AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025190172
ORIGINAL RESEARCH ARTICLE

Lactylation-driven diagnostic model for pulmonary hypertension: Application of serum biomarker

Tao Yi1† Cuiwen Deng2† Junsheng Sun2 Qian Lei2*
Show Less
1 Department of Emergency Medicine, Longgang Center Hospital of Shenzhen, Shenzhen, Guangdong, China
2 Department of General Practice, Longgang Center Hospital of Shenzhen, Shenzhen, Guangdong, China
†These authors contributed equally to this work.
Received: 6 May 2025 | Revised: 16 June 2025 | Accepted: 4 July 2025 | Published online: 1 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Pulmonary hypertension (PH) presents a significant global public health challenge, underscoring the need for novel biomarkers and therapeutic strategies.

Objective: This study proposes a lactylation-related diagnostic model for PH, aiming to identify potential therapeutic targets.

Methods: The GSE15197 dataset was analyzed to identify differentially expressed genes (DEGs). Functional enrichment analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis (GSEA), were conducted to explore underlying mechanisms. Weighted gene co-expression network analyses (WGCNA) identified two key gene modules. The intersection of significant WGCNA modules, DEGs, and lactylation-associated genes yielded candidate genes related to lactylation in PH. Machine learning methods, particularly random forest and support vector machine, were employed to identify hub genes, ultimately selecting aryl hydrocarbon receptor (AHR), polyribonucleotide nucleotidyltransferase 1 (PNPT1), and RAS p21 protein activator 1 (RASA1). These were incorporated into a diagnostic nomogram, evaluated through receiver operating characteristic curve and decision curve analyses. Immune cell infiltration was assessed using CIBERSORT and single-sample GSEA, while Enrichr was utilized to identify transcription factors and potential therapeutic agents. Molecular docking was performed to assess drug–gene binding affinities.

Results: A total of 1,504 genes were upregulated and 1,931 downregulated. Functional enrichment analyses revealed clustering of DEGs in pathways associated with cellular transport, protein degradation, DNA repair, and signal transduction. WGCNA identified two critical modules comprising 1,178 genes, from which 33 candidate genes were derived. Machine learning refined this list to three hub genes (AHR, PNPT1, and RASA1), which formed the basis of a novel lactylation-related diagnostic nomogram validated in an external cohort. Immune dysregulation was evident, and friend leukemia integration 1 was recognized as a key TF. Ten potential drugs demonstrated promising binding affinity to the hub genes.

Conclusion: This work introduces a lactylation-based diagnostic model for PH with strong diagnostic potential, though further clinical validation is required.

Keywords
Pulmonary hypertension
Lactylation
Diagnostic value
Molecular docking
Immune cell infiltration
Funding
The study was supported by the Natural Science Foundation of Shenzhen Municipality (Grant ID: JCYJ20230807114505010).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Jasemi SV, Khazaei H, Aneva IY, Farzaei MH, Echeverria J. Medicinal plants and phytochemicals for the treatment of pulmonary hypertension. Front Pharmacol. 2020;11:145. doi: 10.3389/fphar.2020.00145

 

  1. Wang XJ, Xu XQ, Sun K, et al. Association of rare PTGIS variants with susceptibility and pulmonary vascular response in patients with idiopathic pulmonary arterial hypertension. JAMA Cardiol. 2020;5(6):677-684. doi: 10.1001/jamacardio.2020.0479

 

  1. Swift AJ, Dwivedi K, Johns C, et al. Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension. Eur Radiol. 2020;30(9):4918-4929. doi: 10.1007/s00330-020-06846-1

 

  1. Slegg OG, Willis JA, Wilkinson F, et al. IMproving PULmonary hypertension screening by echocardiography: IMPULSE. Echo Res Pract. 2022;9(1):9.doi: 10.1186/s44156-022-00010-9

 

  1. Oliveira AC, Richards EM, Raizada MK. Pulmonary hypertension: Pathophysiology beyond the lung. Pharmacol Res. 2020;151:104518. doi: 10.1016/j.phrs.2019.104518

 

  1. Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: From glycolysis to lactylation. Front Immunol. 2023;14:1211221. doi: 10.3389/fimmu.2023.1211221

 

  1. Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575-580. doi: 10.1038/s41586-019-1678-1

 

  1. Cui H, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 2021;64(1):115-125. doi: 10.1165/rcmb.2020-0360OC

 

  1. Chen J, Zhang M, Liu Y, et al. Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension. J Mol Cell Biol. 2023;14(12):mjac073. doi: 10.1093/jmcb/mjac073

 

  1. Zhao SS, Liu J, Wu QC, Zhou XL. Role of histone lactylation interference RNA m6A modification and immune microenvironment homeostasis in pulmonary arterial hypertension. Front Cell Dev Biol. 2023;11:1268646. doi: 10.3389/fcell.2023.1268646

 

  1. Wan N, Wang N, Yu S, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods. 2022;19(7):854-864. doi: 10.1038/s41592-022-01523-1

 

  1. Rabinowitz JD, Enerback S. Lactate: The ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566-571. doi: 10.1038/s42255-020-0243-4

 

  1. Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7(1):305. doi: 10.1038/s41392-022-01151-3

 

  1. Wu D, Wang S, Wang F, Zhang Q, Zhang Z, Li X. Lactate dehydrogenase A (LDHA)-mediated lactate generation promotes pulmonary vascular remodeling in pulmonary hypertension. J Transl Med. 2024;22(1):738. doi: 10.1186/s12967-024-05543-7

 

  1. Jiang L, Zhyvylo I, Goncharov D, et al. LDHA-lactate promotes smooth muscle remodeling and pulmonary hypertension through lactylation of TOP1 and EMILIN1. 2023;148(Suppl 1):A14485-A14485. doi: 10.1161/circ.148.suppl_1.14485

 

  1. Clough E, Barrett T, Wilhite SE, et al. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2024;52(D1):D138-D144. doi: 10.1093/nar/gkad965

 

  1. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007

 

  1. Hadley W. Ggplot2: Elegrant Graphics for Data Analysis. Berlin: Springer; 2016.

 

  1. Kolde R. Pheatmap: Pretty Heatmaps. R Package Version 1.0. 8; 2015.

 

  1. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287. doi: 10.1089/omi.2011.0118

 

  1. Carlson MJ. Genome Wide Annotation for Human, Primarily Based on Mapping using Entrez Gene Identifiers. Vol. 3. Boston: Bioconductor Home; 2015.

 

  1. Walter W, Sanchez-Cabo F, Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912-2914. doi: 10.1093/bioinformatics/btv300

 

  1. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559

 

  1. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. doi: 10.1023/A:1010933404324

 

  1. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389-422. doi: 10.1023/A:1012487302797

 

  1. Harrell FE. Regression Modeling Strategies. Berlin: Springer; 2012. p. 6-2.

 

  1. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453-457. doi: 10.1038/nmeth.3337

 

  1. Hanzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. doi: 10.1186/1471-2105-14-7

 

  1. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla JJS. Package ‘corrplot’. Statistician. 2017;56(316):e24.

 

  1. Chen EY, Tan CM, Kou Y, et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi: 10.1186/1471-2105-14-128

 

  1. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi: 10.1002/jcc.21334

 

  1. Singh AV, Romeo A, Scott K, et al. Emerging technologies for in vitro inhalation toxicology. Adv Healthc Mater. 2021;10(18):e2100633. doi: 10.1002/adhm.202100633

 

  1. Singh AV, Maharjan RS, Kromer C, et al. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem Res Toxicol. 2021;34(9):1984-2002. doi: 10.1021/acs.chemrestox.1c00219

 

  1. Wang F, Sun C, Lv X, et al. Identification of a novel gene correlated with vascular smooth muscle cells proliferation and migration in chronic thromboembolic pulmonary hypertension. Front Physiol. 2021;12:744219. doi: 10.3389/fphys.2021.744219

 

  1. Wu Y, Pan B, Zhang Z, et al. Caspase-4/11-mediated pulmonary artery endothelial cell pyroptosis contributes to pulmonary arterial hypertension. Hypertension. 2022;79(3):536-548. doi: 10.1161/HYPERTENSIONAHA.121.17868

 

  1. Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant. 2023;42(5):544-552. doi: 10.1016/j.healun.2022.12.012

 

  1. Winter MP, Sharma S, Altmann J, et al. Interruption of vascular endothelial growth factor receptor 2 signaling induces a proliferative pulmonary vasculopathy and pulmonary hypertension. Basic Res Cardiol. 2020;115(6):58. doi: 10.1007/s00395-020-0811-5

 

  1. Zhou W, Liu K, Zeng L, et al. Targeting VEGF-A/ VEGFR2 Y949 signaling-mediated vascular permeability alleviates hypoxic pulmonary hypertension. Circulation. 2022;146(24):1855-1881. doi: 10.1161/CIRCULATIONAHA.122.061900

 

