Navigating microplastic-related challenges in the Arabian Gulf: Prospects of artificial intelligence and bioremediation
Microplastics (MPs) have emerged as contaminants of growing concern due to their widespread distribution, high mobility, and ability to act as vectors for pollutants in marine ecosystems. This review examines MP contamination in the Arabian Gulf, one of the world’s most environmentally vulnerable semi-enclosed seas. The Gulf’s extreme conditions, including high salinity, elevated temperatures, restricted water circulation, and intensive coastal development, promote MP accumulation and biological exposure, increasing potential risks to marine organisms, aquaculture, and human health. Conventional detection and quantification techniques, including Fourier-transform infrared (FTIR) and Raman spectroscopy, as well as pyrolysis–gas chromatography/mass spectrometry, are critically assessed with emphasis on limitations related to size detection thresholds, analytical throughput, and processing efficiency. The review highlights artificial intelligence (AI) as a transformative approach for MP analysis. Machine-learning algorithms applied to FTIR and Raman spectral data improve polymer classification accuracy, whereas computer-vision models such as U-Net and Mask R-convolutional neural network enable automated particle segmentation and sizing. These tools reduce manual bias, enhance reproducibility, and facilitate high-throughput analysis across laboratories. Meanwhile, eco-friendly bioremediation strategies are reviewed. Microorganisms, algae, and aquatic plants have demonstrated the ability to adsorb, colonize, or partially degrade MPs, offering sustainable alternatives to conventional remediation methods. However, the effectiveness of these biological approaches under the harsh environmental conditions of the Arabian Gulf remains limited. Finally, this review proposes a Gulf-specific roadmap that includes standardized monitoring protocols and shared spectral and image databases to support AI-based detection, interlaboratory proficiency testing, and pilot-scale bioremediation studies tailored to regional conditions.
- Carpenter EJ, Smith Jr. KL. Plastics on the Sargasso sea surface. Science. 1972;175(4027):1240-1241. doi: 10.1126/science.175.4027.1240
- Zhou C, Bi R, Su C, Liu W, Wang T. The emerging issue of microplastics in marine environment: A bibliometric analysis from 2004 to 2020. Mar Pollut Bull. 2022;179:113712. doi: 10.1016/j.marpolbul.2022.113712
- Wang YZ, Revie RW, Shehata MT, Parkins RN, Krist K. Initiation of environment induced cracking in pipeline steel: Microstructural correlations. ASME. 1998;40221:529-542. doi: 10.1115/IPC1998-2061
- Thompson RC, Olsen Y, Mitchell RP, et al. Lost at sea: Where is all the plastic?. Science. 2004;304(5672):838. doi: 10.1126/science.1094559
- Catarino AI, Kramm J, Voelker C, Henry TB, Everaert G. Risk posed by microplastics: Scientific evidence and public perception. Curr Opin Green Sustainable Chem. 2021;29:100467. doi: 10.1016/j.cogsc.2021.100467
- Arthur C, Baker J, Bamford H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. NOAA Marine Debris Program; 2009. Available from: https://marinedebris.noaa.gov/proceedings-international-research-workshop-microplastic-marine-debris [Last accessed on 2025 Dec 24].
- Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ. 2022;831:154907. doi: 10.1016/j.scitotenv.2022.154907
- Kim D, Mo K, Kim M, Cui F. Occurrence and sources of micro-plastics in various water bodies, sediments, and fishes in Ansan, South Korea. Environ Sci Pollut Res Int. 2023;30(22):62579-62589. doi: 10.1007/s11356-023-26562-9
- Gunawan NR, Tessman M, Zhen D, et al. Biodegradation of renewable polyurethane foams in marine environments occurs through depolymerization by marine microorganisms. Sci Total Environ. 2022;850:158761. doi: 10.1016/j.scitotenv.2022.158761
- Danso D, Chow J, Streit WR. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol. 2019;85:e01095-19. doi: 10.1128/AEM.01095-19
- Hussain I, Ganiyu SA, Alasiri H, Alhooshani K. A state-of-the-art review on waste plastics-derived aviation fuel: Unveiling the heterogeneous catalytic systems and techno-economy feasibility of catalytic pyrolysis. Energy Convers Manag. 2022;274:116433. doi: 10.1016/j.enconman.2022.116433
- Jahirul MI, Rasul MG, Schaller D, Khan MMK, Hasan MM, Hazrat MA. Transport fuel from waste plastics pyrolysis–A review on technologies, challenges and opportunities. Energy Convers Manag. 2022;258:115451. doi: 10.1016/j.enconman.2022.115451
- Napper IE, Thompson RC. Plastic debris in the marine environment: History and future challenges. Glob Chall. 2020;4(6):1900081. doi: 10.1002/gch2.201900081
