AccScience Publishing / EER / Online First / DOI: 10.36922/EER025480080
ORIGINAL RESEARCH ARTICLE

Synergistic GO/MgO nanocomposites with enhanced charge separation for photocatalytic dye degradation

Irfan Toqeer1* Tahreem Fatima1 Muhammad Afzaal1 Abdul Ghuffar1
Show Less
1 Department of Physics, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad, Punjab, Pakistan
Received: 24 November 2025 | Revised: 11 December 2025 | Accepted: 24 December 2025 | Published online: 7 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The development of efficient and chemically stable photocatalysts with improved charge separation is critical for the remediation of dye-contaminated wastewater. In this study, graphene oxide–magnesium oxide (GO/MgO) nanocomposites with ultralow GO loadings (0–0.05 wt.%) were synthesized through a co-precipitation route and evaluated for ultraviolet (UV)-driven methylene blue (MB) degradation. X-ray diffraction (XRD) results were consistent with the retention of the cubic MgO phase (JCPDS 45-0946) with crystallite refinement from 20.26 to 13.26 nm, while the slight peak-position variations were more consistent with interfacial strain than definitive lattice substitution. UV–visible diffuse reflectance spectra revealed a red shift and bandgap reduction from 5.11 to 4.71 eV. Fourier transform infrared (FTIR) and Raman spectra showed GO-related functional signatures and a decrease in the ID/IG ratio (0.886 → 0.830), suggesting strengthened interfacial interactions with increasing GO loading. The optimized 0.05 wt.% GO/MgO sample achieved 91.6% MB degradation within 180 min and exhibited a 5.24-fold enhancement in the apparent pseudo-first-order rate constant (k = 0.00290 min−1) relative to pristine MgO (0.01518 min−1). Photocatalytic efficiency was maximized at pH 7–9 with a catalyst dosage of 0.75 g L−1, and post-reaction XRD/FTIR analysis indicated good structural stability. The enhancement is attributed to crystallite refinement and GO–MgO interfacial charge-transfer pathways inferred from consistent structural/optical–kinetic correlations.

Keywords
Graphene oxide
Magnesium oxide
Nanocomposites
Photocatalysis
Charge separation
Dye degradation
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Kuruthukulangara N, Thirumalai D, Asharani I. Eco-friendly synthesis and photocatalytic application of rGO-MgO nanocomposites for eosin Y dye degradation. Chem Phys Impact. 2025;11:100939. doi: 10.1016/j.chphi.2025.100939

 

  1. Khurshid F, Jeyavelan M, Nagarajan S. Photocatalytic dye degradation by graphene oxide doped transition metal catalysts. Synth Met. 2021;278:116832. doi: 10.1016/j.synthmet.2021.116832

 

  1. Pasindu V, Yapa P, Dabare S, Munaweera I. Multifunctional transition metal oxide/graphene oxide nanocomposites for catalytic dye degradation, renewable energy, and energy storage applications. RSC Adv. 2025;15(40):33162-33186. doi: 10.1039/D5RA04806K

 

  1. Jaramillo-Fierro X, Cuenca G. Enhancing methylene blue removal through adsorption and photocatalysis-a study on the GO/ZnTiO₃/TiO₂ composite. Int J Mol Sci. 2024;25(8):4367. doi: 10.3390/ijms25084367

 

  1. Ahmed MA, Mahmoud SA, Mohamed AA. Interfacially engineered metal oxide nanocomposites for enhanced photocatalytic degradation of pollutants and energy applications. RSC Adv. 2025;15(20):15561-15603. doi: 10.1039/D4RA08780A

 

  1. Gatou MA, Bovali N, Lagopati N, et al. MgO nanoparticles as a promising photocatalyst towards rhodamine B and rhodamine 6G degradation. Molecules. 2024;29(18):4299. doi: 10.3390/molecules29184299

 

  1. Al-Rawashdeh NA, Allabadi O, Aljarrah MT. Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega. 2020;5(43):28046-28055. doi: 10.1021/acsomega.0c03652

 

  1. Sahoo S, Bhuyan M, Sahu AK, Alagarsamy P, Sahoo D. Photodegradation of methylene blue by metal-nanoparticles-modulated graphene-based composites. Solid State Sci. 2023;142:107255. doi: 10.1016/j.solidstatesciences.2023.107255

 

  1. Ikram M, Inayat T, Haider A, et al. Graphene oxide-doped MgO nanostructures for highly efficient dye degradation and bactericidal action. Nanoscale Res Lett. 2021;16(1):56. doi: 10.1186/s11671-021-03510-3

 

  1. Sarojini P, Leeladevi K, Kavitha T, et al. Design of V₂O₅ blocks decorated with garlic peel biochar nanoparticles: A sustainable catalyst for the degradation of methyl orange and its antioxidant activity. Materials (Basel). 2023;16(17):5800. doi: 10.3390/ma16175800

 

  1. Mosleh AT, Hassan AE, Sabry N, et al. Design of MgO/ graphene nanocomposites for photocatalytic reduction of 4-nitrophenol. Phys Scr. 2024;99(12):125914. doi: 10.1088/1402-4896/ad8381

 

