AccScience Publishing / EJMO / Volume 8 / Issue 1 / DOI: 10.14744/ejmo.2024.61033
RESEARCH ARTICLE

Expression Patterns and Relevance of FN3K, Nrf2, and NQO1 in Breast Cancers 

Narasimha Murthy Beeraka1,6,10,12 Jin Zhang5 Chinnappa Apattira Uthaiah9 Churganova A Anastasia6 Junqi Liu3,4 Hemanth Vikram Poola Ramachandrappa1,7 Priyanka MK2 Namitha Bannimath15 Rajashree Deka14 Prasath Manogaran11,13 Karen D Souza1 Namratha Mandya Parashivamurthy8 Vladimir Nikolaevich Nikolenko6 Kirill Vladimirovich Bulygin6 Prashant Vishwanath9 Ruitai Fan1,4 Gurupadayya Bannimath1
Show Less
1 Department of Pharmaceutical chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
2 Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysore, India
3 Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
4 Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
5 Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
6 I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
7 Xenone Healthcare Pvt. Ltd., New Delhi, India
8 Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
9 Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
10 Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
11 Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu
12 Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
13 Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
14 Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Assam, India
15 Department of Pharmacology, University of Galway, Galway, Ireland
EJMO 2024, 8(1), 88–105; https://doi.org/10.14744/ejmo.2024.61033
Submitted: 2 December 2023 | Revised: 27 December 2023 | Accepted: 8 January 2024 | Published: 6 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objectives: Previous studies described the prognostic significance of nuclear factor erythroid 2-related factor 2 (Nrf2) in breast cancers. Nrf2 is significantly involved in inducing antioxidant responses in tumor cells to neutralize oxidative stress. A recent study by V Sanghvi et al 2019 demonstrated the role of fructosamine-3-kinase (FN3K) in Nrf2 deglycation in cancer but the prognostic significance based on pathological, clinical relevance has remained unknown in breast cancer patients.
In this study, we determined the relevance of FN3K based on Prediction Analysis of Microarray 50 (PAM-50)algorithmbased breast cancer classification & FN3K gene expression patterns on tumor-node-metastasis (TNM) wise using The 

Conflict of interest
None declared
References

1. Zhang C, Wang HJ, Bao QC, Wang L, Guo TK, Chen WL, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 2016;7:73593.
2. Lu K, Alcivar AL, Ma J, Foo TK, Zywea S, Mahdi A, et al. NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3–KEAP1 interaction. Cancer Res 2017;77:2881–92.
3. Sanghvi VR, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The oncogenic action of NRF2 depends on de-glycation by fructosamine-3-kinase. Cell 2019;178:807–819.e21. 
4. Opyrchal M, Salisbury JL, Zhang S, McCubrey J, Hawse J, Goetz MP, et al. Aurora-A mitotic kinase induces endocrine resistance through down-regulation of ERα expression in initially ERα+ breast cancer cells. PLoS One 2014;9:e96995.
5. Hasson SP, Rubinek T, Ryvo L, Wolf I. Endocrine resistance in breast cancer: Focus on the phosphatidylinositol 3-kinase/ AKT/mammalian target of rapamycin signaling pathway. Breast Care 2013;8:248–55.
6. Fu X, Creighton CJ, Biswal NC, Kumar V, Shea M, Herrera S, et al. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res 2014;16:1–17.
7. Linderholm BK, Hellborg H, Johansson U, Skoog L, Lehtiö J. Vascular endothelial growth factor receptor 2 and downstream p38 mitogen-activated protein kinase are possible candidate markers of intrinsic resistance to adjuvant endocrine treatment in steroid receptor positive breast cancer. Breast Cancer Res Treat 2011;125:457–65.
8. Hiscox S, Barnfather P, Hayes E, Bramble P, Christensen J, Nicholson RI, et al. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells. Breast Cancer Res Treat 2011;125:659–69.
