Synergistic GO/MgO nanocomposites with enhanced charge separation for photocatalytic dye degradation
The development of efficient and chemically stable photocatalysts with improved charge separation is critical for the remediation of dye-contaminated wastewater. In this study, graphene oxide–magnesium oxide (GO/MgO) nanocomposites with ultralow GO loadings (0–0.05 wt.%) were synthesized through a co-precipitation route and evaluated for ultraviolet (UV)-driven methylene blue (MB) degradation. X-ray diffraction (XRD) results were consistent with the retention of the cubic MgO phase (JCPDS 45-0946) with crystallite refinement from 20.26 to 13.26 nm, while the slight peak-position variations were more consistent with interfacial strain than definitive lattice substitution. UV–visible diffuse reflectance spectra revealed a red shift and bandgap reduction from 5.11 to 4.71 eV. Fourier transform infrared (FTIR) and Raman spectra showed GO-related functional signatures and a decrease in the ID/IG ratio (0.886 → 0.830), suggesting strengthened interfacial interactions with increasing GO loading. The optimized 0.05 wt.% GO/MgO sample achieved 91.6% MB degradation within 180 min and exhibited a 5.24-fold enhancement in the apparent pseudo-first-order rate constant (k = 0.00290 min−1) relative to pristine MgO (0.01518 min−1). Photocatalytic efficiency was maximized at pH 7–9 with a catalyst dosage of 0.75 g L−1, and post-reaction XRD/FTIR analysis indicated good structural stability. The enhancement is attributed to crystallite refinement and GO–MgO interfacial charge-transfer pathways inferred from consistent structural/optical–kinetic correlations.
- Kuruthukulangara N, Thirumalai D, Asharani I. Eco-friendly synthesis and photocatalytic application of rGO-MgO nanocomposites for eosin Y dye degradation. Chem Phys Impact. 2025;11:100939. doi: 10.1016/j.chphi.2025.100939
- Khurshid F, Jeyavelan M, Nagarajan S. Photocatalytic dye degradation by graphene oxide doped transition metal catalysts. Synth Met. 2021;278:116832. doi: 10.1016/j.synthmet.2021.116832
- Pasindu V, Yapa P, Dabare S, Munaweera I. Multifunctional transition metal oxide/graphene oxide nanocomposites for catalytic dye degradation, renewable energy, and energy storage applications. RSC Adv. 2025;15(40):33162-33186. doi: 10.1039/D5RA04806K
- Jaramillo-Fierro X, Cuenca G. Enhancing methylene blue removal through adsorption and photocatalysis-a study on the GO/ZnTiO₃/TiO₂ composite. Int J Mol Sci. 2024;25(8):4367. doi: 10.3390/ijms25084367
- Ahmed MA, Mahmoud SA, Mohamed AA. Interfacially engineered metal oxide nanocomposites for enhanced photocatalytic degradation of pollutants and energy applications. RSC Adv. 2025;15(20):15561-15603. doi: 10.1039/D4RA08780A
- Gatou MA, Bovali N, Lagopati N, et al. MgO nanoparticles as a promising photocatalyst towards rhodamine B and rhodamine 6G degradation. Molecules. 2024;29(18):4299. doi: 10.3390/molecules29184299
- Al-Rawashdeh NA, Allabadi O, Aljarrah MT. Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega. 2020;5(43):28046-28055. doi: 10.1021/acsomega.0c03652
- Sahoo S, Bhuyan M, Sahu AK, Alagarsamy P, Sahoo D. Photodegradation of methylene blue by metal-nanoparticles-modulated graphene-based composites. Solid State Sci. 2023;142:107255. doi: 10.1016/j.solidstatesciences.2023.107255
- Ikram M, Inayat T, Haider A, et al. Graphene oxide-doped MgO nanostructures for highly efficient dye degradation and bactericidal action. Nanoscale Res Lett. 2021;16(1):56. doi: 10.1186/s11671-021-03510-3
- Sarojini P, Leeladevi K, Kavitha T, et al. Design of V₂O₅ blocks decorated with garlic peel biochar nanoparticles: A sustainable catalyst for the degradation of methyl orange and its antioxidant activity. Materials (Basel). 2023;16(17):5800. doi: 10.3390/ma16175800
- Mosleh AT, Hassan AE, Sabry N, et al. Design of MgO/ graphene nanocomposites for photocatalytic reduction of 4-nitrophenol. Phys Scr. 2024;99(12):125914. doi: 10.1088/1402-4896/ad8381
- Tung CH, Chang JH, Hsieh YH, et al. Comparison of hydroxyl radical yields between photo- and electro-catalyzed water treatments. J Taiwan Inst Chem Eng. 2014;45(4): 1649-1654. doi: 10.1016/j.jtice.2013.11.011
- Liyanaarachchi H, Thambiliyagodage C, Jayanetti M, Ekanayake G, Wijayawardana S, Samarakoon U. The photocatalytic and antibacterial activity of graphene oxide coupled CoOx/MnOx nanocomposites. Environmental Technology & Innovation. 2025;37:103984. doi: 10.1016/j.eti.2024.103984
- Jamjoum HAA, Umar K, Adnan R, Razali MR, Mohamad Ibrahim MN. Synthesis, characterization, and photocatalytic activities of graphene oxide/metal oxides nanocomposites: A review. Frontiers in Chemistry. 2021;9:752276. doi: 10.3389/fchem.2021.752276
- Heidarizad M, Şengör SS. Synthesis of graphene oxide/ magnesium oxide nanocomposites for adsorption of methylene blue. J Mol Liq. 2016;224:607-617. doi: 10.1016/j.molliq.2016.10.005
- Zidane Y, Laouini SE, Bouafia A, et al. Green synthesis of multifunctional MgO@AgO/Ag₂O nanocomposite for photocatalytic degradation of methylene blue and toluidine blue. Front Chem. 2022;10:1083596. doi: 10.3389/fchem.2022.1083596
- Melese A, Wubet W, Abebe A, Hussen A. A comprehensive review on recent progress in synthesis methods of ZnO/CuO nanocomposites and their biological and photocatalytic applications. Results in Chemistry. 2025;14:102141.doi: 10.1016/j.rechem.2025.102141.