- Geyer R. Production, use, and fate of synthetic polymers. In: Plastic Waste and Recycling. United States: Academic Press; 2020. p. 13-32. doi: 10.1016/B978-0-12-817880-5.00002-5
- Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod. 2020;254:120138. doi: 10.1016/j.jclepro.2020.120138
- Chen J, Wang W, Liu H, Xu X, Xia J. A review on the occurrence, distribution, characteristics, and analysis methods of microplastic pollution in ecosystems. Environ Pollut Bioavail. 2021;33(1):227-246. doi: 10.1080/26395940.2021.1960198
- Kiran BR, Kopperi H, Venkata Mohan S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev Environ Sci Biotechnol. 2022;21(1):169-203. doi: 10.1007/s11157-021-09609-6
- Koelmans AA, Redondo-Hasselerharm PE, Nor NHM, de Ruijter VN, Mintenig SM, Kooi M. Risk assessment of microplastic particles. Nat Rev Mater. 2022;7(2):138-152. doi: 10.1038/s41578-021-00411-y
- Pakhomova S, Zhdanov I, van Bavel B. Polymer type identification of marine plastic litter using a miniature near-infrared spectrometer (MicroNIR). Appl Sci (Basel). 2020;10(23):8707. doi: 10.3390/app10238707
- Joos L, De Tender C. Soil under stress: The importance of soil life and how it is influenced by (micro) plastic pollution. Comput Struct Biotechnol J. 2022;20:1554-1566. doi: 10.1016/j.csbj.2022.03.041
- Born MP, Brüll C, Schüttrumpf H. Implications of a new test facility for fragmentation investigations on virgin (Micro) plastics. Environ Sci Technol. 2023;57(28):10393-10403. doi: 10.1021/acs.est.3c02189
- Jakubowicz I, Enebro J, Yarahmadi N. Challenges in the search for nanoplastics in the environment-A critical review from the polymer science perspective. Polym Test. 2021;93:106953. doi: 10.1016/j.polymertesting.2020.106953
- Hidayaturrahman H, Lee TG. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar Pollut Bull. 2019;146:696-702. doi: 10.1016/j.marpolbul.2019.06.071
- Anagnosti L, Varvaresou A, Pavlou P, Protopapa E, Carayanni V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively?. Mar Pollut Bull. 2021;162:111883. doi: 10.1016/j.marpolbul.2020.111883
- Hwang J, Choi D, Han S, Jung SY, Choi J, Hong J. Potential toxicity of polystyrene microplastic particles. Sci Rep. 2020;10(1):7391. doi: 10.1038/s41598-020-64464-9
- Tadsuwan K, Babel S. Microplastic abundance and removal via an ultrafiltration system coupled to a conventional municipal wastewater treatment plant in Thailand. J Environ Chem Eng. 2022;10(2):107142. doi: 10.1016/j.jece.2022.107142
- Zheng Y, Zhu J, Li J, Li G, Shi, H. Burrowing invertebrates induce fragmentation of mariculture Styrofoam floats and formation of microplastics. J Hazard Mater. 2023;447:130764. doi: 10.1016/j.jhazmat.2023.130764
- Song YK, Hong SH, Eo S, Han GM, Shim WJ. Rapid production of micro-and nanoplastics by fragmentation of expanded polystyrene exposed to sunlight. Environ Sci Technol. 2020;54(18):11191-11200. doi: 10.1021/acs.est.0c02288
- Lin Z, Jin T, Zou T, et al. Current progress on plastic/ microplastic degradation: Fact influences and mechanism. Environ Pollut. 2022;304:119159. doi: 10.1016/j.envpol.2022.119159
- Zhang D, Liu X, Huang W, et al. Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean. Environ Pollut. 2020;259:113948. doi: 10.1016/j.envpol.2020.113948
- Li J, Gao F, Zhang D, Cao W, Zhao C. Zonal distribution characteristics of microplastics in the Southern Indian Ocean and the influence of Ocean current. J Mar Sci Eng. 2022;10(2):10.3390/jmse10020290. doi: 10.3390/jmse10020290
- Hansen J, Hildebrandt L, Zimmermann T, El Gareb F, Fischer EK. Pröfrock D. Quantification and characterization of microplastics in surface water samples from the Northeast Atlantic Ocean using laser direct infrared imaging. Mar Pollut Bull. 2023;190:114880. doi: 10.1016/j.marpolbul.2023.114880
- Vaughan GO, Al-Mansoori N, Burt JA. The Arabian gulf. In: World Seas: An Environmental Evaluation. Vol. 2. United States: Academic Press; 2019. p. 1-23. doi: 10.1016/b978-0-08-100853-9.00001-4
- Hereher ME. Assessment of climate change impacts on sea surface temperatures and sea level rise-The Arabian Gulf. Climate (Basel). 2020;8(4):50. doi: 10.3390/cli8040050
- Mohamed ARM, Abood AN. Current status of Iraqi artisanal marine fisheries in Northwest of the Arabian Gulf of Iraq. Arch Agr Environ Sci. 2020;5(4):457-464. doi: 10.26832/24566632.2020.050404
- Guieu C, Al Azhar M, Aumont O, et al. Major impact of dust deposition on the productivity of the Arabian Sea. Geophys Res Lett. 2019;46(12):6736-6744. doi: 10.1029/2019GL082770
- Ibrahim HD, Xue P, Eltahir EA. Multiple salinity equilibria and resilience of Persian/Arabian Gulf basin salinity to brine discharge. Front Mar Sci. 2020;7:573. doi: 10.3389/fmars.2020.00573.
