AccScience Publishing / EIR / Online First / DOI: 10.36922/EIR025110002
REVIEW ARTICLE

Influential factors for dielectric elastomer behaviors and its diversified applications

Seiki Chiba1* Mikio Waki2
Show Less
1 Chiba Science Institute, Chiba, Chiba, Japan
2 Wits Inc., Tokyo, Japan
Received: 15 March 2025 | Revised: 13 May 2025 | Accepted: 19 May 2025 | Published online: 18 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Dielectric elastomer (DE) artificial muscles have a simple structure with contractable electrodes above and below the elastomer, allowing for the creation of highly efficient DE actuators, sensors (DES), and generators (DEGs). At present, a DE actuator, containing 0.15 g of acrylic, can lift 8 kg of weight by more than 1 mm within 88 ms. In addition, a small DES can accurately measure pressures from 1 gf to 20 kgf. The elasticity of the electrodes was also greatly improved, enabling them to function as sensors with up to 400% extension. A small tactile sensor was also developed. By attaching these sensors to the fingers of a robot, similar to the data glove of the operator, the operator can remotely touch an object and feel its weight. Incidentally, the response speed of these sensors was 50 ms. Finally, the DEGs were light and efficient and could be attached to the robot’s arms and legs to generate electricity through the robot’s movement. When the power obtained from the DEGs is charged to the secondary battery, the range of robot activity can be increased. This study discusses the potential applications of DEs in robots and equipment for industrial and medical devices.

Keywords
Dielectric elastomer
Actuator
Sensor
Generator
Large output
Large deformation
Funding
None.
Conflict of interest
Seiki Chiba is the CEO of the Chiba Science Institute and Mikio Waki is the president of the company Wits Inc. This has not influenced the content of the manuscript. No reference to the author’s company is made, but it is declared for full transparency.
References
  1. CB Partners. Issues and the Health Industry: Impacts and Response; 2025. Available from: https://www.cb-p.co.jp/column/18303/

 

  1. Texas Instruments. How to Leverage Motor Drive Innovations to Solve Robot Motion Design Challenges; 2023. Available from: https://e2e.ti.comblogs_japan/b/industrial/ posts/67208

 

  1. Yamada Y. Next-generation robot safety: Current state and challenges of technology Panasonic Tech J. 2013;58(4):34-38.

 

  1. Chiba S. In: Asaka K, Okuzaki H, editors. Dielectric Elastomers, Soft Actuators (Materials, Modeling, Applications, Future Perspectives. Ch. 13. Berlin: Springer Nature; 2014. p. 183-195.

 

  1. Wang Y, Ma X, Jiang Y, et al. Dielectric elastomer actuators for artificial muscles: A comprehensive review of soft robot explorations. Resour Chem Mater. 2022;1:308-324.

 

  1. Sheima Y, Szczepanski J, Danner P. High dielectric permittivity elastomers: Synthesis, processability, and device manufacturing. In: Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, CA, USA; 2020.

 

  1. Böse H, Ehrlich J, Löschke P, Gerlach T. Modeling of the Actuation Performance of Dielectric Elastomer Unimorph Bending Actuators Consisting of Different Materials. In: Proceeding of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXV; 2023.

 

  1. Szczepanski J, Danner P, Opris D. Self-Healable, High- Permittivity Elastomers for Dielectric Elastomer Actuators. In: Proceeding of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXV; 2023. doi: 10.1117/12.2658385

 

  1. Berardo A, Rossi D, Gei M, Pugno N, Fantoni G. A soft robot structure with limbless resonant, stick and slip locomotion. Smart Mater Struct. 2019;28:10. doi: 10.1088/1361-665X/ab3de1

 

  1. Guo Y, Qin Q, Han Z, Plamthottam R, Possinger M, Pei Q. Dielectric elastomer artificial muscle materials advancement and soft robotic applications. Smart Mater Struct. 2023;4:28. doi: 10.1002/smm2.1203

