Data science in embodied artificial intelligence and robotics: A comprehensive study of models, methods, and applications

Embodied intelligence stands at the confluence of robotics, machine learning, and cognitive science, promising systems that perceive, adapt, and act with context-aware reasoning. This study comprehensively analyzes recent advances in data-driven approaches that empower embodied agents with intelligent behaviors, focusing on hybrid models that integrate symbolic and sub-symbolic reasoning, multimodal robotic perception, and adaptive decision-making. We critically examine the role of data science in integrating deep learning, causal inference, and uncertainty handling across diverse robotic applications. Furthermore, the paper explores challenges in human-robot interaction, the ethical design of artificial intelligence, and the scalable deployment in real-world environments. By synthesizing interdisciplinary perspectives, we identify research gaps and propose a unifying roadmap to advance responsible, explainable, and autonomous systems. To demonstrate these concepts, we introduce the neuro-symbolic hybrid controller with adaptive fusion model, which fuses multimodal data using a transformer, extracts symbolic predicates, and applies differentiable reasoning for action selection. Experiments on MetaWorld, Yale-CMU-Berkeley, and real-world tasks achieved 92–96% success rates with robust sim-to-real transfer, outperforming proximal policy optimization, soft actor-critic, and behavioral cloning while maintaining low latency and interpretable decision-making. This work serves as a foundation for scholars and practitioners seeking to bridge theoretical insights with practical deployment of intelligent robotics.
- Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-inspired artificial intelligence. Neuron. 2017;95(2):245-258. doi: 10.1016/j.neuron.2017.06.011
- Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354-359. doi: 10.1038/nature24270
- Bommasani R, Hudson DA, Adeli E, et al. On the Opportunities and Risks of Foundation Models. arXiv (Cornell University). 2021 doi: 10.48550/arXiv.2108.07258
- Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res. 2020;21:1-67. doi: 10.48550/arXiv.1910.10683
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097-1105.
- Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. In: The International Conference on Learning Representations; 2021. doi: 10.48550/arXiv.2010.11929
- Sutton RS, Barto AG. Reinforcement Learning: An Introduction. 2nd ed. The MIT Press; 2018.
- Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D. Concrete problems in AI safety. arXiv; 2016. doi: 10.48550/arXiv.1606.06565
- Buckman J, Neubig G. Emergent properties of finetuned language representation models. Trans Assoc Comput Linguist. 2021;9:1212-1229. doi: 10.1162/tacl_a_00036
- Quiñonero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND. Dataset Shift in Machine Learning. Cambridge: The MIT Press; 2009. p. 3-28.
- Tedrake R. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation. Cambridge: MIT Press; 2020.
- Garcez AA, Lamb LC. Neurosymbolic AI: The 3rd wave. Artif Intell Rev. 2022;55(4):3501-3525. doi: 10.1007/s10462-021-10096-z
- Schölkopf B, Locatello F, Bauer S, et al. Toward causal representation learning. Proc IEEE. 2021;109(5):612-634. doi: 10.1109/JPROC.2021.3058954
- Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. Proc Mach Learn Res. 2020;119:1597-1607.
- Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from natural language supervision. Proc Mach Learn Res. 2021;139:8748-8763.
- Floridi L, Cowls J, Beltrametti M, et al. AI4People-an ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach. 2021;31(1):117-145. doi: 10.1007/s11023-020-09549-0
- Innes M, Edelman A, Fischer K, et al. A differentiable programming system to bridge machine learning and scientific computing. arXiv; 2019. doi: 10.48550/arXiv.1907.07587
- Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1(5):206-215. doi: 10.1038/s42256-019-0048-x
- Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. doi: 10.1038/nature14539
- Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211-252. doi: 10.1007/s11263-015-0816-y
- Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. p. 1-9. doi: 10.1109/CVPR.2015.7298594
- Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;30:5998-6008.
- Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. Proc NAACL. 2019;1:4171-4186.
- Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):529-533. doi: 10.1038/nature14236
- Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms. arXiv; 2017. doi: 10.48550/arXiv.1707.06347
- Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. Proc Mach Learn Res. 2018;80:1861-1870. doi: 10.48550/arXiv.1812.05905
- Janner M, Fu J, Zhang M, Levine S. When to trust your model: Model-based policy optimization. arXiv (Cornell University). 2019. doi: 10.48550/arXiv.1906.08253
- Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Rethinking atrous convolution for semantic image segmentation. arXiv; 2017. doi: 10.48550/arXiv.1706.05587
- Qi CR, Su H, Mo K, Guibas LJ. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 652-660. doi: 10.48550/arXiv.1612.00593
- Gallego G, Delbruck T, Orchard G, et al. Event-based vision: A survey. IEEE Trans Pattern Anal Mach Intell. 2022;44(1):154-180. doi: 10.1109/TPAMI.2020.3008413
- Das A, Datta S, Gkioxari G, Lee S, Parikh D, Batra D. Embodied question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2018. p. 2135-213509. doi: 10.1109/CVPRW.2018.00279
- Ross S, Gordon G, Bagnell D. A reduction of imitation learning and structured prediction to no-regret online learning. Proc Mach Learn Res. 2011;15:627-635. doi: 10.48550/arXiv.1011.0686
- Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. Proc Mach Learn Res. 2017;70:1126-1135.
- Levy A, Konidaris G, Platt R, Saenko K. Learning multi-level hierarchies with hindsight. The International Conference on Learning Representations; 2019.
- Katz G, Barrett C, Dill DL, Julian K, Kochenderfer MJ. Reluplex: An efficient SMT solver for verifying deep neural networks. In: Proceedings of the International Conference on Computer Aided Verification (CAV); 2017. p. 97-117.
- Wunderlich A, Booth K, Santi E. Hybrid analytical and data-driven modeling for networked dynamical systems. In: 2021 IEEE Electric Ship Technologies Symposium (ESTS). IEEE; 2021. p. 1-8.
- Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv Neural Inf Process Syst. 2017;30:6405-6416.
- Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM; 2016. p. 1135-1144.
- Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv. 2021;54(6):1-35.
- Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM; 2016. p. 308-318.
- Acemoglu D, Restrepo P. Automation and new tasks: How technology displaces and reinstates labor. J Econ Perspect. 2019;33(2):3-30.
- Agal S, Odedra ND. In: Agal S, editor. Foundations of Data Science From Theory to Practice. 1st ed; 2025. Available from: https://www.amazon.in/dp/B0FGV2V46H [Last accessed on 2025 May 14].
- Brown T, Mann B, Ryder N, et al. Language models are few-shot learners. Adv Neural Inf Process Syst. 2020;33:1877-1901.
- Brohan A, Brown N, Carbajal J, et al. RT-1: Robotics transformer for real-world control at scale. arXiv; 2022. doi: 10.48550/arXiv.2212.06817
- Davies M, Srinivasa N, Lin T, et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018;38(1):82-99.
- Agal S, Odedra ND. IoT as a tool for remote engineering education opportunities and challenges. In: Parul University International Conference on Engineering and Technology 2025 (PiCET 2025). Vadodara; 2025.
- Dean J, Corrado G, Monga R, et al. Large scale distributed deep networks. Adv Neural Inf Process Syst. 2012;25:1223-1231.
- Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual lifelong learning with neural networks: A review. Neural Netw. 2019;113:54-71.
- Bubeck S, Chandrasekaran V, Eldan R, et al. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv; 2023. doi: 10.48550/arXiv.2303.12712
- Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. 3rd ed. Boca Raton: Chapman and Hall/CRC; 2013. doi: 10.1201/b16018
- Todorov E, Erez T, Tassa Y. MuJoCo: A physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2012. p. 5026-5033.
- Yu T, Quillen D, He Z, et al. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In: Proceedings of the Conference on Robot Learning. 2020. p. 1094-1100.
- Calli B, Walsman A, Singh A, Srinivasa S, Abbeel P, Dollar AM. The YCB object and model set: Towards common benchmarks for manipulation research. In: 2015 International Conference on Advanced Robotics (ICAR). IEEE; 2015. p. 510-517.