- Abayomi OA, Range P, Al-Ghouti MA, Obbard JP, Almeer SH, Ben-Hamadou R. Microplastics in coastal environments of the Arabian Gulf. Mar Pollut Bull. 2017;124(1):181-188. doi: 10.1016/j.marpolbul.2017.07.011
- Naji A, Nuri M, Vethaak AD. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ Pollut. 2018;235:113-120. doi: 10.1016/j.envpol.2017.12.046
- Akhbarizadeh R, Moore F, Keshavarzi B. Investigating microplastics bioaccumulation and biomagnification in seafood from the Persian Gulf: A threat to human health?. FAC Part A. 2019;36(11):1696-1708. doi: 10.1080/19440049.2019.1649473
- Saeed T, Al-Jandal N, Al-Mutairi A, Taqi H. Microplastics in Kuwait marine environment: Results of first survey. Mar Pollut Bull. 2020;152:110880. doi: 10.1016/j.marpolbul.2019.110880
- Jahromi FA, Keshavarzi B, Moore F, et al. Source and risk assessment of heavy metals and microplastics in bivalves and coastal sediments of the Northern Persian Gulf, Hormogzan Province. Environ Res. 2021;196:110963. doi: 10.1016/j.envres.2021.110963
- Al Hammadi M, Knuteson S, Kanan S, Samara F. Microplastic pollution in oyster bed ecosystems: An assessment of the northern shores of the United Arab Emirates. Environ Adv. 2022;8:100214. doi: 10.1016/j.envadv.2022.100214
- Ali HJA, Al-Thukair AA, Pulikkoden AK, Chanbasha B. Microplastic contaminants in the sediment of the East Coast of Saudi Arabia. London: IntechOpen; 2023. doi: 10.5772/intechopen.109019
- Saudi Arabia General Authority for Statistics (SAGASTAT). Marine Fishery and Aquaculture Publication; 2023. Available from: https://www.stats.gov. sa/en/search?q=%22marine+fishery+and+aquaculture+ publication %22 [Last accessed on 2025 Dec 24].
- Al-Salem SM, Uddin S, Lyons B. Evidence of microplastics (MP) in gut content of major consumed marine fish species in the State of Kuwait (of the Arabian/Persian Gulf). Mar Pollut Bull. 2020;154:111052. doi: 10.1016/j.marpolbul.2020.111052
- Baalkhuyur FM, Qurban MA, Panickan P, Duarte CM. Microplastics in fishes of commercial and ecological importance from the Western Arabian Gulf. Mar Pollut Bull. 2020;152:110920. doi: 10.1016/j.marpolbul.2020.110920
- Al-Thawadi S. Microplastics and nanoplastics in aquatic environments: Challenges and threats to aquatic organisms. Arabian J Sci Eng. 2020;45(6):4419-4440. doi: 10.1007/s13369-020-04402-z
- Gurjar UR, Xavier KM, Shukla SP, Deshmukhe G, Jaiswar AK, Nayak BB. Incidence of microplastics in gastrointestinal tract of golden anchovy (Coilia dussumieri) from north east coast of Arabian Sea: The ecological perspective. Mar Pollut Bull. 2021;169:112518. doi: 10.1016/j.marpolbul.2021.112518
- Lamichhane G, Acharya A, Marahatha R, et al. Microplastics in environment: Global concern, challenges, and controlling measures. Int J Environ Sci Technol (Tehran). 2023;20(4):4673-4694. doi: 10.1007/s13762-022-04261-1
- Ziani K, Ioniță-Mîndrican CB, Mititelu M, et al. Microplastics: A real global threat for environment and food safety: A state of the art review. Nutrients. 2023;15(3): 617. doi: 10.3390/nu15030617
- Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. J Geophys Res Oceans. 2020;125(1):e2018JC014719. doi: 10.1029/2018JC014719
- Mason VG, Skov MW, Hiddink JG, Walton M. Microplastics alter multiple biological processes of marine benthic fauna. Sci Total Environ. 2022;845:157362. doi: 10.1016/j.scitotenv.2022.157362
- Nanthini Devi K, Raju P, Santhanam P, Perumal P. Impacts of microplastics on marine organisms: Present perspectives and the way forward. Egypt J Aquat Res. 2022;48(3):205-209. doi: 10.1016/j.ejar.2022.03.001
- Amelia TSM, Khalik WMA, Ong MC, Shao YT, Pan HJ, Bhubalan K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog Earth Planet Sci. 2021;8(1):1-26. doi: 10.1186/s40645-020-00405-4
- Issac MN, Kandasubramanian B. Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res Int. 2021;28:19544-19562. doi: 10.1007/11356-021-13184-2
- Habib RZ, Thiemann T. Microplastic in commercial fish in the Mediterranean sea, the red sea and the Arabian gulf. Part 1: The Mediterranean sea. J Water Resour Prot. 2021;13(8):563-587. doi: 10.4236/jwarp.2022.146025
- Huang CH, Chu TW, Kuo CH, Hong MC, Chen YY, Chen B. Effects of microplastics on reproduction and growth of freshwater live feeds Daphnia magna. Fishes. 2022;7(4):181. doi: 10.3390/fishes7040181