 

  1. Jeong1 S, Mun1 H, Yun S, Kyungl K. Modeling dynamic behavior of dielectric elastomer muscle for robotic applications. Front Bioeng Biotechnol. 2023;11:1006346. doi: 10.3389/fbioe.2023.1006346

 

  1. Franke M, Ehrenhofer A, Lahiri S, Henke EFM, Wallmersperger T, Richter A. Dielectric elastomer actuator driven soft robotic structures with bioinspired skeletal and muscular reinforcement. Front Robot AI. 2020;7:510757. doi: 10.3389/frobt.2020.510757

 

  1. Thongking W, Wiranata A, Minaminosono A, Mao Z, Maeda S. Soft robotic gripper based on multi-layers of dielectric elastomer actuators. J Robot Mechatron. 2021;33:4. doi: 10.20965/jrm.2021.p0968

 

  1. Pinkal D, Seidel S, Wegener M. Multilayer Dielectric Elastomer Actuators: Processing and Characterization in an Out-of-plane Actuator Configuration. In: Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXV, 124820E; 2024. doi: 10.1117/12.301905

 

  1. Chiba S, Waki M, Takeshita M, Ohyama K. Possibilities of artificial muscles using dielectric elastomers and their applications. Adv Mater Res. 2023;1176:117. doi: 10.4028/p-jj7z4z

 

  1. Chiba S, Kobayashi M, Qu T, et al. Examination of factors to improve the elongation and output of dielectric elastomers. In: Proceedings of the SPIE; 12042, Electroactive Polymer Actuators and Devices (EAPAD)XXIV; 2022. doi: 10.1117/12.2603716

 

  1. Hu P, Madsen J, Skov A Super-Stretchable Silicone Elastomer Applied in Low Voltage Actuators. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXIII. Vol. 11587; 2021. doi: 10.1117/12.2581476

 

  1. Novelli1 GL, Vargas GG, Andrade RA. Dielectric elastomer actuators as artificial muscles for wearable robots. J Intell Mater Syst Struct. 2020;34:9. doi: 10.1177/1045389X 221128567

 

  1. Lee Y, Jeong SH, Cohen AJ, et al. A wearable textile-embedded dielectric elastomer actuator haptic display. Soft Robot. 2020;9:1186-1197. doi: 10.1089/soro.2021.0098.

 

  1. Guo Y, Liu Y, Leng J, et al. Review of dielectric elastomer actuator and their applications in soft robots. Adv Intell Syst. 2021;3:2000282. doi: 10.1002/aisy.202000282

 

  1. Hu, P, Huang Q, Madsen J, Skov A. Soft Silicone Elastomers with No Chemical Cross-Linking and Unprecedented Softness and Stability. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII. Vol. 11375; 2020. doi: 10.1117/12.2557003

 

  1. Jayatissa S, Shim V, Anderson I, Rosset R. Optimization of Prestretch and Actuation Stretch of a DEA-Based Cell Stretcher. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII. Vol. 11375; 2020. doi: 10.1117/12.2558981

 

  1. Skov L, Bejenariu G, Bøgelund J, Benslimane M, Daugaard E. Influence of Micro and Nanofillers on Electro-Mechanical Performance of Silicone EAPs. In: Proceedings of the SPIE; International Society for Optical Engineering. Vol. 8340. San Diego, CA, UAS, 83400M; 2012. doi: 10.1117/12.966008

 

  1. Sikulskyi S, Zefu R, Govindarajan S, Mekonnen D, Madiyar F, Kim D. Additively Manufactured Unimorph Dielectric Elastomer Actuators with Ferroelectric Particles for Enhanced Low-voltage Actuation. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXIV. Vol. 12042. Long Beach, California, USA; 2022. doi: 10.1117/12.2613128

 

  1. Liebscher H, Tahir M, Wiessner S, Gerlach G. Effect of barium titanate particle filler on the performance of polyurethane-based dielectric elastomer actuators. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXIV. Vol. 12042. Long Beach, California, USA, 120421; 2022. doi: 10.1117/12.2612354.