9. García-Aranda M, Redondo M. Protein kinase targets in breast cancer. Int J Mol Sci 2017;18:2543.
10. Bianchini G, Iwamoto T, Qi Y, Coutant C, Shiang CY, Wang B, et al. Prognostic and therapeutic implications of distinct kinase expression patterns in different subtypes of breast cancer. Cancer Res 2010;70:8852–62.
11. Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women. Asia Pac J Clin Oncol 2017;13:289–95. 
12. Suzuki T, Yamamoto M. Stress-sensing mechanisms and the physiological roles of the Keap1–Nrf2 system during cellular stress. J Biol Chem 2017;292:16817–24. 
13. Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The taming of nuclear factor erythroid-2-related factor-2 (Nrf2) deglycation by fructosamine-3-kinase (FN3K)-inhibitors-a novel strategy to combat cancers. Cancers 2021;13:281.
14. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008;68:1303–9.
15. Jaramillo MC, Zhang DD. The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev 2013;27:2179–91.
16. Sporn MB, Liby KT. NRF2 and cancer: The good, the bad and the importance of context. Nat Rev Cancer 2012;12:564–71. 
17. Onodera Y, Motohashi H, Takagi K, Miki Y, Shibahara Y, Watanabe M, et al. NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocr Relat Cancer 2014;21:241–52.
18. Taniguchi N, Takahashi M, Kizuka Y, Kitazume S, Shuvaev VV, Ookawara T, et al. Glycation vs. glycosylation: A tale of two different chemistries and biology in Alzheimer’s disease. Glycoconj J 2016;33:487–97.
19. Hamada S, Taguchi K, Masamune A, Yamamoto M, Shimosegawa T. Nrf2 promotes mutant K-ras/p53-driven pancreatic carcinogenesis. Carcinogenesis 2017;38:661–70.
20. Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP, et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 2014;61:617–25.
21. Ji L, Li H, Gao P, Shang G, Zhang DD, Zhang N, et al. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One 2013;8:e63404.
22. Cong ZX, Zhou Y, Wang JW, Pan H, Zhang DD, Zhang L, et al. Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol 2014;116:41–8.
23. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, et al. RNAi mediated silencing of Nrf2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008;68:7975.
24. Ellingjord-Dale, M., Vos, L., Tretli, S., Hofvind, S., dos-SantosSilva, I. and Ursin, G., 2017. Parity, hormones and breast cancer subtypes-results from a large nested case-control study in a national screening program. Breast cancer research, 19(1), pp.1-21.
25. Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, et al. Targeted inhibition of antiinflammatory regulator Nrf2 results in breast cancer retardation in vitro and in vivo. Biomedicines 2021;9:1119.
26. Krishnamurthy J, Kumar PS. Significance of prognostic indicators in infiltrating duct carcinoma breast: Scenario in developing country. Indian J Cancer 2016;53:34.
27. Inoue D, Suzuki T, Mitsuishi Y, Miki Y, Suzuki S, Sugawara S, et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci 2012;103:760–6.
28. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 2017;8:3131.
29. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, nodenegative breast cancer. N Engl J Med 2004;351:2817–26. 
30. Van De Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.
31. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009;27:1160.
32. Koboldt D, Fulton R, McLellan M, Schmidt H, Kalicki-Veizer J, McMichael J, et al. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.
33. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies - improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol 2015;26:1533–46.
34. Kensler KH, Sankar VN, Wang J, Zhang X, Rubadue CA, Baker GM, et al. PAM50 molecular intrinsic subtypes in the Nurses' health study cohorts. Cancer Epidemiol Biomarkers Prev 2019;28:798–806.
35. Pusztai L, Ayers M, Stec J, Clark E, Hess K, Stivers D, et al. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res
2003;9:2406–15.
36. Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C, et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 2009;15:441–51.
37. Liedtke C, Cardone L, Tordai A, Yan K, Gomez HL, Figureoa LJB, et al. PIK3CA-activating mutations and chemotherapy sensitivity in stage II–III breast cancer. Breast Cancer Res 2008;10:1–10.
38. Finetti P, Cervera N, Charafe-Jauffret E, Chabannon C, Charpin C, Chaffanet M, et al. Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis. Cancer Res 2008;68:767–76.