- Gola D, Tyagi PK, Arya A, et al. The impact of microplastics on marine environment: A review. ENMM. 2021;16:100552. doi: 10.1016/j.enmm.2021.100552
- Van Colen C, Vanhove B, Diem A, Moens T. Does microplastic ingestion by zooplankton affect predator-prey interactions? An experimental study on Larviphagy. Environ Pollut. 2020;256:113479. doi: 10.1016/j.envpol.2019.113479
- Uguen M, Nicastro KR, Zardi GI, et al. Microplastic leachates disrupt the chemotactic and chemokinetic behaviours of an ecosystem engineer (Mytilus edulis). Chemosphere. 2022;306:135425. doi: 10.1016/j.chemosphere.2022.135425
- Rodrigues CC, Salla RF, Rocha TL. Bioaccumulation and ecotoxicological impact of micro (nano) plastics in aquatic and land snails: Historical review, current research and emerging trends. J Hazard Mater. 2023;444:130382. doi: 10.1016/j.jhazmat.2022.130382
- Baechler BR, Stienbarger CD, Horn DA, et al. Microplastic occurrence and effects in commercially harvested North American finfish and shellfish: current knowledge and future directions. Limnol Oceanogr Lett. 2020;5(1):113-136. doi: 10.1002/lol2.10122
- Corinaldesi C, Canensi S, Dell’Anno A, et al. Multiple impacts of microplastics can threaten marine habitat-forming species. Commun Biol. 2021;4(1):431. doi: 10.1038/s42003-021-01961-1
- Morrison M, Trevisan R, Ranasinghe P, et al. A growing crisis for one health: Impacts of plastic pollution across layers of biological function. Front Mar Sci. 2022;9:980705. doi: 10.3389/fmars.2022.980705
- Yu RS, Singh S. Microplastic pollution: Threats and impacts on global marine ecosystems. Sustainability. 2023;15(17):13252. doi: 10.3390/su151713252
- Chen CF, Ju YR, Lim YC, Wang MH, Chen CW, Dong CD. Microplastics in coastal farmed oyster (Crassostrea angulata) shells: Abundance, characteristics, and diversity. Mar Pollut Bull. 2023;194:115228. doi: 10.1016/j.marpolbul.2023.115228
- Onyena AP, Aniche DC, Ogbolu BO, Rakib MRJ, Uddin J, Walker TR. Governance strategies for mitigating microplastic pollution in the marine environment: A review. Microplastics. 2022;1(1):15-46. doi: 10.3390/microplastics1010003
- Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton. Environ Sci Technol. 2013;47(12):6646-6655. doi: 10.1021/es400663f
- Scherer C, Brennholt N, Reifferscheid G, Wagner M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci Rep. 2017;7(1):17006. doi: 10.1038/s41598-017-17191-7
- Malinowski CR, Searle CL, Schaber J, Höök TO. Microplastics impact simple aquatic food web dynamics through reduced zooplankton feeding and potentially releasing algae from consumer control. Sci Total Environ. 2023;904:166691. doi: 10.1016/j.scitotenv.2023.166691
- Yin J, Duan C, Zhou F, et al. Microplastics affect interspecific interactions between Cladoceran species in the absence and presence of predators by triggering asymmetric individual responses. Water Res. 2023;248:120877. doi: 10.1016/j.watres.2023.120877
- Montoya D, Rastelli E, Casotti R, et al. Microplastics alter the functioning of marine microbial ecosystems. Ecol Evol. 2024;14(11):e70041. doi: 10.1002/ece3.70041
- Köster M, Paffenhöfer G. Feeding of marine zooplankton on microplastic fibers. Arch Environ Contam Toxicol. 2022;83(2):129-141. doi: 10.1007/s00244-022-00948-1
- Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: A review. Environ Sci Pollut Res Int. 2023;31:41402-41445. doi: 10.1007/s11356-023-28314-1
- Naik RK, Chakraborty P, D’Costa PM, Anilkumar N, Mishra RK, Fernandes VA simple technique to mitigate microplastic pollution and its mobility (via ballast water) in the global ocean. Environ Pollut. 2021;283:117070. doi: 10.1016/j.envpol.2021.117070
- Mahmud SM, Chuah LF, Nik WM, Abu Bakar A, Musa MA. Retrofitting ballast water treatment system: A container ship case study. Chem Eng Trans. 2024;110:367-372. doi: 10.3303/CET24110062
- Thach ND, Van Hung P. Development of UV reactor controller in ballast water treatment system to minimize the biological threat on marine environment. J Sea Res. 2024;198:102465. doi: 10.1016/j.seares.2023.102465
- Ejder E, Ceylan BO, Celik MS, Arslanoğlu Y. Sustainability in maritime transport: Selecting ballast water treatment for a bulk carrier. Mar Environ Res. 2024;198:106511. doi: 10.1016/j.marenvres.2024.106511
- Zhang H, Xue J, Wang Q, Yuan L, Wu H. Formation of halogenated disinfection by-products during ballast water chlorination. ESWRT. 2022;8(3):648-656. doi: 10.1039/D1EW00674F
