Advancements in functional near-infrared spectroscopy applications for prefrontal cortex dysfunction in neuropsychiatric disorders

Many neuropsychiatric disorders arise from impairments in complex higher-order cognitive functions. However, current clinical diagnosis and treatment approaches still rely heavily on subjective rating scales, lacking objective, quantifiable, and reproducible assessment tools. The prefrontal cortex (PFC), as a central hub for executive function, attentional control, and emotional regulation, has been closely linked to a range of neuropsychiatric conditions, including depression, attention-deficit/hyperactivity disorder, schizophrenia, and autism spectrum disorder. This positions the PFC as a promising target for early diagnosis, mechanistic studies, and treatment evaluation. In recent years, functional near-infrared spectroscopy (fNIRS) has gained rapid traction in psychiatric neuroimaging research due to its non-invasiveness, high temporal resolution, portability, and cost-effectiveness. Empirical studies have demonstrated that fNIRS can detect reduced prefrontal activation in patients with depression, distinguish activation patterns among different disorders, and assist in evaluating the effects of neuromodulatory interventions such as transcranial direct current stimulation, transcranial alternating current stimulation, and neurofeedback training. Moreover, fNIRS-derived hemodynamic indicators often correlate with symptom severity. This review provides a comprehensive summary of recent advances in the application of fNIRS in PFC dysfunction-related neuropsychiatric disorders, focusing on activation characteristics, task paradigms, potential biomarkers, and integration with other imaging modalities. The review also discusses the diagnostic and prognostic potential of fNIRS, its current technical limitations, and future directions, aiming to support its clinical translation in the field of psychiatry.
- McTeague LM, Goodkind MS, Etkin A. Transdiagnostic impairment of cognitive control in mental illness. J Psychiatr Res. 2016;83:37-46. doi: 10.1016/j.jpsychires.2016.08.001
- Kebets V, Favre P, Houenou J, et al. Fronto-limbic neural variability as a transdiagnostic correlate of emotion dysregulation. Transl Psychiatry. 2021;11(1):545. doi: 10.1038/s41398-021-01666-3
- Dugré JR, Eickhoff SB, Potvin S. Meta-analytical transdiagnostic neural correlates in common pediatric psychiatric disorders. Sci Rep. 2022;12(1):4909. doi: 10.1038/s41598-022-08909-3
- Zhang B, Lin P, Wang X, et al. Altered functional connectivity of striatum based on the integrated connectivity model in first-episode schizophrenia. Front Psychiatry. 2019;10:756. doi: 10.3389/fpsyt.2019.00756
- Sha Z, Wager TD, Mechelli A, He Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol Psychiatry. 2019;85(5):379-388. doi: 10.1016/j.biopsych.2018.11.011
- Boisvert M, Dugré JR, Potvin S. Patterns of abnormal activations in severe mental disorders a transdiagnostic data-driven meta-analysis of task-based fMRI studies. Psychol Med. 2024;54(13):1-12. doi: 10.1017/s003329172400165x
- Doucet GE, Janiri D, Howard R, O’Brien M, Andrews- Hanna JR, Frangou S. Transdiagnostic and disease-specific abnormalities in the default-mode network hubs in psychiatric disorders: A meta-analysis of resting-state functional imaging studies. Eur Psychiatry. 2020;63(1):e57. doi: 10.1192/j.eurpsy.2020.57