 

  1. Luke T, Russell H. Fabricating dielectric elastomer transducer electrodes using micro atmospheric plasma jet. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXIV. Vol. 12042. Long Beach, California, USA; 2022. doi: 10.1117/12.2612551.

 

  1. Kumamoto K, Hayashi T, Yonehara Y, Okui M, Nakamura T. Development of a Locomotion Robot using Deformable Dielectric Elastomer Actuator without Pre-stretch. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII. Vol. 113751; 2020. doi: 10.1117/12.2558422.

 

  1. Romasanta L, López-Manchado M, Verdejo R. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Prog Polym Sci. 2015;51:188-211. doi: 10.1016/j.progpolymsci.2015.08.002

 

  1. Hajiesmaili E, Clarke D. Dielectric elastomer actuators. J Appl Phys. 2015;129(15):151102. doi: 10.1063/5.0043959

 

  1. Albuquerque F, Shea H. Factors Influencing the Mean-Time-to-Failure of Single-layer uniaxially Pre-Stretched Silicone- Based DEAs. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, 1204206. Vol. 12042. Long Beach, CA, USA; 2022. doi: 10.1117/12. 2611165

 

  1. Carmel M. Enhancing the Permittivity of Dielectric Elastomers with Liquid Metal. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII; 2020. doi: 10.1117/12.2558951

 

  1. Dickey M. Liquid Metals for Functional Polymers and Soft Devices. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII. Vol. 11375; 2020. doi: 10.1117/12.2558674.

 

  1. Han Z, Peng Z, Guo Y, Wang H, Pei, Q. A Historic Approach to Prestrain-Locked High-Performance Acrylic Dielectric Elastomer Thin Films and Multi-Layer Stacks. In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXV. Vol. 12482. Long Beach, California, USA; 2023. doi: 10.1117/12.2657728

 

  1. Kornbluh R, Flamm D, Prahlad H, et al. Shape control of large lightweight mirrors with dielectric elastomer. In: Rasmussen L, editor. Smart Materials. Cham: Springer; 2021. p. 61-82. doi: 10.1007/978-3-030-70514-5_3

 

  1. Kunze J, Prechtl D, Bruch S, et al. Design and Fabrication of Silicone-Based Dielectric Elastomer Rolled Actuators for Soft Robotic Applications. In: Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII; 2020. doi: 10.1117/12.2558444

 

  1. Shigenune H, Sugano S, Nishitani J, et al. Dielectric elastomer actuators with carbon nanotube electrodes painted with a soft brush. Actuators. 2018;7:51. doi: 10.3390/act7030051

 

  1. Waki M, Chiba S. Application of dielectric elastomer (DE) transducers. In: Asaka K, Okuzaki H, Suzumori Y, editors. Soft-Actuator Materials, Compositions, and Applied Technologies. Ch. 5-2. Tokyo, Japan: S and T Press Co Ltd.; 2016. p. 192-199.

 

  1. Chiba S, Waki M. Excellent miniature thin film dielectric elastomer sensors for robot fingers used in human-robot interaction. Arch Adv Eng Sci. 2023:1-15. doi: 10.47852/bonviewAAES32021716.

 

  1. Zhang L, Gao M, Wang R, Deng Z, Gui L. Stretchable pressure sensor with leakage-free liquid-metal electrodes. Sensors. 2019;19:1316. doi: 3390/s19061316.

 

  1. Han M, Lee J, Kim J, An H, Won Kang S, Jung D. Highly sensitive and flexible wearable pressure sensor with dielectric elastomer and carbon nanotube electrodes. Sens Actuators A Phys. 2020;305:111941. doi: 10.1016/j.sna.2020.111941

 

  1. Bose H, Fub E. Novel Dielectric Elastomer Sensors for Compression Load Detection. In: Proceedings, SPIE Smart Structure and Material + Nondestructive Evaluation and Health Monitoring. San Diego, California, UAS; 2014. doi: 10.1117/12.204513.

