Environmentally benign conducting polymers: A sustainable approach to biomedical devices
The rising issue of biomedical discharges underscores the need for sustainable alternatives, leading to emerging applications of biodegradable conducting polymers (CPs). This review aims to emphasize current progress in this research area, focusing on applications for “green” biomedical uses. Novel biomaterials are distinct from others by virtue of their electrical conductivity, while being biocompatible and biodegradable such as conventional biomaterials, making them very suitable for biomedical applications that require safe, controlled degradation within the human body. In addition, the paper draws on current progress in the synthesis of conducting and novel biomaterials, as well as in the processes for controlled degradation, and also addresses their utilization in biomedical applications within biodegradable systems. Essential details on CPs synthesis, with a focus on their emerging applications ranging from temporary biomedical implants to tissue engineering and bioresorbable biosensors, are also discussed. Finally, this review aims to address essential issues and future research for prompt clinical applications and continuous innovations in emerging applications of conducting, biodegradable biomaterials.
- Scott C. History of conductive polymers. In: Nanostructured Conductive Polymers. Chichester: John Wiley and Sons; 2010. p. 1-34. doi: 10.1002/9780470661338.ch1
- Kenry, Liu B. Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules. 2018;19(6):1783-1799. doi: 10.1021/acs.biomac.8b00275
- Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable conducting polymer-based composites for biomedical applications-a review. Polymers (Basel). 2024;16(11):1533. doi: 10.3390/polym16111533
- Hasan MB, Parvez MM, Abir AY, Ahmad MF. A review on conducting organic polymers: Concepts, applications, and potential environmental benefits. Heliyon. 2025;11(3):e42375. doi: 10.1016/j.heliyon.2025.e42375
- Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: Opportunities and challenges in biomedical applications. Chem Rev. 2018;118(14):6766-6784. doi: 10.1021/acs.chemrev.6b00275
- Namsheer K, Rout CS. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11(10):5659-5691. doi: 10.1039/d0ra07800j
- Le CV, Yoon H. Advances in the use of conducting polymers for healthcare monitoring. Int J Mol Sci. 2024;25(3):1564. doi: 10.3390/ijms25031564.10.3390/ijms25031564
- Tadesse MG, Ahmmed AS, Lübben JF. Review on conductive polymer composites for supercapacitor applications. J Compos Sci. 2024;8(2):53. doi: 10.3390/jcs8020053
- Bednarczyk K, Matysiak W, Tański T, Janeczek H, Schab-Balcerzak E, Libera M. Effect of polyaniline content and protonating dopants on electroconductive composites. Sci Rep. 2021;11(1):7487. doi: 10.1038/s41598-021-86950-4
- Arora EK, Sharma V, Ravi A, et al. Polyaniline-based ink for inkjet printing for supercapacitors, sensors, and electrochromic devices. Energies. 2023;16(18):6716. doi: 10.3390/en16186716
- Kaushik P, Bharti R, Sharma R, Verma M, Olsson RT, Pandey A. Progress in synthesis and applications of polyaniline-coated nanocomposites: A comprehensive review. Eur Polym J. 2024;221:113574. doi: 10.1016/j.eurpolymj.2024.113574
- Zidi R, Bekri-Abbes I, Sdiri N, Vimalanandan A, Rohwerder M, Srasra E. Electrical and dielectric investigation of intercalated polypyrrole-montmorillonite nanocomposite prepared by spontaneous polymerization. Mater Sci Eng B. 2016;212:14-23. doi: 10.1016/j.mseb.2016.07.006
- Li C, Bai H, Shi G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem Soc Rev. 2009;38(8):2417-2427. doi: 10.1039/b816681c
- Bekri-Abbes IB, Srasra E. Characterization and AC conductivity of polyaniline-montmorillonite nanocomposites synthesized by mechanical/chemical reaction. React Funct Polym. 2010;70(1):11-18. doi: 10.1016/j.reactfunctpolym.2009.09.008
- Bekri-Abbes I, Srasra E. Effect of mechanochemical treatment on structure and electrical properties of montmorillonite. J Alloys Compd. 2016;671:34-42. doi: 10.1016/j.jallcom.2016.02.048
- Bekri-Abbes I, Srasra E. Solid-State synthesis and electrical properties of polyaniline/Cu-montmorillonite nanocomposite. Mater Res Bull. 2010;45(12):1941-1947. doi: 10.1016/j.materresbull.2010.08.012
- Bekri-Abbes I, Srasra E. Investigation of structure and conductivity properties of polyaniline synthesized by solid-solid reaction. J Polym Res. 2011;18(4):659-665. doi: 10.1007/s10965-010-9461-x
- Bekri-Abbes I, Srasra E. Solid phase mechanochemical synthesis of polyaniline-montmorillonite nanocomposite using grinded montmorillonite as oxidant. Mater Sci Semicond Process. 2016;56:76-82. doi: 10.1016/j.mssp.2016.07.020
- Gu JD, Wu EK. Biodegradability of synthetic plastics and polymeric materials: An illusion or reality in waste managements? Appl Environ Biotechnol. 2020;5(2):9-27. doi: 10.26789/AEB.2020.02.003
- ASTM International. ASTM D6691-24a: Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment. West Conshohocken, PA: ASTM International; 2024.
- Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable polymeric bio(nano)materials and their biomedical applications: A comprehensive overview and recent updates. Polymers (Basel). 2024;16(2):206. doi: 10.3390/polym16020206
- Jia X, Ma X, Zhao L, et al. A biocompatible and fully erodible conducting polymer enables implanted rechargeable Zn batteries. Chem Sci. 2023;14(9):2123-2130. doi: 10.1039/d2sc06342e
- Guo B, Finne-Wistrand A, Albertsson AC. Enhanced electrical conductivity by macromolecular architecture: Hyperbranched electroactive and degradable block copolymers based on poly(ε-caprolactone) and aniline pentamer. Macromolecules. 2010;43(10):4472-4480. doi: 10.1021/ma100530k
- Gupta S, Datt R, Mishra A, Tsoi WC, Patra A, Bober P. Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) in antibacterial, tissue engineering and biosensors applications: Progress, challenges and perspectives. J Appl Polym Sci. 2022;139(30):e52663. doi: 10.1002/app.52663
- Najar Benahmed W, Bekri-Abbes I, Srasra E. Spectroscopic study of polyaniline/AgCl@Ag nanocomposites prepared by a one-step method. J Spectrosc. 2017;2017:3514216. doi: 10.1155/2018/7320654
- Irimia-Vladu M. “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev. 2014;43(2):588-610. doi: 10.1039/C3CS60235D
- Keate RL, Bury MI, Mendez-Santos M, et al. Cell-free biodegradable electroactive scaffold for urinary bladder tissue regeneration. Nat Commun. 2025;16(1):11. doi: 10.1038/s41467-024-55401-9
- Chen TY, Xu J, Tai CH, Wen TK, Hsu SH. Biodegradable, electroconductive self-healing hydrogel based on polydopamine-coated polyurethane nano-crosslinker for Parkinson’s disease therapy. Biomaterials. 2025;320:123268. doi: 10.1016/j.biomaterials.2025.123268
- Xu C, Yepez G, Wei Z, Bugarin A, Hong Y. Synthesis and characterization of conductive, biodegradable, elastomeric polyurethanes for biomedical applications. J Biomed Mater Res A. 2016;104(9):2305-2314. doi: 10.1002/jbm.a.35765
- Nazarzadeh Zare E, Mansour Lakouraj M, Mohseni M. Biodegradable polypyrrole/dextrin conductive nanocomposite: Synthesis, characterization, antioxidant and antibacterial activity. Synth Met. 2014;187:9-16. doi: 10.1016/j.synthmet.2013.09.045
- Huang J, Hu X, Lu L, Zhang Q, Luo Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A. 2010;93(1):164-174. doi: 10.1002/jbm.a.32511
- Golubchikov DO, Petrov AK, Popkov VA, Evdokimov PV, Putlayev VI. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2025;11(6):3201-3327. doi: 10.3389/fbioe.2023.1168504
- Ganguly K, Randhawa A, Dutta SD, et al. Ultrathin, stimuli-responsive, antimicrobial, self-cleaning, reusable, and biodegradable, micro/nanofibrous electrospun mat as an efficient face mask filter for airborne disease prevention. Nano Lett. 2025;25(19):7641-7650. doi: 10.1021/acs.nanolett.4c04525
- Zhang X, Liu B, Gao J, et al. Liquid metal-based electrode array for neural signal recording. Bioengineering (Basel). 2023;10(5):578. doi: 10.3390/bioengineering10050578
- Zhang Q, Yan Y, Li S, Feng T. The synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration. Mater Sci Eng C Mater Biol Appl. 2010;30(1):160-166. doi: 10.1016/j.msec.2009.09.013
- Hu K, Huang D, Jiang H, et al. Toughening biosourced poly(lactic acid) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends by a renewable poly(epichlorohydrin-co-ethylene oxide) elastomer. ACS Omega. 2019;4(22):19777-19786. doi: 10.1021/acsomega.9b02639
- McCarthy A, John JV, Saldana L, et al. Electrostatic flocking of insulative and biodegradable polymer microfibers for biomedical applications. Adv Healthc Mater. 2021;10(19):2100766. doi: 10.1002/adhm.202100766
- Domagala A, Maksymiak M, Janeczek H, et al. Oligo-3- hydroxybutyrate functionalised pyrroles for preparation of biodegradable conductive polymers. J Mater Sci. 2014;49(14):5227-5236. doi: 10.1007/s10853-014-8241-0
- Chowdhury P, Lincon A, Bhowmik S, et al. Biodegradable solid polymer electrolytes from the discarded cataractous eye protein isolate. ACS Appl Bio Mater. 2024;7(4):2240-2253. doi: 10.1021/acsabm.3c01229
- Cafiero L, Oliviero M, Landi G, et al. Preparation and characterization of conductive foams based on PBS, carbon nanofibers and expanded graphite nanocomposites. AIP Conf Proc. 2017;1914:060006. doi: 10.1063/1.5016726
- Guimard NK, Sessler JL, Schmidt CE. Design of a novel electrically conducting biocompatible polymer with degradable linkages for biomedical applications. RS Symp Proc. 2006;950:99-104. doi: 10.1557/PROC-0950-D09-08
- Subramanian A, Krishnan UM, Sethuraman S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J Mater Sci Mater Med. 2012;23:1797-1809. doi: 10.1007/s10856-012-4654-y
- Xu C, Guan S, Wang S, et al. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/ carboxymethyl chitosan hydrogels for neural tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;84:32-43. doi: 10.1016/j.msec.2017.11.032
- Huang L, Hu J, Lang L, et al. Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials. 2007;28(9):1741-1751. doi: 10.1016/j.biomaterials.2006.12.007
- Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C Mater Biol Appl. 2014;44:24-37. doi: 10.1016/j.msec.2014.07.061
- Xie M, Wang L, Ge J, Guo B, Ma PX. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7:6772-6781. doi: 10.1021/acsami.5b00191
- Boutry CM, Sun W, Strunz T, Chandrahalim H, Hierold C. Development and Characterization of Biodegradable Conductive Polymers for the Next Generation of RF Bio-Resonators. In: Proceedings of the IEEE International Frequency Control Symposium; 2010. p. 1-4. doi: 10.1109/FREQ.2010.5556332
- Lu Y, Li T, Zhao X, et al. Electrodeposited polypyrrole/ carbon nanotubes composite films electrodes for neural interfaces. Biomaterials. 2010;31:5169-5181. doi: 10.1016/j.biomaterials.2010.03.022
- Wan P, Yuan C, Tan L, Li Q, Yang K. Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants. Compos Sci Technol. 2014;98:36-43. doi: 10.1016/j.compscitech.2014.04.011
- Ghaziof S, Mehdikhani-Nahrkhalaji M. Preparation, characterization, mechanical properties and electrical conductivity assessment of novel polycaprolactone/multi-wall carbon nanotubes nanocomposites for myocardial tissue engineering. Acta Phys Pol A. 2017;131:428-431. doi: 10.12693/APhysPolA.131.428
- Wang H, Chiang P, Tzeng J, et al. In vitro biocompatibility, radiopacity, and physical property tests of nano-Fe3O4 incorporated poly-l-lactide bone screws. Polymers. 2017;9:191. doi: 10.3390/polym9060191
- Jiang C, Wang K, Liu Y, Zhang C, Wang B. Using wet electrospun PCL/gelatin/CNT yarns to fabricate textile-based scaffolds for vascular tissue engineering. ACS Biomater Sci Eng. 2021;7:2627-2637. doi: 10.1021/acsbiomaterials.1c00097
- Sumitha MS, Shalumon KT, Sreeja VN, Jayakumar R, Nair SV, Menon D. Biocompatible and antibacterial nanofibrous poly(∈-caprolactone)-nanosilver composite scaffolds for tissue engineering applications. J Macromol Sci A. 2012;49:131-138. doi: 10.1080/10601325.2012.642208
- Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater. 2002;12(1):33-37. doi: 10.1002/1616-3028(20020101)12:1<33:AID-ADFM33> 3.0.CO;2-E
- Da Silva ACB, Semeano ATS, Dourado AHB, Ulrich H, Cordoba De Torresi SI. Novel conducting and biodegradable copolymers with noncytotoxic properties toward embryonic stem cells. ACS Omega. 2018;3:5593-5604. doi: 10.1021/acsomega.8b00510
- Song F, Jie W, Zhang T, et al. Room-temperature fabrication of a three-dimensional reduced-graphene oxide/ polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Adv. 2016;6:92804-92812. doi: 10.1039/C6RA15267H
- Yang S, Jang L, Kim S, et al. Polypyrrole/alginate hybrid hydrogels: Electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol Biosci. 2016;16:1653-1661. doi: 10.1002/mabi.201600148
- Borah R, Upadhyay J, Acharjya K. Functionalized polyaniline: chitosan nanocomposites as a potential biomaterial. Mater Today Proc. 2020;32:334-343. doi: 10.1016/j.matpr.2020.01.583
- Jayaram AK, Pitsalidis C, Tan E, et al. 3D hybrid scaffolds based on PEDOT: PSS/MWCNT composites. Front Chem. 2019;7:363. doi: 10.3389/fchem.2019.00363
- Mohammad Alizadeh Z, Karbasi S, Arasteh S. Physical, mechanical and biological evaluation of poly (3-hydroxybutyrate)-chitosan/MWNTs as a novel electrospun scaffold for cartilage tissue engineering applications. Polym Plast Technol Mater. 2020;59:417-429. doi: 10.1080/25740881.2019.1647244
- Guo Y, Jia S, Qiao L, et al. A multifunctional polypyrrole/ zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants. Colloids Surf B Biointerfaces. 2020;194:111186. doi: 10.1016/j.colsurfb.2020.111186