- Oliveira-Maia AJ, Bobrowska A, Constant E, et al. Treatment-resistant depression in real-world clinical practice: A systematic literature review of data from 2012 to 2022. Adv Ther. 2024;41(1):34-64. doi: 10.1007/s12325-023-02700-0
- Marder SR, Umbricht D. Negative symptoms in schizophrenia: Newly emerging measurements, pathways, and treatments. Schizophr Res. 2023;258:71-77. doi: 10.1016/j.schres.2023.07.010
- Preuss TM, Wise SP. Evolution of prefrontal cortex. Neuropsychopharmacology. 2022;47(1):3-19. doi: 10.1038/s41386-021-01076-5
- Haber SN, Robbins T. The prefrontal cortex. Neuropsychopharmacology. 2021;47(1):1-2. doi: 10.1038/s41386-021-01184-2
- Levy R. The prefrontal cortex: From monkey to man. Brain. 2024;147(3):794-815. doi: 10.1093/brain/awad389
- Xu R, Bichot NP, Takahashi A, Desimone R. The cortical connectome of primate lateral prefrontal cortex. Neuron. 2022;110(2):312-327.e7. doi: 10.1016/j.neuron.2021.10.018
- Popplau JA, Hanganu-Opatz IL. Development of prefrontal circuits and cognitive abilities. Cold Spring Harb Perspect Biol. 2024;16(10):a041502. doi: 10.1101/cshperspect.a041502
- Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: Estimation of radiation dose and cancer risk. Radiology. 2009;251(1):166-174. doi: 10.1148/radiol.2511081300
- Rahman MA, Siddik AB, Ghosh TK, Khanam F, Ahmad M. A narrative review on clinical applications of fNIRS. J Digit Imaging. 2020;33(5):1167-1184. doi: 10.1007/s10278-020-00387-1
- Parnaudeau S, Bolkan SS, Kellendonk C. The mediodorsal thalamus: An essential partner of the prefrontal cortex for cognition. Biol Psychiatry. 2018;83(8):648-656. doi: 10.1016/j.biopsych.2017.11.008
- Pessoa L. A network model of the emotional brain. Trends Cogn Sci. 2017;21(5):357-371. doi: 10.1016/j.tics.2017.03.002
- Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022;47(1):260-275. doi: 10.1038/s41386-021-01109-z
- Lopez KC, Kandala S, Marek S, Barch DM. Development of network topology and functional connectivity of the prefrontal cortex. Cereb Cortex. 2020;30(4):2489-2505. doi: 10.1093/cercor/bhz255
- Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72-89. doi: 10.1038/s41386-021-01132-0
- Kondo HM, Terashima H, Kihara K, Kochiyama T, Shimada Y, Kawahara JI. Prefrontal GABA and glutamate-glutamine levels affect sustained attention. Cereb Cortex. 2023;33(19):10441-10452. doi: 10.1093/cercor/bhad294
- Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: Pathophysiological implications. Mol Psychiatry. 2022;27(1):445-465. doi: 10.1038/s41380-021-01092-3
- Hiser J, Koenigs M. The multifaceted role of ventromedial prefrontal cortex in emotion, decision-making, social cognition, and psychopathology. Biol Psychiatry. 2018;83(8):638-647. doi: 10.1016/j.biopsych.2017.10.030
- Anastasiades PG, Carter AG. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 2021;44(7):550-563. doi: 10.1016/j.tins.2021.03.006
- Kolk SM, Rakic P. Development of prefrontal cortex. Neuropsychopharmacology. 2022;47(1):41-57. doi: 10.1038/s41386-021-01137-9
- Ahuja A, Yusif Rodriguez N. Is the dorsolateral prefrontal cortex actually several different brain areas? J Neurosci. 2022;42(33):6310-6312. doi: 10.1523/JNEUROSCI.0848-22.2022
- Manelis A, Huppert TJ, Rodgers E, Swartz HA, Phillips ML. The role of the right prefrontal cortex in recognition of facial emotional expressions in depressed individuals: fNIRS study. J Affect Disord. 2019;258:151-158. doi: 10.1016/j.jad.2019.08.006
- Doebel S. Rethinking executive function and its development. Perspect Psychol Sci. 2020;15(4):942-956. doi: 10.1177/1745691620904771