 

  1. Bose H, Ehrlich J. Dielectric elastomer sensors with advanced designs and their applications. Actuators. 2023;12:115. doi: 10.3390/act12030115

 

  1. Zhu Y, Giffney T, Aw K. A dielectric elastomer-based multimodal capacitive sensor. Sensors. 2022;22:2. doi: 10.3390/s22020622

 

  1. Chiba S, Waki M. Dielectric elastomer sensor capable of measuring large deformation and pressure. In: Vinjamuri R. editor. Human-Robot Interaction-Perspective and Applications. London: IntechOpen; 2020. Available from: https://www.intechopen.com/chapters/84850

 

  1. Chiba S, Waki M, Hirota Y, Nishikawa N, Yajima T, Ohayama K. Dielectric elastomer transducer (high-efficiency actuator and power generation system). In: Fukushige S, Kobayashi H, Yamasue E, Hara K, editors. EcoDesign for Sustainable Products, Services and Social Systems I. Singapore: Springer; 2023. doi: 10.1007/978-981-99-3818-62_1

 

  1. Yuan X, Changgeng S, Yan G, Zhenghong Z. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. J Phys Conf Ser. 2016;744:12-77. doi: 10.1088/1742-6596/744/1/012077.

 

  1. Koh SJ, Zhao X, Suo Z. Maximal energy that can be converted by a dielectric elastomer generator. Appl Phys Lett. 2009;94(26):262902-262903. doi: 10.1063/1.3167773

 

  1. Gurjar KVS, Kumar A, Patra K. Dielectric elastomer generators: Recent advances in materials, electronic circuits, and prototype. Adv Energy Sustain Res. 2024;6:2400221. doi: 10.1002/aesr.202400221

 

  1. Yurchenko D, Lai Z, Thomson G, Val DV, Bobryk RV. Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer. Appl Energy. 2017;208:456-470. doi: 10.1016/j.apenergy.2017.10.006

 

  1. Thomson G, Lai Z, Val DV, Yurchenko D. Advantages of nonlinear energy harvesting with dielectric elastomers. J Sound Vib. 2019;442:167-82.

 

  1. Moretti G, Papini GPR, Righi M, Forehand D, Ingram D, Vertechy R, Fontana M. Resonant wave energy harvester based on dielectric elastomer generator. Smart Mater Struct. 2018;27(3):035015. doi: 10.1088/1361-665X/aaab1e

 

  1. Bortot E, Gei M. Harvesting energy with load-driven dielectric elastomer annular membranes deforming out-of-plane. Extreme Mech Lett. 2015;5:62-73. doi: 10.1016/j.eml.2015.09.009

 

  1. Moretti G, Fontana M, Vertechy R. Parallelogram-shaped dielectric elastomer generators: Analytical model and experimental validation. J Intell Mater Syst Struct. 2015;26(6):740-751. doi: 10.1177/1045389x14563861

 

  1. Moretti G, Pietro G, Papini R, et al. Modelling and testing of a wave energy converter based on dielectric elastomer generators. Proc Math Phys Eng Sci. 2019;475:20180566. doi: 10.1098/rspa.2018.0566

 

  1. Zhou J, Jiang L, Khayat R. Dynamic analysis of a tunable viscoelastic dielectric elastomer oscillator under external excitation. Smart Mater Struct. 2016;25(2):025005. doi: 10.1088/0964-1726/25/2/025005

 

  1. Arena F, Daniele L, Fiamma V, et al. Field Experiments on Dielectric Elastomer Generators Integrated on A-OWC Wave Energy Converter. In: Proceeding OMAE; 2018. doi: 10.1115/OMAE2018-77830

 

  1. Kovacs GM. Manufacturing polymer transducers: Opportunities and challenges. Proc SPIE 2018;2018:10594-10597.

 

  1. Van Kessel R, Wattez A, Bauer P, Analyses and Comparison of an Energy Harvesting System. Dielectric Elastomer Generators Using a Passive Harvesting Concept: The Voltage-Clamped Multi-Phase System. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. Bellingham: International Society for Optics and Photonics; 2015. p. 943006.