- Yang L, Ma C. Toward a better understanding of microalgal photosynthesis in medium polluted with microplastics: A study of the radiative properties of microplastic particles. Front Bioeng Biotechnol. 2023;11:1193033. doi: 10.3389/fbioe.2023.1193033
- Kye H, Kim J, Ju S, Lee J, Lim C, Yoon, Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon. 2023;9(3):e14359. doi: 10.1016/heliyon.2023.e14359
- Ricciardi M, Pironti C, Motta O, Miele Y, Proto A, Montano L. Microplastics in the aquatic environment: Occurrence, persistence, analysis, and human exposure. Water, 2021;13(7):973. doi: 10.3390/w13070973
- Liu H, Sun K, Liu X, et al. Spatial and temporal distributions of microplastics and their macroscopic relationship with algal blooms in Chaohu Lake, China. J Contam Hydrol. 2022;248:104028. doi: 10.1016/j.jconhyd.2022.104028
- Pestana CJ, Moura DS, Capelo-Neto J, et al. Potentially poisonous plastic particles: microplastics as a vector for cyanobacterial toxins microcystin-LR and microcystin-LF. Environ Sci Technol. 2021;55(23):15940-15949. doi: 10.1021/acs.est.1c05796
- Kane IA, Clare MA. Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: A review and future directions. Front Earth Sci (Lausanne). 2019;7:80. doi: 10.3389/feart.2019.00080
- Barrett J, Chase Z, Zhang J, et al. Microplastic pollution in deep-sea sediments from the Great Australian Bight. Front Mar Sci. 2020;7:808. doi: 10.3389/fmars.2020.576170
- Li Y, Sun Y, Li J, Tang R, Miu Y, Ma, X. Research on the influence of microplastics on marine life. IOP Conf Ser Earth Environ Sci. 2021;631:012006. doi: 10.1088/1755-1315/631/1/012006
- Waldschläger K, Brückner MZ, Almroth BC, et al. Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective. Earth Sci Rev. 2022;228:104021. doi: 10.1016/j.earscirev.2022.104021
- Yu H, Qi W, Cao X, et al. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system?. Environ Int. 2021;156:106708. doi: 10.1016/j.envint.2021.106708
- Salam M, Zheng H, Liu Y, et al. Effects of micro (nano) plastics on soil nutrient cycling: State of the knowledge. J Environ Manage. 2023;344:118437. doi: 10.1016/j.jenvman.2023.118437
- Gerstenbacher CM, Finzi AC, Rotjan RD, Novak AB. A review of microplastic impacts on Seagrasses, epiphytes, and associated sediment communities. Environ Pollut. 2022;303:119108. doi: 10.1016/j.envpol.2022.119108
- Seeley ME, Song B, Passie R, Hale RC. Microplastics affectsedimentary microbial communities and nitrogen cycling. Nat Commun. 2020;11(1):2372. doi: 10.1038/s41467-020-16235-3
- Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ Pollut. 2020;261:114089. doi: 10.1016/j.envpol.2020.114089
- Yang H, Chen G, Wang J. Microplastics in the marine environment: Sources, fates, impacts and microbial degradation. Toxics. 2021;9(2):41. doi: 10.3390/toxics9020041
- Pourebrahimi S, Pirooz M. Microplastic pollution in the marine environment: A review. J Hazard Mater Adv. 2023;10:100327. doi: 10.1016/j.hazadv.2023.100327
- Alfaro-Núñez A, Astorga D, Cáceres-Farías L, et al. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Sci Rep. 2021;11(1):6424. doi: 10.1038/s41598-021-85939-3
- Lionetto F, Corcione CE. An overview of the sorption studies of contaminants on poly (Ethylene Terephthalate) microplastics in the marine environment. J Mar Sci Eng. 2021;9(4):445. doi: 10.3390/jmse9040445
- Agboola OD, Benson NU. Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: A review. Front Environ Sci. 2021;9:167. doi: 10.3389/fenvs.2021.678574
- He B, Liu A, Duan H, Wijesiri B, Goonetilleke A. Risk associated with microplastics in urban aquatic environments: A critical review. J Hazard Mater. 2022;439:129587. doi: 10.1016/j.jhazmat.2022.129587
- Gao F, Li J, Sun C, et al. Study on the capability and characteristics of heavy metals enriched on MPs in marine environment. Mar Pollut Bull. 2019;144:61-67. doi: 10.1016/j.marpolbul.2019.04.039
- Bhuyan MS. Effects of microplastics on fish and in human health. Front Environ Sci. 2022;10:250. doi: 10.3389/fenvs.2022.827289
- Costa E, Piazza V, Lavorano S, Faimali M, Garaventa F, Gambardella C. Trophic transfer of microplastics from copepods to jellyfish in the marine environment. Front Environ Sci. 2020;8:571732. doi: 10.3389/fenvs.2020.571732
- Li Y, Tao L, Wang Q, Wang F, Li G, Song M. Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects. Environ Health. 2023;1(4):249-257. doi: 10.1021/envhealth.3c00052