- Curtin A, Tong S, Sun J, Wang J, Onaral B, Ayaz H. A systematic review of integrated functional near-infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS) studies. Front Neurosci. 2019;13:84. doi: 10.3389/fnins.2019.00084
- Su WC, Colacot R, Ahmed N, Nguyen T, George T, Gandjbakhche A. The use of functional near-infrared spectroscopy in tracking neurodevelopmental trajectories in infants and children with or without developmental disorders: A systematic review. Front Psychiatry. 2023;14:1210000. doi: 10.3389/fpsyt.2023.1210000
- Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci. 2020;1464(1):5-29. doi: 10.1111/nyas.13948
- Quaresima V, Ferrari M. A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? Photonics. 2019;6(3):87. doi: 10.3390/photonics6030087
- Gao L, Lin Q, Tian D, Zhu S, Tai X. Advances and trends in the application of functional near-infrared spectroscopy for pediatric assessments: A bibliometric analysis. Front Neurol. 2024;15:1459214. doi: 10.3389/fneur.2024.1459214
- Bourguignon NJ, Bue SL, Guerrero-Mosquera C, Borragán G. Bimodal EEG-fNIRS in Neuroergonomics. Current evidence and prospects for future research. Front Neuroergon. 2022;3:934234. doi: 10.3389/fnrgo.2022.934234
- Zhang Y, Li L, Bian Y, et al. Theta-burst stimulation of TMS treatment for anxiety and depression: A FNIRS study. J Affect Disord. 2023;325:713-720. doi: 10.1016/j.jad.2023.01.062
- Jeong E, Seo M, Kim KS. Design of an fNIRS-EEG hybrid terminal for wearable BCI systems. Rev Sci Instrum. 2024;95(8):085001. doi: 10.1063/5.0187070
- Chen J, Xia Y, Zhou X, et al. fNIRS-EEG BCIs for motor rehabilitation: A review. Bioengineering (Basel). 2023;10(12):1393. doi: 10.3390/bioengineering10121393
- Liu Z, Shore J, Wang M, Yuan F, Buss A, Zhao X. A systematic review on hybrid EEG/fNIRS in brain-computer interface. Biomed Signal Proces. 2021;68:102595. doi: 10.1016/j.bspc.2021.102595
- Zhao YN, Han PP, Zhang XY, Bi X. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging during rehabilitation following stroke: A review. Med Sci Monit. 2024;30:e943785.doi: 10.12659/msm.943785
- Peng C, Hou X. Applications of functional near-infrared spectroscopy (fNIRS) in neonates. Neurosci Res. 2021;170:18-23. doi: 10.1016/j.neures.2020.11.003
- Holmes M, Aalto D, Cummine J. Opening the dialogue: A preliminary exploration of hair color, hair cleanliness, light, and motion effects on fNIRS signal quality. PLoS One. 2024;19(5):e0304356. doi: 10.1371/journal.pone.0304356
- Pinti P, Scholkmann F, Hamilton A, Burgess P, Tachtsidis I. Current status and issues regarding pre-processing of fNIRS neuroimaging data: An Investigation of diverse signal filtering methods within a general linear model framework. Front Hum Neurosci. 2018;12:505. doi: 10.3389/fnhum.2018.00505
- Butler LK, Kiran S, Tager-Flusberg H. Functional near-infrared spectroscopy in the study of speech and language impairment across the life span: A systematic review. Am J Speech Lang Pathol. 2020;29(3):1674-1701. doi: 10.1044/2020-ajslp-19-00050
- Vural Keles O, Yildirim E. Depression affects working memory performance: A functional near infrared spectroscopy (fNIRS) study. Psychiatry Res Neuroimaging. 2023;329:111581. doi: 10.1016/j.pscychresns.2022.111581
- Girolamo T, Butler L, Canale R, Aslin RN, Eigsti IM. fNIRS studies of individuals with speech and language impairment underreport sociodemographics: A systematic review. Neuropsychol Rev. 2023;34:860-881. doi: 10.1007/s11065-023-09618-y