 

  1. Chiba S, Waki M. A marine experiment using dielectric elastomer generators and comparative study with actual measured values and theoretical values. Arch Adv Eng Sci. 2024;2024:1-11. doi: 10.47852/bonviewAAES42023530

 

  1. Pelrine R, Chiba S. Review of Artificial Muscle Approaches. In: Proceedings of the Third International Symposium on Micromachine and Human Science. Nagoya, Japan; 1992.

 

  1. Roentgen W. About the change in shape and volume of dielectrics cased by electricity. Ann. Phys Chem. 1880;11:771-788.

 

  1. Katchalsky A. Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experimentia. 1949;5:19-320. doi: 10.1007/BF02172636

 

  1. Takagi K. Polymer actuators and sensors for soft robotics. Robot Soc Jpn. 2019;37(1):38-41. doi: 10.7210/jrsj.37.38

 

  1. Yang L, Wang H, Zhang X. Recent progress in preparation process of ionic polymer-metal composites. Results Phys. 2021;29:104800. doi: 10.1016/j.rinp.2021

 

  1. Boldini A, Bardella L, and Porfiri M. On Structural Models for Ionic Polymer Metal Composites. In: Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII. Vol. 11375; 2020. doi: 10.1117/12.2558302.

 

  1. Suzumori K, Nabae H, Asaka, K, Horiuchi T. Applying IPMC to Soft Robots. In: Proccdings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII. Vol. 11375; 2020. doi: 10.1117/12.2557021

 

  1. Otero F, Sansiñena J. Soft and wet conducting polymers for artificial muscles. Adv Mater. 1998;10(6):491-494. doi: 10.1002/(SICI)1521-4095(199804) 10:6<491: AID-ADMA491> 3.0.CO;2-Q

 

  1. Seurre L, Arena H, Ghenna S, et al. Behavior of conducting polymer-based micro-actuators under a DC voltage. Sens Actuators B Chem. 2023;380:133338. doi: 10.1016/j.snb.2023.133338

 

  1. Li Y, Sun B, Feng X, Guo M, Li Y, Hashimotoc M. A novel electroactive plasticized polymer actuator based on chlorinate polymer polyvinyl chloride gel. RSC Adv. 2021;11:36439. doi: 10.1039/dira07245e

 

  1. Chelu M, Music A. Polymer gels: Classification and recent developments in biomedical applications. Gels. 2023;9(2):161. doi: 10.3390/gels9020161

 

  1. Kurita Y, Sugihara F, Ueda J, Ogasawara T. MRI compatible robot gripper large-strain piezoelectric actuator. Jpn Soc Mech Eng. 2010;76(761):132-141. doi: 10.1299/kikaic.76.132

 

  1. Giannelli P, Bulletti A, Capineri L. Multifunctional piezopolymer film transducer for structural health monitoring applications. IEEE Sensor J. 2017;17:4. doi: 10.1109/JSEN.2017.2710425

 

  1. Takashima K, Okamura Y, Nagaishi J, et al. Development and application of shape-memory polymer and alloy composite sheets. J Robot Mechatron. 2024;36(3):769-778. doi: 10.20965/jrm.2024.p0769

 

  1. Ratna B, Ratha D, Laurence T, Keller P. Liquid Crystalline Elastomers as Artificial Muscles: Role of Side Chain- Backbone Coupling. In: Proceedings the SPIE, Samart Structures and Materials: Electroactive Polymer Actuators and Devices. Vol. 4329. Newport Beach, CA, USA; 2001. doi: 10.1117/12.432651

 