- Chen J, Wu J, Sherrell PC, et al. How to build a microplastics‐free environment: Strategies for microplastics degradation and plastics recycling. Adv Sci (Weinh). 2022;9(6):2103764. doi: 10.1002/advs.202103764
- Menéndez-Pedriza A, Jaumot J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics. 2020;8(2):40. doi: 10.3390/toxics8020040
- Amran NH, Zaid SSM, Mokhtar MH, Manaf LA, Othman S. Exposure to microplastics during early developmental stage: Review of current evidence. Toxics. 2022;10(10):597. doi: 10.3390/toxics10100597
- Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 2020;17(4):1212. doi: 10.3390/ijerph17041212
- Munyaneza J, Jia Q, Qaraah FA, Hossain MF, Wu C, Zhen H, Xiu G. A review of atmospheric microplastics pollution: In-depth sighting of sources, analytical methods, physiognomies, transport and risks. Sci Total Environ. 2022;822:153339. doi: 10.1016/j.scitotenv.2022.153339
- Rani M, Ducoli S, Depero L, et al. A complete guide to extraction methods of microplastics from complex environmental matrices. Molecules. 2023;28(15):5710. doi: 10.3390/molecules28155710
- Cutroneo L, Reboa A, Besio G, et al. Microplastics in seawater: Sampling strategies, laboratory methodologies, and identification techniques applied to the port environment. Environ Sci Pollut Res Int. 2020;27:8938-8952. doi: 10.1007/s11356-020-07783-8
- Liu Z, Wang W, Liu X. Automated characterization and identification of microplastics through spectroscopy and chemical imaging in combination with chemometric: Latest developments and future prospects. Trends Analyt Chem. 2023;160:116956. doi: 10.1016/j.trac.2023.116956
- Mariano S, Tacconi S, Fidaleo M, Rossi M, Dini L. Micro and nanoplastics identification: Classic methods and innovative detection techniques. Front Toxicol. 2021;3:636640. doi: 10.3389/ftox.2021.636640
- Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci. 2013;15(10):1949-1956. doi: 10.1039/C3EM00214D
- Yu J, Wang P, Ni F, et al. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull. 2019;145:153-160. doi: 10.1016/j.marpolbul.2019.05.037
- Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ Sci Technol. 2012;46(6):3060-3075. doi: 10.1021/es2031505
- Song YK, Hong SH, Jang M, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93(1-2):202-209. doi: 10.1016/j.marpolbul.2015.01.015
- Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed Engl. 2017;56(7):1720-1739. doi: 10.1002/anie.201606957
- Prata JC. Microplastics in wastewater: State of the knowledge on sources, fate, and solutions. Mar Pollut Bull. 2018;129(1):262-265. doi: 10.1016/j.marpolbul.2018.02.046
- Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018;142:426-440. doi: 10.1016/j.watres.2018.05.060
- Crawford CB, Quinn B. Microplastic Pollutants. Netherlands: Elsevier Limited; 2016. doi: 10.1016/C2015-0-04315-5
- Russell SJ, Norvig P. Artificial Intelligence a Modern Approach. London. Saudi Green Initiative. 2016 Web resource. Saudi vision 2030; 2010. https://www.vision2030. gov.sa/en/explore/projects/saudi-green-initiative [Last accessed on 2026 Jan 27].
- Murphy KP. Machine Learning: A Probabilistic Perspective. United States: MIT Press; 2012. Available from: https://mitpress.mit.edu/9780262018029/machine-learning [Last accessed on 2026 Jan 27].
- Goodfellow I, Bengio Y, Courville A. Deep Learning. United States: MIT Press; 2016. Available from: https://mitpress.mit.edu/9780262035613/deep-learning [Last accessed on 2026 Jan 27].
- Bianco V, Pirone D, Memmolo P, Merola F, Ferraro P. Identification of microplastics based on the fractal properties of their holographic fingerprint. ACS Photonics. 2021;8(7):2148-2157. doi: 10.1021/acsphotonics.1c00591
- Zhu Y, Yeung C.H, Lam EY. Digital holographic imaging and classification of microplastics using deep transfer learning. Applied Optics. 2021;60(4):A38-A47. doi: 10.1364/AO.403366
- Mukhanov VS, Litvinyuk DA, Sakhon EG, Bagaev AV, Veerasingam S, Venkatachalapathy, R. A new method for analyzing microplastic particle size distribution in marine environmental samples. Ecol Montenegrina. 2019;23:77-86. doi: 10.37828/em.2019.23.10
- Serranti S, Palmieri R, Bonifazi G, Cózar A. Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag. 2018;76:117-125. doi: 10.1016/j.wasman.2018.03.003
- Gauci A, Deidun A, Montebello J, Abela J, Galgani, F. Automating the characterisation of beach microplastics through the application of image analyses. Coast Manage. 2019;182:104950. doi: 10.1016/j.ocecoaman.2019.104950