39. Templeton AJ, Diez-Gonzalez L, Ace O, Vera-Badillo F, Šeruga B, Jordán J, et al. Prognostic relevance of receptor tyrosine kinase expression in breast cancer: A meta-analysis. Cancer Treat Rev 2014;40:1048–55.
40. Speers C, Tsimelzon A, Sexton K, Herrick AM, Gutierrez C, Culhane A, et al. Identification of novel kinase targets for the treatment of estrogen receptor - negative breast cancer. Clin Cancer Res 2009;15:6327–40.
41. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009;360:790–800.
42. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–52.
43. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869–74.
44. Sørlie T, Borgan E, Myhre S, Vollan HKM, Russnes H, Zhao X, et al. The importance of gene-centring microarray data. Lancet Oncol 2010;11:719–20.
45. Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol 2010;28:3271–7. 
46. de Azambuja E, Cardoso F, de Castro G Jr, Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: A meta-analysis of published studies involving 12,155 patients. Br J Cancer 2007;96:1504–13.
47. Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat Rev 2012;38:698–707.
48. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.
49. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al; Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2- positive breast cancer. N Engl J Med 2005;353:1659–72.
50. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783–92.
51. Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: A 4-year follow-up of a randomised controlled trial. Lancet Oncol 2011;12:236–44.
52. Bosch A, Eroles P, Zaragoza R, Viña JR, Lluch A. Triple-negative breast cancer: Molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev 2010;36:206– 15.
53. Chang J, Clark GM, Allred DC, Mohsin S, Chamness G, Elledge RM. Survival of patients with metastatic breast carcinoma: Importance of prognostic markers of the primary tumor. Cancer 2003;97:545–53.
54. Regierer A, Wolters R, Ufen MP, Weigel A, Novopashenny I, Köhne C, et al. An internally and externally validated prognostic score for metastatic breast cancer: Analysis of 2269 patients. Ann Oncol 2014;25:633–8.
55. Largillier R, Ferrero JM, Doyen J, Barriere J, Namer M, Mari V, et al. Prognostic factors in 1038 women with metastatic breast cancer. Ann Oncol 2008;19:2012–9.
56. Shen T, Gao C, Zhang K, Siegal GP, Wei S. Prognostic outcomes in advanced breast cancer: The metastasis-free interval is important. Hum Pathol 2017;70:70–6. 
57. Stuart-Harris R, Shadbolt B, Palmqvist C, Ross HC. The prognostic significance of single hormone receptor positive metastatic breast cancer: An analysis of three randomised phase III trials of aromatase inhibitors. Breast 2009;18:351–5.
58. Clark GM, Sledge Jr G, Osborne CK, McGuire W. Survival from first recurrence: Relative importance of prognostic factors in 1,015 breast cancer patients. J Clin Oncol 1987;5:55–61.
59. Lobbezoo D, Van Kampen R, Voogd A, Dercksen M, Van Den Berkmortel F, Smilde T, et al. Prognosis of metastatic breast cancer: Are there differences between patients with de novo and recurrent metastatic breast cancer? Br J Cancer 2015;112:1445–51.
60. King TA, Lyman JP, Gonen M, Voci A, De Brot M, Boafo C, et al. Prognostic impact of 21-gene recurrence score in patients with stage IV breast cancer: TBCRC 013. J Clin Oncol 2016;34:2359.
61. Prat A, Cheang MC, Galván P, Nuciforo P, Paré L, Adamo B, et al. Prognostic value of intrinsic subtypes in hormone receptorpositive metastatic breast cancer treated with letrozole with or without lapatinib. JAMA Oncol 2016;2:1287–94.
62. Papadaki C, Stoupis G, Tsalikis L, Monastirioti A, Papadaki M, Maliotis N, et al. Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 2019;10:966.
63. Van Poznak C, Somerfield MR, Bast RC, Cristofanilli M, Goetz MP, Gonzalez-Angulo AM, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2015;33:2695.