  1. Dean A, Gregorc T, Docherty CK, et al. Role of the aryl hydrocarbon receptor in sugen 5416-induced experimental pulmonary hypertension. Am J Respir Cell Mol Biol. 2018;58(3):320-330. doi: 10.1165/rcmb.2017-0260OC

 

  1. Masaki T, Okazawa M, Asano R, et al. Aryl hydrocarbon receptor is essential for the pathogenesis of pulmonary arterial hypertension. Proc Natl Acad Sci U S A. 2021;118(11):e2023899118. doi: 10.1073/pnas.2023899118

 

  1. Long P, Li Y, Wen Q, et al. 3’-oxo-tabernaelegantine A (OTNA) selectively relaxes pulmonary arteries by inhibiting AhR. Phytomedicine. 2021;92:153751. doi: 10.1016/j.phymed.2021.153751

 

  1. Hsu CG, Li W, Sowden M, Chavez CL, Berk BC. Pnpt1 mediates NLRP3 inflammasome activation by MAVS and metabolic reprogramming in macrophages. Cell Mol Immunol. 2023;20(2):131-142. doi: 10.1038/s41423-022-00962-2

 

  1. Guan C, Zou X, Yang C, et al. Polyribonucleotide nucleotidyltransferase 1 participates in metabolic-associated fatty liver disease pathogenesis by affecting lipid metabolism and mitochondrial homeostasis. Mol Metab. 2024;89:102022. doi: 10.1016/j.molmet.2024.102022

 

  1. Zhang Y, Li Y, Wang Q, et al. Role of RASA1 in cancer: A review and update (review). Oncol Rep. 2020;44(6):2386-2396. doi: 10.3892/or.2020.7807

 

  1. Maston LD, Jones DT, Giermakowska W, et al. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L609-L624. doi: 10.1152/ajplung.00531.2016

 

  1. Ishibashi T, Inagaki T, Okazawa M, et al. IL-6/gp130 signaling in CD4+ T cells drives the pathogenesis of pulmonary hypertension. Proc Natl Acad Sci U S A. 2024;121(16):e2315123121. doi: 10.1073/pnas.2315123121

 

  1. Schnoegl D, Hochgerner M, Gotthardt D, Marsh LM. Fra-2 is a dominant negative regulator of natural killer cell development. Front Immunol. 2022;13:909270. doi: 10.3389/fimmu.2022.909270

 

  1. Jandl K, Marsh LM, Mutgan AC, et al. Impairment of the NKT-STAT1-CXCL9 axis contributes to vessel fibrosis in pulmonary hypertension caused by lung fibrosis. Am J Respir Crit Care Med. 2022;206(8):981-998. doi: 10.1164/rccm.202201-0142OC

 

  1. Weng M, Baron DM, Bloch KD, Luster AD, Lee JJ, Medoff BD. Eosinophils are necessary for pulmonary arterial remodeling in a mouse model of eosinophilic inflammation-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2011;301(6):L927-L936. doi: 10.1152/ajplung.00049.2011

 

  1. Shu T, Zhang J, Zhou Y, et al. Eosinophils protect against pulmonary hypertension through 14-HDHA and 17-HDHA. Eur Respir J. 2023;61(3):2200582. doi: 10.1183/13993003.00582-2022

 

  1. Miyagawa T, Taniguchi T, Saigusa R, et al. Fli1 deficiency induces endothelial adipsin expression, contributing to the onset of pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford). 2020;59(8):2005-2015. doi: 10.1093/rheumatology/kez517

 

  1. Taniguchi T, Miyagawa T, Toyama S, et al. CXCL13 produced by macrophages due to Fli1 deficiency may contribute to the development of tissue fibrosis, vasculopathy and immune activation in systemic sclerosis. Exp Dermatol. 2018;27(9):1030-1037. doi: 10.1111/exd.13724

 

  1. Tofovic SP, Jackson EK. Estradiol metabolism: Crossroads in pulmonary arterial hypertension. Int J Mol Sci. 2019;21(1):116. doi: 10.3390/ijms21010116

 

  1. Geisler JG. 2,4 dinitrophenol as medicine. Cells. 2019;8(3):280. doi: 10.3390/cells8030280

 

  1. Chandrasekar V, Mohammad S, Aboumarzouk O, Singh AV, Dakua SP. Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment. J Hazard Mater. 2025;487:137071. doi: 10.1016/j.jhazmat.2024.137071

 

  1. Singh AV, Bhardwaj P, Laux P, et al. AI and ML-based risk assessment of chemicals: Predicting carcinogenic risk from chemical-induced genomic instability. Front Toxicol. 2024;6:1461587. doi: 10.3389/ftox.2024.1461587
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing