Mater. 2020;32(45):e2003915. doi: 10.1002/adma.202003915
- Tejo-Otero A, Buj-Corral I, Fenollosa-Artés F. 3D printing in medicine for preoperative surgical planning: A review. Ann Biomed Eng. 2020;48(2):536-555. doi: 10.1007/s10439-019-02411-0
- Shopova D, Yaneva A, Bakova D, et al. (Bio)printing in personalized medicine-opportunities and potential benefits. Bioengineering (Basel). 2023;10(3):287. doi: 10.3390/bioengineering10030287
- Bao G, Jiang T, Ravanbakhsh H, et al. Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater Horiz. 2020;7(9):2336-2347. doi: 10.1039/d0mh00813c
- Savoji H, Davenport Huyer L, Mohammadi MH, et al. 3D printing of vascular tubes using bioelastomer prepolymers by freeform reversible embedding. ACS Biomater Sci Eng. 2020;6(3):1333-1343. doi: 10.1021/acsbiomaterials.9b00676
- Huang J, Xiong J, Wang D, et al. 3D bioprinting of hydrogels for cartilage tissue engineering. Gels. 2021;7(3):144. doi: 10.3390/gels7030144
- Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (Weinh). 2019;6(11):1900344. doi: 10.1002/advs.201900344
- Scarrit ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015;3:43. doi: 10.3389/fbioe.2015.00043
- Wang P, Sun Y, Li D, et al. Extrusion-based 3D co-printing: Printing material design and novel workflow for fabricating patterned heterogeneous tissue structures. Mater Design. 2023;227:111737. doi: 10.1016/j.matdes.2023.111737
- Rocca M, Fragasso A, Liu W, Heinrich MA, Zhang YS. Embedded multimaterial extrusion bioprinting. SLAS Technol. 2018;23(2):154-163. doi: 10.1177/2472630317742071
- Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
- Zhou D, Chen J, Liu B, Zhang X, Li X, Xu T. Bioinks for jet-based bioprinting. Bioprinting. 2019;16:e00060. doi: 10.1016/j.bprint.2019.e00060
- Jin Y, Xiong R, Antonelli PJ, et al. Nanoclay suspension-enabled extrusion bioprinting of three-dimensional soft structures. J Manuf Sci Eng. 2021;143(12):1-29. doi: 10.1115/1.4051010
- Jin Y, Compaan A, Bhattacharjee T, Huang Y. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures. Biofabrication. 2016;8(2):025016. doi: 10.1088/1758-5090/8/2/025016
- Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: A review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi: 10.1016/j.slast.2023.02.003
- Hassan S, Gomez-Reyes E, Enciso-Martinez E, et al. Tunable and compartmentalized multimaterial bioprinting for complex living tissue constructs. ACS Appl Mater Interfaces. 2022;14(46):51602-51618. doi: 10.1021/acsami.2c12585
- Gros-Otero J, Ketabi S, Cañones-Zafra R, et al. Corneal stromal roughness after VisuMax and intralase femtosecond laser photodisruption: An atomic force microscopy study. PLoS One. 2021;16(5):e0252449. doi: 10.1371/journal.pone.0252449
- Kim DH, Jun JS, Kim R. Measurement of the optic nerve sheath diameter with magnetic resonance imaging and its association with eyeball diameter in healthy adults. J Clin Neurol. 2018;14(3):345-350. doi: 10.3988/jcn.2018.14.3.345
- Sapp MC, Fares HJ, Estrada AC, Grande-Allen KJ. Multilayer three-dimensional filter paper constructs for the culture and analysis of aortic valvular interstitial cells. Acta Biomater. 2015;13:199-206. doi: 10.1016/j.actbio.2014.11.039
- Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 2020;6(11):6453-6459. doi: 10.1021/acsbiomaterials.0c01133
- Jeon O, Lee YB, Hinton TJ, Feinberg AW, Alsberg E. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater Today Chem. 2019;12:61-70. doi: 10.1016/j.mtchem.2018.11.009
- Spencer AR, Shirzaei Sani E, Soucy JR, et al. Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces. 2019;11(34):30518-30533. doi: 10.1021/acsami.9b07353
- Abdollahi S, Davis A, Miller JH, Feinberg AW. Expert-guided optimization for 3D printing of soft and liquid materials. PLoS One. 2018;13(4):e0194890. doi: 10.1371/journal.pone.0194890
- Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the granular gel medium. Sci Adv. 2015;1(8):e1500655. doi: 10.1126/sciadv.1500655
- Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng. 2016;2(10):1781-1786. doi: 10.1021/acsbiomaterials.6b00170
