Understanding the reusability of Ti6Al4V powder in laser powder bed fusion
This study aimed to determine the effects of how powder degrades in quality from use in the laser powder bed fusion process and investigate what changes in the powder cause defects in finished parts. It was determined that the reused powder affected the finished part quality, resulting in an increased number of lack-of-fusion pores. This was due to a change in the size distribution of the powder particles, characterized by an increase in larger sizes and a significant decrease in smaller sizes. There was an 11% increase in defective particles over the five prints that went through the sieving process, as well as an increase of ~2% of particles >63 μm, resulting in less powder that could be reused after each print. The results enabled the determination of the life of the powder due to the degradation of the powder from the differing property changes caused by the reuse of the powder.

- Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater Sci Eng Rep. 2018;129:1-16. doi: 10.1016/j.mser.2018.04.001
- Bandyopadhyay A, Ghosh S, Boccaccini AR, Bose S. 3D printing of biomedical materials and devices. J Mater Res. 2021;36(19):3713-3724. doi: 10.1557/s43578-021-00407-y
- Bandyopadhyay A, Ciliveri S, Guariento S, Zuckschwerdt N, Hogg WW. Fatigue behavior of additively manufactured Ti3Al2V alloy. Mater Sci Addit Manuf. 2023;2(3):1705. doi: 10.36922/msam.1705
- Pasang T, Budiman AS, Wang JC, et al. Additive manufacturing of titanium alloys - enabling re-manufacturing of aerospace and biomedical components. Microelectron Eng. 2023;270:111935. doi: 10.1016/j.mee.2022.111935
- Alammar A, Kois JC, Revilla-León M, Att W. Additive manufacturing technologies: Current status and future perspectives. J Prosthodont. 2022;31:4-12. doi: 10.1111/jopr.13477
- Xiong Y, Tang Y, Zhou Q, Ma Y, Rosen DW. Intelligent additive manufacturing and design: State of the art and future perspectives. Addit Manuf. 2022;59:103139. doi: 10.1016/j.addma.2022.103139
- Gruber H, Henriksson M, Hryha E, Nyborg L. Effect of powder recycling in electron beam melting on the surface chemistry of alloy 718 powder. Metall Mater Trans A Phys Metall Mater Sci. 2019;50(9):4410-4422. doi: 10.1007/s11661-019-05333-7
- Gorji NE, Saxena P, Corfield M, et al. A new method for assessing the recyclability of powders within powder bed fusion process. Mater Charact. 2020;161:110167. doi: 10.1016/j.matchar.2020.110167
- Sun P, Fang ZZ, Zhang Y, Xia Y. Review of the methods for production of spherical ti and ti alloy powder. JOM. 2017;69(10):1853-1860. doi: 10.1007/s11837-017-2513-5
- Garboczi EJ, Hrabe N. Particle shape and size analysis for metal powders used for additive manufacturing: Technique description and application to two gas-atomized and plasma-atomized Ti64 powders. Addit Manuf. 2020;31:100965. doi: 10.1016/j.addma.2019.100965
- Strondl A, Lyckfeldt O, Brodin H, Ackelid U. Characterization and control of powder properties for additive manufacturing. JOM. 2015;67(3):549-554. doi: 10.1007/s11837-015-1304-0
- Douglas R, Barnard N, Lavery N, Sullivan J, Jones T, Lancaster R. The effect of powder recycling on the mechanical performance of laser powder bed fused stainless steel 316L. Addit Manuf. 2024;88:104245. doi: 10.1016/j.addma.2024.104245
- Joju J, Verdi D, Han WS, et al. Sustainability assessment of feedstock powder reuse for directed laser deposition. J Clean Prod. 2023;388:136005. doi: 10.1016/j.jclepro.2023.136005
- Terrassa KL, Haley JC, MacDonald BE, Schoenung JM. Reuse of powder feedstock for directed energy deposition. Powder Technol. 2018;338:819-829. doi: 10.1016/j.powtec.2018.07.065
- Ferreira BT, Monteiro J, Borille A, Leite M, Ribeiro I. Reuse powder impacts in additive manufacturing for aeronautical parts. Int J Adv Manuf Technol. 2025;141:2067-2062. doi: 10.1007/s00170-025-16619-z
- Koushik T, Shen H, Kan WH, et al. Effective Ti-6Al-4V powder recycling in LPBF additive manufacturing considering powder history. Sustain (Switzerland). 2023;15(21):15582. doi: 10.3390/su152115582
- Ochs D, Wehnert KK, Hartmann J, Schiffler A, Schmitt J. Sustainable aspects of a metal printing process chain with laser powder bed fusion (LPBF). In: Procedia CIRP. Vol. 98. Netherlands: Elsevier B.V.; 2021. p. 613-618. doi: 10.1016/j.procir.2021.01.163
- Fredriksson C. Sustainability of metal powder additive manufacturing. In: Procedia Manufacturing. Vol. 33. Netherlands: Elsevier B.V.; 2019. p. 139-144. doi: 10.1016/j.promfg.2019.04.018
- Cacace S, Furlan V, Sorci R, Semeraro Q, Boccadoro M. Using recycled material to produce gas-atomized metal powders for additive manufacturing processes. J Clean Prod. 2020;268:122218. doi: 10.1016/j.jclepro.2020.122218