  1. Jiang ZC, Liu Q, Xiao YY, Zhao Y. Liquid crystal elastomers for actuation: A perspective on structure-property-function relation. Prog Polym Sci. 2024;153:101829. doi: 10.1016/j.progpolymsci.2024.101829

 

  1. Dong L, Zhao Y. Photothermally driven liquid crystal polymer actuators. Mater Chem Front. 2018;2:1932-1943. doi: 10.1039/C8QM00363G

 

  1. Zou J, Liao J, He Y, et al. Recent development of photochromic polymer systems: Mechanism, materials, and applications. Research. 2024;7:392. doi: 10.34133/research.0392

 

  1. Chou P, Hannaford B. Static and Dynamic Characteristics of Mckibben Pneumatic Artificial Muscles. In: Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, UAS; 1994. doi: 10.1109/robot.1994.350977

 

  1. Gong D, Yu J. Design and Control of the McKibben Artificial Muscles Actuated Humanoid Manipulator; 2022. Available from: https://cdn.intechopen.com/pdfs/80403.pdf

 

  1. Cao X, Xuan S, Sun S, Xu Z, Li J, Gong X. 3D printing magnetic actuators for biomimetic applications. Appl Mater Interfaces. 2021;13:25. doi: 10.1021/acsami.1c08252

 

  1. Kakkat A, Dondapati R. Linear actuator using heat-responding artificial muscle. Mater Today. 2023. doi: 10.1016/j.matpr.2023.07.129

 

  1. Qin Z, Jiang Y, Soh S. Light-driven actuator with output power density inspired insect wing. Nat Mater. 2025;24:14-15. doi: 10.1038/s41563-024-02086-6

 

  1. Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S. High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng C. 2000;11(2):89-100. doi: 10.1016/S0928-4931 (00)00128-4

 

  1. Chiba S, Waki M. Recent evolution of dielectric elastomer artificial muscles. In: Chiba S, editor. Applications from Artificial Muscle Actuators, Sensors and the Principles of High Efficiency Power Generation. Gujarat: AndTech; 2016. p. CB3058.

 

  1. Zhang J, Sheng J, O’Neill CT, Walsh CJ, Wood RJ, Ryu JH. Robotic artificial muscles: Current progress and future perspectives. IEEE Transact Robot. 2019;35(3):761-781. doi: 10.1109/TRO.2019.2894371

 

  1. Qiu Y, Zhang E, Plamthottam R, Pei Q. Dielectric elastomer artificial muscle: Materials innovations and device explorations. Acc Chem Res. 2019;52(2):316-325. doi: 10.1021/acs.accounts.8b00516

 

  1. Youn JH, Jeong SM, Hwang G, et al. Dielectric elastomer actuator for soft robotics applications and challenges. Appl Sci. 2020;10(2):640. doi: 10.3390/app10020640

 

  1. Chiba S, Waki M, Zhu S, Qu T, and Ohyama K. Improvement of Elastomer Elongation and Output for Dielectric Elastomers. London: IntechOpen; 2021. doi: 10.5772/intechopen.99713

 

  1. Zhao Y, Yin L, Zhong S, Zha J, and Dang Z. Review of dielectric elastomers for actuators, generators and sensors. IET Nanodielectr. 2020;3(4):99-106. doi: 10.1049/iet-nde.2019.0045

 

  1. Kornbluh R, Pelrine R, Prahlad H, et al. Promises and Challenge of dielectric elastomer energy harvesting In: Proceedings of the SPIE, Electroactive Polymer Actuators and Devices (EAPAD). Vol. 7976. San Diego, CA, USA; 2011. doi: 10.1117/12.882367

 

  1. Hana A, Guo Y, Peng Z, et al. Multilayering VHB Films for Dielectric Elastomer Generators with Improved Lifetime. In: Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXV. Vol. 12482. Long Beach, CA, USA; 2023. doi: 10.1117/12.2657758

 

Share
Back to top
Embodied Intelligence and Robotics, Published by AccScience Publishing