- Wang Z, Ren K, Li D, et al. Assessment of brain function in patients with cognitive impairment based on fNIRS and gait analysis. Front Aging Neurosci. 2022;14:799732. doi: 10.3389/fnagi.2022.799732
- Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology. 2022;47(1):225-246. doi: 10.1038/s41386-021-01101-7
- Yeung MK, Lee TL, Chan AS. Negative mood is associated with decreased prefrontal cortex functioning during working memory in young adults. Psychophysiology. 2021;58(6):e13802. doi: 10.1111/psyp.13802
- Li G, Ma K, Rossbach K, et al. Cortical activation for adolescent-onset minor depression and major depressive disorder: An fNIRS study. Ann Gen Psychiatry. 2024;23(1):17. doi: 10.1186/s12991-024-00500-6
- Lim S, Park JH. Prefrontal cortex activation and working memory performance in individuals with non-clinical depression: Insights from fNIRS. Acta Psychol (Amst). 2024;251:104571. doi: 10.1016/j.actpsy.2024.104571
- Tseng HJ, Lu CF, Jeng JS, et al. Frontal asymmetry as a core feature of major depression: A functional near-infrared spectroscopy study. J Psychiatry Neurosci. 2022;47(3):E186-E193. doi: 10.1503/jpn.210131
- Fan H, Li Q, Du Y, et al. Relationship of prefrontal cortex activity with anhedonia and cognitive function in major depressive disorder: An fNIRS study. Front Psychiatry. 2024;15:1428425. doi: 10.3389/fpsyt.2024.1428425
- Wu H, Li T, Peng C, et al. The right prefrontal cortex (PFC) can distinguish anxious depression from non-anxious depression: A promising functional near infrared spectroscopy study (fNIRS). J Affect Disord. 2022;317:319-328. doi: 10.1016/j.jad.2022.08.024
- Papasideris M, Ayaz H, Hall PA. Medial prefrontal brain activity correlates with emerging symptoms of anxiety and depression in late adolescence: A fNIRS study. Dev Psychobiol. 2021;63(7):e22199. doi: 10.1002/dev.22199
- Xu H, Wang Y, Wang YM, et al. Insomniacs show greater prefrontal activation during verbal fluency task compared to non-insomniacs: A functional near-infrared spectroscopy investigation of depression in patients. BMC Psychiatry. 2023;23(1):217. doi: 10.1186/s12888-023-04694-z
- Zhang Y, Li B, Zhang L, et al. Prefrontal brain activity and self-injurious behavior in adolescents with major depressive disorder: A functional near-infrared spectroscopy (fNIRS) study. J Psychiatr Res. 2024;176:248-253. doi: 10.1016/j.jpsychires.2024.06.001
- Zhang Y, Zheng M, Zhu D, et al. Distinct prefrontal cortex alterations in confirmed and suspected depression individuals with different perceived stress during an emotional autobiographical memory task: One fNIRS investigation. J Affect Disord. 2025;370:217-228. doi: 10.1016/j.jad.2024.10.089
- Koike S, Sakakibara E, Satomura Y, et al. Shared functional impairment in the prefrontal cortex affects symptom severity across psychiatric disorders. Psychol Med. 2022;52(13):2661-2670. doi: 10.1017/s0033291720004742
- Yang T, Wang H, Dai H, et al. The fNIRS evaluation of frontal and temporal lobe cortical activation in Chinese first- episode medication-naïve and recurrent depression during a verbal fluency task. Front Psychiatry. 2023;14:1132666. doi: 10.3389/fpsyt.2023.1132666
- Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: Implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci. 2024;18:1440834. doi: 10.3389/fncel.2024.1440834
- Pu S, Nakagome K, Yamada T, et al. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia. Sci Rep. 2016;6:22500. doi: 10.1038/srep22500
- Kumar V, Nichenmetla S, Chhabra H, et al. Prefrontal cortex activation during working memory task in schizophrenia: A fNIRS study. Asian J Psychiatr. 2021;56:102507. doi: 10.1016/j.ajp.2020.102507
- Curtin A, Sun J, Zhao Q, et al. Visuospatial task-related prefrontal activity is correlated with negative symptoms in schizophrenia. Sci Rep. 2019;9(1):9575. doi: 10.1038/s41598-019-45893-7
- Shinba T, Kariya N, Matsuda S, Arai M, Itokawa M, Hoshi Y. Near-infrared time-resolved spectroscopy shows anterior prefrontal blood volume reduction in schizophrenia but not in major depressive disorder. Sensors (Basel). 2022;22(4):1594. doi: 10.3390/s22041594
- Diao Y, Wang H, Wang X, et al. Discriminative analysis of schizophrenia and major depressive disorder using fNIRS. J Affect Disord. 2024;361:256-267. doi: 10.1016/j.jad.2024.06.013
- Ma CC, Lin YY, Chung YA, et al. The two-back task leads to activity in the left dorsolateral prefrontal cortex in schizophrenia patients with predominant negative symptoms: A fNIRS study and its implication for tDCS. Exp Brain Res. 2024;242(3):585-597. doi: 10.1007/s00221-023-06769-5
- Singh R, Zhang Y, Bhaskar D, et al. Deep multimodal representations and classification of first-episode psychosis via live face processing. Front Psychiatry. 2025;16:1518762. doi: 10.3389/fpsyt.2025.1518762
- Poikonen H, Duberg A, Eriksson M, et al. “InMotion”-mixed physical exercise program with creative movement as an intervention for adults with schizophrenia: Study protocol for a randomized controlled trial. Front Hum Neurosci. 2023;17:1192729. doi: 10.3389/fnhum.2023.1192729
- Khaksari K, Chen WL, Chanvanichtrakool M, Taylor A, Kotla R, Gropman AL. Applications of near-infrared spectroscopy in epilepsy, with a focus on mitochondrial disorders. Neurotherapeutics. 2024;21(1):e00323. doi: 10.1016/j.neurot.2024.e00323
- Kaga Y, Ohyama T, Goto Y, et al. Impairment of autonomic emotional response for executive function in children with ADHD: A multi-modal fNIRS and pupillometric study during the wisconsin card sorting test. Brain Dev. 2022;44(7):438-445. doi: 10.1016/j.braindev.2022.03.007
- Friedman LM, Eckrich SJ, Rapport MD, Bohil CJ, Calub C. Working and short-term memory in children with ADHD: An examination of prefrontal cortical functioning using functional near-infrared spectroscopy (fNIRS). Child Neuropsychol. 2024;30(3):462-485. doi: 10.1080/09297049.2023.2213463
- Li Y, Chen J, Zheng X, Liu J, Peng C, Liao Y. Functional near-infrared spectroscopy evidence of prefrontal regulation of cognitive flexibility in adults with ADHD. J Atten Disord. 2023;27(11):1196-1206. doi: 10.1177/10870547231154902
- Li Y, Chen J, Zheng X, et al. Cognitive deficit in adults with ADHD lies in the cognitive state disorder rather than the working memory deficit: A functional near-infrared spectroscopy study. J Psychiatr Res. 2022;154:332-340. doi: 10.1016/j.jpsychires.2022.07.064
- Husain SF, Chiang SK, Vasu AA, et al. Functional near-infrared spectroscopy of english-speaking adults with attention-deficit/hyperactivity disorder during a verbal fluency task. J Atten Disord. 2023;27(13):1448-1459. doi: 10.1177/10870547231180111
- Ortuno-Miro S, Molina-Rodriguez S, Belmonte C, Ibanez- Ballesteros J. Identifying ADHD boys by very-low frequency prefrontal fNIRS fluctuations during a rhythmic mental arithmetic task. J Neural Eng. 2023;20(3). doi: 10.1088/1741-2552/acad2b
- Yang X, Zeng Y, Jiao G, et al. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry. 2024;132:110968. doi: 10.1016/j.pnpbp.2024.110968
