Development of corrosion inhibitors and nanocontainers for self-healing epoxy coatings: A review

Self-healing coatings are composed of anti-corrosive polymers that can recover from any damage caused to the coating film and regain their original performance. One of the methods for preparing self-healing coatings is by incorporating a healing agent stored in nanocontainers. When there is damage to the coating film, the nanocontainer ruptures due to the mechanical impact. It releases the healing agents, which form a protective film via polymerization over the damaged part, thereby protecting against corrosion. The second method for preparing self-healing coatings involves the embedment of corrosion inhibitors (healing agent) into a nanocontainer. Upon damage, the inhibitor is released into the exposed part of the film and retards corrosion reactions occurring at the defective part of the metal surface. The two components responsible for the self-healing functions are the nanocontainers and the corrosion inhibitors (polymerizable material). This article provides a detailed report on the development of several types of corrosion inhibitors and nanocontainers, their properties, and applications as self-healing coating materials, including their advantages and limitations.
- Zhang F, Ju P, Pan M, et al. Self-healing mechanisms in smart protective coatings: A review. Corros Sci. 2018;144:74-88. doi: 10.1016/j.corsci.2018.08.005
- Hughes AE, Cole IS, Muster TH, Varley RJ. Designing green, self-healing coatings for metal protection. NPG Asia Mater. 2010;2:143-151. doi: 10.1038/asiamat.2010.136
- Yabuki A, Okumura K. Self-healing coatings using superabsorbent polymers for corrosion inhibition in carbon steel. Corros Sci. 2012;59:258. doi: 10.1016/j.corsci.2012.03.007
- Wei H, Wang Y, Guo J, et al. Advanced micro/nano capsules for self-healing smart anticorrosion coatings. J Mater Chem A. 2015;3:469. doi: 10.1039/c4ta04791E
- Cho SH, White SR, Braun PV. Self-healing polymer coatings. Adv Mater. 2009;21:645. doi: 10.1002/adma.200802008
- Hasanzadeh M, Shahidi M, Kazemipour M. Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CEO2 nanoparticles. Prog Org Coat. 2015;80:106. doi: 10.1016/j.porgcoat.2014.12.002
- Siva T, Sathiyanarayanan S. Self-healing coatings containing dual active agent loaded urea formaldehyde (UF) microcapsules. Prog Org Coat. 2015;82:57. doi: 10.1016/j.porgcoat.2015.01.010
- Zheludkevich ML, Tedim J, Freire CS, et al. Self-healing protective coatings with “green” chitosan-based pre-layer reservoir of corrosion inhibitor. J Mater Chem. 2011;21:4805. doi: 10.1039/c1jm10304k
- Sonawane SH, Bhanvase BA, Jamali AA, et al. Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazol. Chem Eng J. 2012;189-190:464-472. doi: 10.1016/j.cej.2012.02.076
- Kopec M, Szczepanowicz K, Mordarski G, et al. Self-healing epoxy coatings loaded with inhibitor- containing polyelectrolyte nanocapsules. Prog Org Coat. 2015;84:97. doi: 10.1016/j.porgcoat.2015.02.011
- Zheludkerich ML, Tedim J, Ferriera MGS. Smart coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim Acta. 2012;82:314. doi: 10.1016/j.electacta.2012.04.095
- Borisova D, Mohwald H, Shchukin DG. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano. 2011;5:1939. doi: 10.1021/nn102871v
- Hollamby MJ, Fix D, Donch I, Borisova D, Mohwald H, Shchukin DG. Hybrid polyester coating incorporating functionalized mesoporous carriers for the holistic protection of steel surfaces. Adv Mater. 2011;23:1361. doi: 10.1002/adma.201003035
- Zheng Z, Schenderlein M, Huang X, Brownball NJ, Blanc F, Shchukin DG. Influence of functionalization of nanocontainers on self-healing anticorrosive coatings. ACS Appl Mater Interfaces. 2015;7:22756. doi: 10.1021/acsami.5b08028
- Abdullayev E, Joshi A, Wei EB, Zhao YF, Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminium oxide. ACS Nano. 2012;6:7216. doi: 10.1021/nn302328x
- Shchukin DG, Mohwald H. Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv Funct Mater. 2007;17:1451. doi: 10.1002/adfm.200601226
- Kryuchkova M, Danilushkina A, Lvov Y, Fakhrullin R. Evaluation of toxicity of nanoclays and graphene oxide in vivo: A Paramecium caudatum study. Environ Sci Nano. 2016;3:442. doi: 10.1039/c5en00201j
- Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Mohwald H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv Mater. 2006;18:1672. doi: 10.1002/adma.200502053
- Grigoriev D, Shchukina E, Shchukin DG. Nanocontainers for self‐healing coatings. Adv Mater Interfaces. 2017;4(1):1600318. doi: 10.1002/admi.201600318
- Grigoriev DO, Bukreeva T, Mohwald H, Shchukin DG. New method for fabrication of loaded micro- and nanocontainers: Emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core. Langmuir. 2008;24:999-1004. doi: 10.1021/la702873f
- Suryanarayana C, Rao KC, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat. 2008;63:72-78. doi: 10.1016/j.porgcoat.2008.04.008
- Choi H, Kim KY, Park JM. Encapsulation of aliphatic amines into nanoparticles for self-healing corrosion protection of steel sheets. Prog Org Coat. 2013;76:1316-1324. doi: 10.1016/j.porgcoat.2013.04.005
- Evans UR. The Corrosion and Oxidation of Metals. London: Edward Arnold (Publishers) Ltd.; 1976.