- Ahmed F, Ali U, Sarker D, et al. Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel. J Mater Process Technol. 2020;278:116522. doi: 10.1016/j.jmatprotec.2019.116522
- Ren P, Ouyang Y, Mu J, et al. Metal powder atomization preparation, modification, and reuse for additive manufacturing: A review. Prog Mater Sci. 2025;152:101449. doi: 10.1016/j.pmatsci.2025.101449
- Arrizubieta JI, Ukar O, Ostolaza M, Mugica A. Study of the environmental implications of using metal powder in additive manufacturing and its handling. Metals (Basel). 2020;10(2):261. doi: 10.3390/met10020261
- Ciliveri S, Bandyopadhyay A. Understanding the influence of alloying elements on the print quality of powder bed fusion-based metal additive manufacturing: Ta and Cu addition to Ti alloy. Virtual Phys Prototyp. 2023;18(1):e2248464. doi: 10.1080/17452759.2023.2248464
- Bandyopadhyay A, Mitra I, Ciliveri S, et al. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. Int J Extrem Manuf. 2024;6(1):015503. doi: 10.1088/2631-7990/ad07e7
- Powell D, Rennie AEW, Geekie L, Burns N. Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders. J Clean Prod. 2020;268:122077. doi: 10.1016/j.jclepro.2020.122077
- Alamos FJ, Schiltz J, Kozlovsky K, et al. Effect of powder reuse on mechanical properties of Ti-6Al-4V produced through selective laser melting. Int J Refract Metals Hard Mater. 2020;91:105273. doi: 10.1016/j.ijrmhm.2020.105273
- Li X, Zhou M, Peng S, et al. Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys. Front Mater Sci. 2024;18(4):240697. doi: 10.1007/s11706-024-0697-5
- Gaillard GC, Courtois K, Sultan T, et al. Impact of Powders Reuse in LPBF Processes on the Powder Characteristics and Samples Mechanical Properties. In: Euro PM2020 - European Powder Metallurgy Conference; 2020. Available from: https:// www.cm/cea.hal.science/cea-04789655v1 [Last accessed on 2025 Oct 31].
- Cordova L, Sithole C, Macía Rodríguez E, Gibson I, Campos M. Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial production. Powder Metall. 2023;66(2):129-138. doi: 10.1080/00325899.2022.2133357
- Smolina I, Gruber K, Pawlak A, et al. Influence of the AlSi7Mg0.6 aluminium alloy powder reuse on the quality and mechanical properties of LPBF samples. Materials. 2022;15(14):5019. doi: 10.3390/ma15145019
- Gruber K, Smolina I, Kasprowicz M, Kurzynowski T. Evaluation of inconel 718 metallic powder to optimize the reuse of powder and to improve the performance and sustainability of the laser powder bed fusion (Lpbf) process. Materials (Basel). 2021;14(6):1538. doi: 10.3390/ma14061538
- Cordova L, Bor T, De Smit M, Carmignato S, Campos M, Tinga T. Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF). Addit Manuf. 2020;36:101625. doi: 10.1016/j.addma.2020.101625
- Huang T, Sitt Thu K, Zhang Z, et al. Assessing the impact of top-up powder reuse strategy on MS1 powder characteristics and L-PBF printed part properties. Metals (Basel). 2025;15(2):181. doi: 10.3390/met15020181
- Weiss C, Haefner CL, Munk J. On the influence of AlSi10Mg powder recycling behavior in the LPBF process and consequences for mechanical properties. JOM. 2022;74(3):1188-1199. doi: 10.1007/s11837-021-05080-4
- Dai Z, Chen X, Liu Y, Wang J, Lu J, Liu J. Effect of reuse on Cu-Cr-Nb powder and bulks produced by laser powder bed fusion. Powder Technol. 2025;457:120930. doi: 10.1016/j.powtec.2025.120930
- Jandaghi MR, Moverare J. Exploring the efficiency of powder reusing as a sustainable approach for powder bed additive manufacturing of 316L stainless steel. Mater Des. 2024;244:113222. doi: 10.1016/j.matdes.2024.113222
- Moghimian P, Poirié T, Habibnejad-Korayem M, et al. Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys. Addit Manuf. 2021;43:102017. doi: 10.1016/j.addma.2021.102017
- Ghods S, Schultz E, Wisdom C, et al. Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse. Materialia (Oxf). 2020;9:100631. doi: 10.1016/j.mtla.2020.100631
- Alamos FJ, Schiltz J, Attardo R, et al. Effect of powder reuse on orthopedic metals produced through selective laser sintering. Manuf Lett. 2022;31:40-44. doi: 10.1016/j.mfglet.2021.06.002
- Bandyopadhyay A, Traxel KD, Lang M, Juhasz M, Eliaz N, Bose S. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater Today. 2022;52:207-224. doi: 10.1016/j.mattod.2021.11.026
- Traxel KD, Groden C, Valladares J, Bandyopadhyay A. Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V. Mater Sci Eng. 2021;809:140925. doi: 10.1016/j.msea.2021.140925
- Meier B, Warchomicka F, Ehgartner D, et al. Toward a sustainable laser powder bed fusion of Ti 6Al 4 V: Powder reuse and its effects on material properties during a single batch regime. Sustain Mater Technol. 2023;36:e00626. doi: 10.1016/j.susmat.2023.e00626