64. Woo JW, Chung YR, Ahn S, Kang E, Kim EK, Kim SH, et al. Changes in biomarker status in metastatic breast cancer and their prognostic value. J Breast Cancer 2019;22:439–52.
65. Karihtala P, Jääskeläinen A, Roininen N, Jukkola A. Prognostic factors in metastatic breast cancer: A prospective single-centre cohort study in a Finnish University Hospital. BMJ Open 2020;10:e038798.
66. Colleoni M, Sun Z, Price KN, Karlsson P, Forbes JF, Thürlimann B, et al. Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: Results from the international breast cancer study group trials I to V. J Clin Oncol 2016;34:927. 
67. Natarajan L, Pu M, Parker BA, Thomson CA, Caan BJ, Flatt SW, et al. Time-varying effects of prognostic factors associated with disease-free survival in breast cancer. Am J Epidemiol 2009;169:1463–70.
68. Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P, Krappmann K, et al. Comparison of EndoPredict and EPclin  with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst 2016;108:djw149.
69. Bertucci F, Finetti P, Viens P, Birnbaum D. EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer. Cancer Lett 2014;355:70–5.
70. Rakha EA, Agarwal D, Green AR, Ashankyty I, Ellis IO, Ball G, et al. Prognostic stratification of oestrogen receptor‐positive HER2‐negative lymph node‐negative class of breast cancer. Histopathology 2017;70:622–31.
71. Suman VJ, Ellis MJ, Ma CX. The ALTERNATE trial: Assessing a biomarker driven strategy for the treatment of post-menopausal women with ER+/Her2− invasive breast cancer. Chin Clin Oncol 2015;4:34.
72. Zanotti G, Hunger M, Perkins JJ, Horblyuk R, Martin M. Treatment patterns and real world clinical outcomes in ER+/HER2- post-menopausal metastatic breast cancer patients in the United States. BMC Cancer 2017;17:1–12.
73. Pu M, Messer K, Davies SR, Vickery TL, Pittman E, Parker BA, et al. Based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Treat 2020;179:197–206. 
74. Alshaker H, Thrower H, Pchejetski D. Sphingosine kinase 1 in breast cancer - a new molecular marker and a therapy target.  Front Oncol 2020;10:289.
75. Zheng F, Du F, Qian H, Zhao J, Wang X, Yue J, et al. Expression and clinical prognostic value of m6A RNA methylation modification in breast cancer. Biomark Res 2021;9:1–13. 
76. Zhou XL, Zhu CY, Wu ZG, Guo X, Zou W. The oncoprotein  HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis. Oncogene 2019;38:4028–46.
77. Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, et al. Nrf2 promotes breast cancer cell migration via up‐regulation of G6PD/HIF‐1α/Notch1 axis. J Cell Mol Med 2019;23:3451–63.
78. Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, et al. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 2013;73:2199–210.
79. Šimaga Š, Babić D, Osmak M, Šprem M, Abramić M. Tumor cytosol dipeptidyl peptidase III activity is increased with histological aggressiveness of ovarian primary carcinomas. Gynecol Oncol 2003;91:194–200.
80. Šimaga Š, Babić D, Osmak M, Ilić-Forko J, Vitale L, Miličić D, et al. Dipeptidyl peptidase III in malignant and non-malignant gynaecological tissue. Eur J Cancer 1998;34:399–405.
81. Levenson AS, Jordan VC. MCF-7: The first hormone-responsive breast cancer cell line. Cancer Res 1997;57:3071–8.
82. Lasfargues EY, Coutinho WG, Redfield ES. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst 1978;61:967–78.
83. Cailleau R, Young R, Olive M, Reeves Jr W. Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 1974;53:661–74. 
84. Prabhakaran P, Hassiotou F, Blancafort P, Filgueira L. Cisplatin induces differentiation of breast cancer cells. Front Oncol 2013;3:134.
85. Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022;83:556–69.
86. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011;16:123–40.
87. Mitsuishi Y, Motohashi H, Yamamoto M. The Keap1–Nrf2 system in cancers: Stress response and anabolic metabolism. Front Oncol 2012;2:200. 
88. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary me-

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing