Causal relationship between cathepsin H and type 1 diabetes: A Mendelian randomization study

Introduction: Epidemiological studies investigating the relationship between cathepsins and diabetes mellitus (DM) have reported inconsistent results.
Objective: The objective of the study is to evaluate the potential causal relationship between cathepsins and DM using Mendelian randomization (MR) analysis.
Methods: A two-sample MR analysis was conducted using single nucleotide polymorphisms as instrumental variables to examine the effects of cathepsins on DM. Both univariable and multivariable MR analyses were employed to assess the individual and combined effects of cathepsins.
Results: Univariable MR analysis revealed a significant association between cathepsin H and an increased risk of type 1 DM using the inverse-variance weighted method (odds ratio = 1.104; 95% confidence interval = 1.065 – 1.145; p<0.001). Reverse MR analysis and sensitivity analysis supported the robustness of this finding. In the multivariable MR analysis, elevated cathepsin H levels were found to be significantly associated with an increased risk of type 1 DM (odds ratio = 1.090; 95% confidence interval = 1.048 – 1.133; p<0.001), even after adjusting for other cathepsin types. No significant associations were observed between cathepsins and the risk of type 2 DM or gestational DM.
Conclusion: The study highlights a significant causal relationship between cathepsin H and the risk of type 1 DM.
- Popoviciu MS, Paduraru L, Nutas RM, et al. Diabetes mellitus secondary to endocrine diseases: An update of diagnostic and treatment particularities. Int J Mol Sci. 2023;24(16):12676. doi: 10.3390/ijms241612676
- Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16(10):545-555. doi: 10.1038/s41574-020-0381-5
- Bjornstad P, Chao LC, Cree-Green M, et al. Youth-onset type 2 diabetes mellitus: An urgent challenge. Nat Rev Nephrol. 2023;19(3):168-184. doi: 10.1038/s41581-022-00645-1
- Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377-390. doi: 10.1038/s41581-020-0278-5
- Motala AA, Mbanya JC, Ramaiya K, Pirie FJ, Ekoru K. Type 2 diabetes mellitus in sub-Saharan Africa: Challenges and opportunities. Nat Rev Endocrinol. 2022;18(4):219-229. doi: 10.1038/s41574-021-00613-y
- Liang D, Cai X, Guan Q, Ou Y, Zheng X, Lin X. Burden of type 1 and type 2 diabetes and high fasting plasma glucose in Europe, 1990-2019: A comprehensive analysis from the global burden of disease study 2019. Front Endocrinol (Lausanne). 2023;14:1307432. doi: 10.3389/fendo.2023.1307432
- Liu C, Liang D. The association between the triglyceride-glucose index and the risk of cardiovascular disease in US population aged ≤ years with prediabetes or diabetes: A population-based study. Cardiovasc Diabetol. 2024;23(1):168.doi: 10.1186/s12933-024-02261-8
- Chen S, Zong G, Wu Q, et al. Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese. Diabetologia. 2022;65(2):315-328. doi: 10.1007/s00125-021-05611-3
- Franks PW. Socioeconomic disparities across the spectrum of genetic burden in type 2 diabetes and obesity risk. Diabetes Care. 2023;46(5):916-917. doi: 10.2337/dci22-0066
- Guan Q, Zhu C, Zhang G, et al. Association of land urbanization and type 2 diabetes mellitus prevalence and mediation of greenness and physical activity in Chinese adults. Environ Pollut. 2023;337:122579. doi: 10.1016/j.envpol.2023.122579
- Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi: 10.1038/nrendo.2017.151
- Javeed N, Matveyenko AV. Circadian etiology of type 2 diabetes mellitus. Physiology (Bethesda). 2018;33(2):138-150. doi: 10.1152/physiol.00003.2018
- Buzzetti R, Maddaloni E, Gaglia J, Leslie RD, Wong FS, Boehm BO. Adult-onset autoimmune diabetes. Nat Rev Dis Primers. 2022;8(1):63. doi: 10.1038/s41572-022-00390-6
- Desai S, Deshmukh A. Mapping of type 1 diabetes mellitus. Curr Diabetes Rev. 2020;16(5):438-441. doi: 10.2174/1573399815666191004112647
- Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging targets in type 2 diabetes and diabetic complications. Adv Sci (Weinh). 2021;8(18):e2100275. doi: 10.1002/advs.202100275
- Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. doi: 10.3390/ijms21176275
- Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes mellitus: Mechanisms, treatment, and complications. Trends Endocrinol Metab. 2018;29(11):743-754. doi: 10.1016/j.tem.2018.09.004
- Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat Rev Endocrinol. 2020;16(7):349-362. doi: 10.1038/s41574-020-0355-7
- Pippitt K, Li M, Gurgle HE. Diabetes mellitus: Screening and diagnosis. Am Fam Physician. 2016;93(2):103-109.
- Li YY, Fang J, Ao GZ. Cathepsin B and L inhibitors: A patent review (2010 - present). Expert Opin Ther Pat. 2017;27(6):643-656. doi: 10.1080/13543776.2017.1272572
- Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med. 2022;88:101150. doi: 10.1016/j.mam.2022.101150
- Chwieralski CE, Welte T, Bühling F. Cathepsin-regulated apoptosis. Apoptosis. 2006;11(2):143-149. doi: 10.1007/s10495-006-3486-y
- Gao S, Zhu H, Zuo X, Luo H. Cathepsin G and its role in inflammation and autoimmune diseases. Arch Rheumatol. 2018;33(4):498-504. doi: 10.5606/ArchRheumatol.2018.6595
- Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med. 2022;88:101086. doi: 10.1016/j.mam.2022.101086
- Ni J, Lan F, Xu Y, Nakanishi H, Li X. Extralysosomal cathepsin B in central nervous system: Mechanisms and therapeutic implications. Brain Pathol. 2022;32(5):e13071. doi: 10.1111/bpa.13071
- Jung M, Lee J, Seo HY, Lim JS, Kim EK. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS One. 2015;10(1):e0116972. doi: 10.1371/journal.pone.0116972
- Shen XB, Chen X, Zhang ZY, Wu FF, Liu XH. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. Eur J Med Chem. 2021;225:113818. doi: 10.1016/j.ejmech.2021.113818
- Ding L, Goossens GH, Oligschlaeger Y, Houben T, Blaak EE, Shiri-Sverdlov R. Plasma cathepsin D activity is negatively associated with hepatic insulin sensitivity in overweight and obese humans. Diabetologia. 2020;63(2):374-384. doi: 10.1007/s00125-019-05025-2
- Li BF, Huang S, Wu K, Liu Y. Altered cathepsin B expression as a diagnostic marker of skeletal muscle insulin resistance in type 2 diabetes. ACS Biomater Sci Eng. 2023;9(5):2731-2740. doi: 10.1021/acsbiomaterials.3c00078
- He LP, Song YX, Zhu T, Gu W, Liu CW. Progress in the relationship between vitamin D deficiency and the incidence of type 1 diabetes mellitus in children. J Diabetes Res. 2022;2022:5953562. doi: 10.1155/2022/5953562
- Liu C, Yao Q, Hu T, et al. Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis. Mol Ther Nucleic Acids. 2022;30:198-207. doi: 10.1016/j.omtn.2022.09.019
- Huang X, Vaag A, Carlsson E, Hansson M, Ahrén B, Groop L. Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes. Diabetes. 2003;52(9):2411-2418. doi: 10.2337/diabetes.52.9.2411
- Jobs E, Risérus U, Ingelsson E, et al. Serum cathepsin S is associated with decreased insulin sensitivity and the development of type 2 diabetes in a community-based cohort of elderly men. Diabetes Care. 2013;36(1):163-165. doi: 10.2337/dc12-0494
- Liu J, Ma L, Yang J, et al. Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis. 2006;186(2):411-419. doi: 10.1016/j.atherosclerosis.2005.08.001
- Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the Reporting of observational studies in epidemiology using Mendelian randomization: The STROBE-MR statement. JAMA. 2021;326(16):1614-1621. doi: 10.1001/jama.2021.18236
- Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219
- Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. doi: 10.1002/sim.3034
- Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. doi: 10.1136/bmj.k601
- Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73-79. doi: 10.1038/s41586-018-0175-2
- Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880-1906. doi: 10.1002/sim.6835
- Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728-742. doi: 10.1093/ije/dyy258
- Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-525. doi: 10.1093/ije/dyv080
- Wang Y, Xu H, Sun B. Cathepsin H and cathepsin B of Cynoglossus semilaevis are involved in anti-bacterial immunity against Edwardsiella tarda. Fish Shellfish Immunol. 2023;134:108594. doi: 10.1016/j.fsi.2023.108594
- Ni J, Zhao J, Zhang X, Reinheckel T, Turk V, Nakanishi H. Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-β signaling. J Neuroinflammation. 2021;18(1):176. doi: 10.1186/s12974-021-02227-7
- Fløyel T, Mirza A, Kaur S, et al. The Rac2 GTPase contributes to cathepsin H-mediated protection against cytokine-induced apoptosis in insulin-secreting cells. Mol Cell Endocrinol. 2020;518:110993. doi: 10.1016/j.mce.2020.110993
- Fløyel T, Frørup C, Størling J, Pociot F. Cathepsin C regulates cytokine-induced apoptosis in β-cell model systems. Genes (Basel). 2021;12(11):1694. doi: 10.3390/genes12111694
- Fløyel T, Brorsson C, Nielsen LB, et al. CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A. 2014;111(28):10305-10310. doi: 10.1073/pnas.1402571111
- Ye J, Stefan-Lifshitz M, Tomer Y. Genetic and environmental factors regulate the type 1 diabetes gene CTSH via differential DNA methylation. J Biol Chem. 2021;296:100774. doi: 10.1016/j.jbc.2021.100774
- Jing Y, Shi J, Lu B, et al. Association of circulating cathepsin S and cardiovascular disease among patients with type 2 diabetes: A cross-sectional community-based study. Front Endocrinol (Lausanne). 2021;12:615913. doi: 10.3389/fendo.2021.615913
- Karimkhanloo H, Keenan SN, Sun EW, et al. Circulating cathepsin S improves glycaemic control in mice. J Endocrinol. 2021;248(2):167-179. doi: 10.1530/joe-20-0408