- Ning L, Mehta R, Cao C, et al. Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity. ACS Appl Mater Interfaces. 2020;12(40):44563-44577. doi: 10.1021/acsami.0c15078
- Zhou K, Feng M, Mao H, Gu Z. Photoclick polysaccharide-based bioinks with an extended biofabrication window for 3D embedded bioprinting. Biomater Sci. 2022;10(16):4479-4491. doi: 10.1039/d2bm00632d
- Jin Y, Compaan A, Chai W, Huang Y. Functional nanoclay suspension for printing-then-solidification of liquid materials. ACS Appl Mater Interfaces. 2017;9(23):20057- 20066. doi: 10.1021/acsami.7b02398
- Mendes BB, Gómez-Florit M, Hamilton AG, et al. Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication. 2019;12(1):015012. doi: 10.1088/1758-5090/ab33e8
- Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5(9):eaaw2459. doi: 10.1126/sciadv.aaw2459
- Jeon O, Lee YB, Jeong H, et al. Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Mater Horiz. 2019;6(8):1625-1631. doi: 10.1039/c9mh00375d
- Wu Y, Wenger A, Golzar H, Tang X. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Sci Rep. 2020;10(1):20648. doi: 10.1038/s41598-020-77146-3
- Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials. 2019;206:160-169. doi: 10.1016/j.biomaterials.2019.03.036
- Afghah F, Altunbek M, Dikyol C, Koc B. Preparation and characterization of nanoclay-hydrogel composite support-bath for bioprinting of complex structures. Sci Rep. 2020;10(1):5257. doi: 10.1038/s41598-020-61606-x
- Luo M, Lai J, Zhang E, et al. Rapid self-assembly mini-livers protect mice against severe hepatectomy-induced liver failure. Adv Sci (Weinh). 2024;11(21):e2309166. doi: 10.1002/advs.202309166
- Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567-574. doi: 10.1136/gutjnl-2019-319960
- Okubo M, Iohara D, Anraku M, Higashi T, Uekama K, Hirayama F. A thermoresponsive hydrophobically modified hydroxypropylmethylcellulose/cyclodextrin injectable hydrogel for the sustained release of drugs. Int J Pharm. 2020;575:118845. doi: 10.1016/j.ijpharm.2019.118845
- Li Y, Wu Z, Chen Y, et al. Multi-material embedded 3D printing for one-step manufacturing of multifunctional components in soft robotics. Addit Manuf. 2024;85:104178. doi: 10.1016/j.addma.2024.104178
- Zhang X, Chu D, Zhao X, et al. Machine learning-driven 3D printing: A review. Appl Mater Today. 2024;39:102306. doi: 10.1016/j.apmt.2024.102306
- Kang SW, Mueller J. Multiscale 3D printing via active nozzle size and shape control. Sci Adv. 2024;10(23):eadn7772. doi: 10.1126/sciadv.adn7772
- Yang T, Jin Y, Smith LM, Dahotre NB, Neogi A. Real-time in-situ ultrasound monitoring of soft hydrogel 3D printing with subwavelength resolution. Commun Eng. 2024;3(1):162. doi: 10.1038/s44172-024-00318-w
- Zvagelsky R, Mayer F, Beutel D, Rockstuhl C, Gomard G, Wegener M. Towards <i>in-situ</i> diagnostics of multi-photon 3D laser printing using optical coherence tomography. Light Adv Manuf. 2022;3(3):39. doi: 10.37188/lam.2022.039
- Sun X, Zhou K, Demoly F, Zhao RR, Qi HJ. Perspective: Machine learning in design for 3D/4D printing. J Appl Mech. 2024;91(3):030801. doi: 10.1115/1.4063684
- Ukwaththa J, Herath S, Meddage DP. A review of machine learning (ML) and explainable artificial intelligence (XAI) methods in additive manufacturing (3D printing). Mater Today Commun. 2024;41:110294. doi: 10.1016/j.mtcomm.2024.110294
- Wang X, Li Y, Liang Z, Du R, Song T. High-fidelity, personalized cardiac modeling via AI-driven 3D reconstruction and embedded silicone rubber printing. Exp Biol Med (Maywood). 2025;250:10756. doi: 10.3389/ebm.2025.10756
- Sani AR, Zolfagharian A, Kouzani AZ. Automated defects detection in extrusion 3D printing using YOLO models. J Intellig Manuf. 2024. doi: 10.1007/s10845-024-02543-8
- Brion DAJ, Pattinson SW. Generalisable 3D printing error detection and correction via multi-head neural networks. Nat Commun. 2022;13(1):4654. doi: 10.1038/s41467-022-31985-y
- Armin E, Ebrahimian S, Sanjari M, Saidi P, Pourreza HR. Defect detection in 3D printing: A review of image processing and machine vision techniques. Int J Adv Manuf Technol. 2025;140(3-4):2103-2128. doi: 10.1007/s00170-025-16382-1