- Shi B, Patel M, Yu D, et al. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning. Sci Total Environ. 2022;825:153903. doi: 10.1016/j.scitotenv.2022.153903
- Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A. (eds). Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science. Cham: Springer; 2015. p. 234-241. doi: 10.1007/978-3-319-24574-4_28
- Zhang W, Feng W, Cai Z, Wang H, Yan Q, Wang Q. A deep one-dimensional convolutional neural network for microplastics classification using Raman spectroscopy. Vib Spectrosc. 2023;124:103487. doi: 10.1016/j.vibspec.2022.103487
- Li H, Xu S, Teng J, Jiang X, Fan L. Deep learning assisted ATR-FTIR and Raman spectroscopy fusion technology for microplastic identification. Microchem J. 2025;212:113224. doi: 10.1016/j.microc.2025.113224
- Han XL, Jiang NJ, Hata T, Choi J, Du YJ, Wang YJ. Deep learning based approach for automated characterization of large marine microplastic particles. Mar Environ Res. 2023;183:105829. doi: 10.1016/j.marenvres.2022.105829
- Thammasanya T, Patiam S, Rodcharoen E, Chotikarn, P. A new approach to classifying polymer type of microplasticsbased on Faster-RCNN-FPN and spectroscopic imagery under ultraviolet light. Sci Rep. 2024;14:3529. doi: 10.1038/s41598-024-53251-5
- Liu Y, Sun P, Wergeles N, Shang Y. A Survey and performance evaluation of deep learning methods for small object detection. Expert Syst Appl. 2021;172:114602. doi: 10.1016/j.eswa.2021.114602
- Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile. 2015. p. 1440-1448. doi: 10.1109/ICCV.2015.169
- Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 779-788. doi: 10.1109/CVPR.2016.91
- Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, 2016. p. 21-37. doi: 10.1007/978-3-319-46448-0_2
- Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2015. p. 3431-3440. doi: 10.48550/arXiv.1411.4038
- He K, Gkioxari G, Dollár P. Girshick R. “Mask R-CNN”. In: IEEE International Conference on Computer Vision (ICCV), Venice, Italy. 2017. p. 2980. doi: 10.1109/ICCV.2017.322
- Lorenzo-Navarro J, Castrillón-Santana M, Sánchez- Nielsen E, et al. Deep learning approach for automatic microplastics counting and classification. Sci Total Environ. 2021;765:142728. doi: 10.1016/j.scitotenv.2020.142728
- Frère L, Paul-Pont I, Moreau J, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter. Mar Pollut Bull. 2016;113(1-2):461-468. doi: 10.1016/j.marpolbul.2016.10.051
- Zhang L, Shao S. Image-based machine learning for materials science. J Appl Phys. 2022:132(10):7381. doi: 10.1063/5.0087381
- Wu P, Wang B, Lu Y, et al. Machine Learning-Assisted Insights into Sources and Fate of Microplastics in Wastewater Treatment Plants. ACS ES&T Water. 2023; 4(3): 1107-1118. doi: 10.1021/acsestwater.3c00386.
- Joutey NT, Bahafid W, Sayel H, El Ghachtouli N. Biodegradation: Involved microorganisms and genetically engineered microorganisms. InTech eBooks. 2013;1:289-320. doi: 10.5772/56194
- Arpia AA, Chen WH, Ubando AT, Naqvi SR, Culaba AB. Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. J Hazard Mater. 2021;418:126381. doi: 10.1016/j.jhazmat.2021.126381
- Pan Y, Gao SH, Ge C, et al. Removing microplastics from aquatic environments: A critical review. Environ Sci Ecotechnol. 2022;13:100222. doi: 10.1016/j.ese.2022.100222
- Pathak VM. Review on the current status of polymer degradation: A microbial approach. Bioresour Bioprocess. 2017;4(1):1-31. doi: 10.1186/s40643-017-0145-9
- Thomas BT, Olanrewaju-Kehinde DSK, Popoola OD. James ES. Degradation of plastic and polythene materials by some selected microorganisms isolated from soil. World Appl Sci J. 2015;33(12):1888-1891.
- Auta HS, Emenike CU, Fauziah SH. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut. 2017;231:1552-1559. doi: 10.1016/j.envpol.2017.09.043
- Shahnawaz M, Sangale MK. Ade AB. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environ Sci Pollut Res Int. 2016; 23: 14621-14635. doi: 10.1007/s11356-016-6542-3.
- Kale SK, Deshmukh AG, Dudhare MS. Patil VB. Microbial degradation of plastic: A review. J Biochem Technol. 2015;6(2):952-961.
- Kumari A, Rajput VD, Mandzhieva SS, et al. Microplastic pollution: an emerging threat to terrestrial plants and insights into its remediation strategies. Plants. 2022; 11(3): 340. doi: 10.3390/plants11030340.