  1. Tung CH, Chang JH, Hsieh YH, et al. Comparison of hydroxyl radical yields between photo- and electro-catalyzed water treatments. J Taiwan Inst Chem Eng. 2014;45(4): 1649-1654. doi: 10.1016/j.jtice.2013.11.011

 

  1. Liyanaarachchi H, Thambiliyagodage C, Jayanetti M, Ekanayake G, Wijayawardana S, Samarakoon U. The photocatalytic and antibacterial activity of graphene oxide coupled CoOx/MnOx nanocomposites. Environmental Technology & Innovation. 2025;37:103984. doi: 10.1016/j.eti.2024.103984

 

  1. Jamjoum HAA, Umar K, Adnan R, Razali MR, Mohamad Ibrahim MN. Synthesis, characterization, and photocatalytic activities of graphene oxide/metal oxides nanocomposites: A review. Frontiers in Chemistry. 2021;9:752276. doi: 10.3389/fchem.2021.752276

 

  1. Heidarizad M, Şengör SS. Synthesis of graphene oxide/ magnesium oxide nanocomposites for adsorption of methylene blue. J Mol Liq. 2016;224:607-617. doi: 10.1016/j.molliq.2016.10.005

 

  1. Zidane Y, Laouini SE, Bouafia A, et al. Green synthesis of multifunctional MgO@AgO/Ag₂O nanocomposite for photocatalytic degradation of methylene blue and toluidine blue. Front Chem. 2022;10:1083596. doi: 10.3389/fchem.2022.1083596

 

  1. Melese A, Wubet W, Abebe A, Hussen A. A comprehensive review on recent progress in synthesis methods of ZnO/CuO nanocomposites and their biological and photocatalytic applications. Results in Chemistry. 2025;14:102141.doi: 10.1016/j.rechem.2025.102141.

 

  1. Kwang Benno Park H, Kumar P, Kebaili I, et al. Optimization and modelling of magnesium oxide (MgO) photocatalytic degradation of binary dyes using response surface methodology. Sci Rep. 2024;14(1):9412. doi: 10.1038/s41598-024-59412-6

 

  1. Arshad A, Iqbal J, Siddiq M, et al. Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites. J. Appl. Phys. 2017;121(2):024901. doi: 10.1063/1.4972970

 

  1. Khan M, Tahir MN, Adil SF, et al. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J Mater Chem A. 2015;3(37):18753-18808. doi: 10.1039/C5TA02240A

 

  1. Kokulnathan T, Jothi AI, Chen SM, et al. GO-MgO nanocomposites for electrochemical detection. J Environ Chem Eng. 2021;9(6):106310. doi: 10.1016/j.jece.2021.106310

 

  1. Wang H, Li G, Fakhri A. Fabrication and structural of the Ag₂S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities. J Photochem Photobiol B. 2020;207:111882. doi: 10.1016/j.jphotobiol.2020.111882

 

  1. Kakade PM, Kachere A, Mandlik N, Rondiya SR, Jadkar S, Bhosale SV. Graphene oxide assisted synthesis of magnesium oxide nanorods. ES Mater Manuf. 2021;12(2):63-71. doi: 10.30919/esmm5f1044

 

  1. Muhaymin A, Mohamed H, Hkiri K, Safdar A, Azizi S, Maaza M. Green synthesis of magnesium oxide nanoparticles using hyphaene thebaica extract and their photocatalytic activities. Sci Rep. 2024;14(1):20135. doi: 10.1038/s41598-024-70135-4

 

  1. Rezvannasab SG, Safari N, Ghaedi AM. Synthesis and performance enhancement of GO/MgO/PEI composite for CO₂ capture: Effects of operating parameters. J CO₂ Util. 2025;102:103245. doi: 10.1016/j.jcou.2025.103245

 

  1. Bhargava R, Khan S. Superior dielectric properties and bandgap modulation in hydrothermally grown Gr/MgO nanocomposite. Phys Lett A. 2019;383(14):1671-1676. doi: 10.1016/j.physleta.2019.02.025

 

  1. Al-Sharabi A, Sada’a KSS, Al-Osta A, Abd-Shukor R. Structure, optical properties and antimicrobial activities of MgO-Bi₂-xCrxO₃ nanocomposites. Sci Rep. 2022; 12(1):10647. doi: 10.1038/s41598-022-14687-4

 

  1. Barad C, Kimmel G, Opalińska A, Gierlotka S, Łojkowski W. Lattice variation as a function of concentration and grain size in MgO-NiO solid solution system. Heliyon. 2024;10(10):e311275. doi: 10.1016/j.heliyon.2024.e31275

 

  1. Khatua A, Kumari K, Khatak D, et al. Cerium-doped magnesium oxide nanoparticles. J Funct Biomater. 2023;14(2):112. doi: 10.3390/jfb14020112

 

  1. Yang L, Zhang L, Jiao X, Qiu Y, Xu W. The electrochemical performance of reduced graphene oxide prepared from different types of natural graphites. RSC Adv. 2021;11(7):4042-4052. doi: 10.1039/D0RA09457A

 

  1. Das A, Mandal AC, Roy S, Nambissam PM. Internal defect structure of calcium-doped magnesium oxide nanoparticles. AIP Adv. 2018;8(9):095206. doi: 10.1063/1.5001105
Share
Back to top
Explora: Environment and Resource, Electronic ISSN: 3060-9046 Published by AccScience Publishing