- Lu H, Zhang Y, Qiu H, et al. A new perspective for evaluating the efficacy of tACS and tDCS in improving executive functions: A combined tES and fNIRS study. Hum Brain Mapp. 2024;45(1):e26559. doi: 10.1002/hbm.26559
- Zhuo L, Zhao X, Zhai Y, et al. Transcutaneous electrical acupoint stimulation for children with attention-deficit/ hyperactivity disorder: A randomized clinical trial. Transl Psychiatry. 2022;12(1):165. doi: 10.1038/s41398-022-01914-0
- Li Y, Ma S, Zhang X, Gao L. ASD and ADHD: Divergent activating patterns of prefrontal cortex in executive function tasks? J Psychiatr Res. 2024;172:187-196. doi: 10.1016/j.jpsychires.2024.02.012
- Han YMY, Chan MC, Chan MMY, Yeung MK, Chan AS. Effects of working memory load on frontal connectivity in children with autism spectrum disorder: A fNIRS study. Sci Rep. 2022;12(1):1522. doi: 10.1038/s41598-022-05432-3
- Chen L, Du B, Li K, et al. The effect of tDCS on inhibitory control and its transfer effect on sustained attention in children with autism spectrum disorder: An fNIRS study. Brain Stimul. 2024;17(3):594-606. doi: 10.1016/j.brs.2024.04.019
- Chen H, Liang Q, Wang B, Liu H, Dong G, Li K. Sports game intervention aids executive function enhancement in children with autism - an fNIRS study. Neurosci Lett. 2024;822:137647. doi: 10.1016/j.neulet.2024.137647
- Keles HO, Karakulak EZ, Hanoglu L, Omurtag A. Screening for alzheimer’s disease using prefrontal resting-state functional near-infrared spectroscopy. Front Hum Neurosci. 2022;16:1061668. doi: 10.3389/fnhum.2022.1061668
- Zhang M, Qu Y, Li Q, et al. Correlation between prefrontal functional connectivity and the degree of cognitive impairment in alzheimer’s disease: A functional near-infrared spectroscopy study. J Alzheimers Dis. 2024;98(4):1287-1300. doi: 10.3233/JAD-230648
- Lee TL, Guo L, Chan AS. fNIRS as a biomarker for individuals with subjective memory complaints and MCI. Alzheimers Dement. 2024;20:5170-5182. doi: 10.1002/alz.13897
- Baik JS, Ko MH, Ko SH, et al. Assessment of functional near-infrared spectroscopy by comparing prefrontal cortex activity: A cognitive impairment screening tool. Alzheimer Dis Assoc Disord. 2022;36(3):266-268. doi: 10.1097/WAD.0000000000000475
- Zhang C, Yang H, Fan CC, et al. Comparing multi-dimensional fNIRS features using bayesian optimization-based neural networks for mild cognitive impairment (MCI) detection. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1019-1029. doi: 10.1109/TNSRE.2023.3236007
- Hou M, Mao X, Wei Y, et al. Pattern of prefrontal cortical activation and network revealed by task-based and resting-state fNIRS in Parkinson’s disease’s patients with overactive bladder symptoms. Front Neurosci. 2023;17:1142741. doi: 10.3389/fnins.2023.1142741
- Assad M, Galperin I, Giladi N, Mirelman A, Hausdorff JM, Maidan I. Disease severity and prefrontal cortex activation during obstacle negotiation among patients with Parkinson’s disease: Is it all as expected? Parkinsonism Relat Disord. 2022;101:20-26. doi: 10.1016/j.parkreldis.2022.06.006
- Orcioli-Silva D, Vitorio R, Beretta VS, et al. Is cortical activation during walking different between parkinson’s disease motor subtypes? J Gerontol A Biol Sci Med Sci. 2021;76(4):561-567. doi: 10.1093/gerona/glaa174
- Orcioli-Silva D, Vitorio R, Nobrega-Sousa P, et al. Levodopa facilitates prefrontal cortex activation during dual task walking in parkinson disease. Neurorehabil Neural Repair. 2020;34(7):589-599. doi: 10.1177/1545968320924430