- Kwang Benno Park H, Kumar P, Kebaili I, et al. Optimization and modelling of magnesium oxide (MgO) photocatalytic degradation of binary dyes using response surface methodology. Sci Rep. 2024;14(1):9412. doi: 10.1038/s41598-024-59412-6
- Arshad A, Iqbal J, Siddiq M, et al. Graphene nanoplatelets induced tailoring in photocatalytic activity and antibacterial characteristics of MgO/graphene nanoplatelets nanocomposites. J. Appl. Phys. 2017;121(2):024901. doi: 10.1063/1.4972970
- Khan M, Tahir MN, Adil SF, et al. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J Mater Chem A. 2015;3(37):18753-18808. doi: 10.1039/C5TA02240A
- Kokulnathan T, Jothi AI, Chen SM, et al. GO-MgO nanocomposites for electrochemical detection. J Environ Chem Eng. 2021;9(6):106310. doi: 10.1016/j.jece.2021.106310
- Wang H, Li G, Fakhri A. Fabrication and structural of the Ag₂S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities. J Photochem Photobiol B. 2020;207:111882. doi: 10.1016/j.jphotobiol.2020.111882
- Kakade PM, Kachere A, Mandlik N, Rondiya SR, Jadkar S, Bhosale SV. Graphene oxide assisted synthesis of magnesium oxide nanorods. ES Mater Manuf. 2021;12(2):63-71. doi: 10.30919/esmm5f1044
- Muhaymin A, Mohamed H, Hkiri K, Safdar A, Azizi S, Maaza M. Green synthesis of magnesium oxide nanoparticles using hyphaene thebaica extract and their photocatalytic activities. Sci Rep. 2024;14(1):20135. doi: 10.1038/s41598-024-70135-4
- Rezvannasab SG, Safari N, Ghaedi AM. Synthesis and performance enhancement of GO/MgO/PEI composite for CO₂ capture: Effects of operating parameters. J CO₂ Util. 2025;102:103245. doi: 10.1016/j.jcou.2025.103245
- Bhargava R, Khan S. Superior dielectric properties and bandgap modulation in hydrothermally grown Gr/MgO nanocomposite. Phys Lett A. 2019;383(14):1671-1676. doi: 10.1016/j.physleta.2019.02.025
- Al-Sharabi A, Sada’a KSS, Al-Osta A, Abd-Shukor R. Structure, optical properties and antimicrobial activities of MgO-Bi₂-xCrxO₃ nanocomposites. Sci Rep. 2022; 12(1):10647. doi: 10.1038/s41598-022-14687-4
- Barad C, Kimmel G, Opalińska A, Gierlotka S, Łojkowski W. Lattice variation as a function of concentration and grain size in MgO-NiO solid solution system. Heliyon. 2024;10(10):e311275. doi: 10.1016/j.heliyon.2024.e31275
- Khatua A, Kumari K, Khatak D, et al. Cerium-doped magnesium oxide nanoparticles. J Funct Biomater. 2023;14(2):112. doi: 10.3390/jfb14020112
- Yang L, Zhang L, Jiao X, Qiu Y, Xu W. The electrochemical performance of reduced graphene oxide prepared from different types of natural graphites. RSC Adv. 2021;11(7):4042-4052. doi: 10.1039/D0RA09457A
- Das A, Mandal AC, Roy S, Nambissam PM. Internal defect structure of calcium-doped magnesium oxide nanoparticles. AIP Adv. 2018;8(9):095206. doi: 10.1063/1.5001105