- Nasrabadi AE, Ramavandi B, Bonyadi Z. Recent progress in biodegradation of microplastics by Aspergillus sp. in aquatic environments. Colloid Interface Sci Commun. 2023;57:100754. doi: 10.1016/j.colcom.2023.100754
- Barone GD, Ferizović D, Biundo A, Lindblad P. Hints at the applicability of microalgae and cyanobacteria for the biodegradation of plastics. Sustainability. 2020;12(24):10449. doi: 10.3390/su122410449
- Hadiyanto H, Khoironi A, Dianratri I, Suherman S, Muhammad F, Vaidyanathan S. Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems. Heliyon. 2021;7(8):e07676. doi: 10.1016/j.heliyon.2021.e07676
- Di Rocco G, Taunt HN, Berto M, et al. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Sci Rep. 2023;13(1):10028. doi: 10.1038/s41598-023-37227-5
- Bacha A, Nabi I, Zaheer M, Jin W, Yang L. Biodegradation of macro-and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. Sci Total Environ. 2023;858:160108. doi: 10.1016/j.scitotenv.2022.160108
- Ameen F, Moslem M, Hadi S, Al-Sabri AE. Biodegradation of low-density polyethylene (LDPE) by Mangrove fungi from the red sea coast. Prog Rubber Plast Recycl Technol. 2015;31(2):125-143. doi: 10.1177/147776061503100204
- Devi RS, Kannan VR, Nivas D, Kannan K, Chandru S, Antony AR. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar Pollut Bull. 2015;96(1-2):32-40. doi: 10.1016/j.marpolbul.2015.05.050
- Sowmya HV, AQ7 Ramalingappa B, Krishnappa M, Thippeswamy B. Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environ Dev Sustain. 2015;17:731-745. doi: 10.1007/s10668-014-9571-4
- Lwanga EH, Thapa B, Yang X, et al. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Sci Total Environ. 2018;624:753-757. doi: 10.1016/j.scitotenv.2017.12.144
- Chia WY, Tang DYY, Khoo KS, Lup ANK, Chew KW. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environ Sci Ecotechnol. 2020;4:100065. doi: 10.1016/j.ese.2020.100065
- Urbanek AK, Rymowicz W, Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol. 2018;102:7669-7678. doi: 10.1007/00253-018-9195-y
- Álvarez-Barragán J, Domínguez-Malfavón L, Vargas- Suárez M, González-Hernández R, Aguilar-Osorio G, Loza-Tavera H. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl Environ Microbiol. 2016;82(17):5225-5235. doi: 10.1128/aem.01344-16
- Gutiérrez-Silva K, Capezza AJ, Gil-Castell O, Badia- Valiente JD. UV-C and UV-C/H2O-Induced abiotic degradation of films of commercial PBAT/TPS blends. Polymers. 2025;17(9):1173. doi: 10.3390/polym17091173
- Świderek K, Velasco-Lozano S, Galmés MÀ, et al. Mechanistic studies of a lipase unveil effect of pH on hydrolysis products of small PET modules. Nat Commun. 2023;14(1):3556. doi: 10.1038/s41467-023-39201-1
- Lambert S, Wagner M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem Soc Rev. 2017;46(22):6855-6871. doi: 10.1039/c7cs00149e
- Krumov N, Atanasova N, Boyadzhieva I, et al. New halophilic community degrades plastics: A metagenomic study. Fermentation. 2025;11(4):227. doi: 10.3390/fermentation11040227
- Yan F, Wei R, Cui Q, Bornscheuer UT. Liu YJ. Thermophilic whole‐cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb Biotechnol. 2021;14(2):374-385. doi: 10.1111/1751-7915.13580
- Tournier V, Topham CM, Gilles A,et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020; 580(7802): 216-219. doi: 10.1038/s41586-020-2149-4.
- Dhali SL, Parida D, Kumar B, Bala K. Recent trends in microbial and enzymatic plastic degradation: A solution for plastic pollution predicaments. Biotechnol Sustain Mater. 2024;1(1):11. doi: 10.1186/s44316-024-00011-0
- Husain Z. UAE’s Plan to Ban Single-use Plastics by 2026: Everything You Need to Know. Gulf News; 2025. Available from: https://gulfnews.com/living-in-uae/ask-us/uaes-plan-to-ban-single-use-plastics-by-2026-everything-you-need-to-know-1.500272559 [Last accessed on 2025 Oct 01].
- Ministry of Environment, Water and Agriculture (MEWA). Saudi Arabia Commits to Supporting Global Environmental Initiatives to Combat Marine Pollution. NAAMA Electronic Services System Portal for the Environment, Water and Agricultural Sectors; 2025. Available from: https://www.mewa.gov.sa/en/mediacenter/news/pages/ennews249.aspx [Last accessed on 2025 Nov 11].
- Riyadh Municipality. Environmental Protection in KSA. Riyadh: Riyadh Municipality (Gov.); 2025. Available from: https://www.alriyadh.gov.sa/en/content/environmental-protection [Last accessed on 2025 Sep 29].
- AlNemer AM. Examining the Kingdom of Saudi Arabia’s tourism sector and assessing its potential contributions in achieving the Kingdom’s Vision 2030. In: ProQuest Dissertations and Theses. [Doctoral dissertation, Pepperdine University]; 2024. p. 31331279. Available from: https://www.proquest.com/openview/74b33515b81431419be19685746c14b7/1?pq-origsite=gscholar&cbl=18750&diss=y [Last accessed on 2026 Jan 27].
- Almadhi A, Abdelhadi A, Alyamani, R. Moving from linear to circular economy in Saudi Arabia: Life-cycle assessment on plastic waste management. Sustainability. 2023;15(13):10450. doi: 10.3390/su151310450
- Das TK, Basak S, Ganguly S. 2D nanomaterial for microplastic removal: A critical review. Chem Eng J. 2024;492:152451. doi: 10.1016/j.cej.2024.152451
- O’Brien S, Rauert C, Ribeiro F, et al. There’s something in the air: a review of sources, prevalence and behavior of microplastics in the atmosphere. Sci Total Environ. 2023;874:162193. doi: 10.1016/j.scitotenv.2023.162193