- Al-Amiery AA, Mohamad AB, Kadhum AAH, Shaker LM. Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Sci Rep. 2022;12:4705. doi: 10.1038/s41598-022-081466-8
- Pilbath A, Szabo T, Telegdi LNJ. SECM study of steel corrosion under scratched microencapsulated epoxy resin. Prog Org Coat. 2012;75:480-485. doi: 10.1016/j.porgcoat.2012.06.006
- Choi H, Song YK, Kim KY, Park JM. Encapsulation of triethanolamine as organic corrosion inhibitor into nanoparticles and its active corrosion protection for steel sheets. Surf Coat Technol. 2012;206:2354. doi: 10.1016/j.surfcoat.2011.10.030
- Huang M, Yang J. Facile microencapsulation of HDI for self-healing anticorrosive coatings. J Mater Chem. 2011;21:11123. doi: 10.1039/c1jm10794a
- Latnikova A, Grigoriev DO, Hartmann J, Mohwald H, Shchukin DG. Polyfunctional microencapsulation of HDI damage -triggered water-repelling effect. Soft Matter. 2011;7:369. doi: 10.1039/c0sm00842g
- Hang TT, Truc TA, Oliver MG, Vandermiers C. Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay. J Porg Coat. 2010;69:410-416. doi: 10.1016/j.porgcoat.2010.08.004
- Li XG, Huang MR, editors. Milestones in Powerful Adsorbents of Heavy Metal Ions. Cambridge: Cambridge Scholars Publishing; 2024.
- Morsi RE, Khamis EA, Al-Sabagh AM. Polyaniline nanotubes: Facile synthesis, electrochemical, quantum chemical characteristics and corrosion inhibition efficiency. J Taiwan Inst Chem Eng. 2016;60:573-581. doi: 10.1016/j.jtice.2015.10.028
- Abu-Thabit NY, Makhlouf ASH. Recent Advances in Polyaniline (PANI)-Based Organic Coatings for Corrosion Protection. New Delhi: Woodhead Publishing Limited; 2014. p. 459-486. doi: 10.1533/9780857096883.2.459
- Han R, He H, Liu X, et al. Anti-corrosion and self-healing coatings with polyaniline/epoxy copolymer-urea-formaldehyde microcapsules for rusty steel sheets. J Colloid Interface Sci. 2022;616:605-617. doi: 10.1016/j.jcis.2022.02.088
- Obot IB, Ankah NK, Sorour AA, Gasem ZM, Haruna K. 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustain Mater Technol. 2017;14:1-10. doi: 10.1016/j.susmat.2017.09.001
- Bardez E, Devol I, Larrey B, Valeur B. Excited-state processes in 8-hydroxyquinoline: Photoinduced tautomerization and solvation effects. J Phys Chem. 1997;101:7786-7793. doi: 10.1021/jp971293u
- Filip E, Humelnicu I, Ghirvu C. Some aspects of 8-hydroxyquinoline in solvents. Acta Chem Iasi. 2009;96: 85-96.
- Liu W, Singh A, Lin Y, Ebenso EE, Zhou L, Huang B. 8-Hydroxyquinoline as an effective corrosion inhibitor for 7075 aluminium alloy in 3.5% NaCl solution. Int J Electrochem Sci. 2014;9:5574-5584. doi: 10.1016/S1452-3981(23)08190-7
- Mennucci MM, Banczek EP, Rodrigues PRP, Costa I. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution. Cement Concr Compos. 2009;31(6):418-424. doi: 10.1016/j.cemconcomp.2009.04.005
- Ammar S, Ma IAW, Muhammad FMS, Bashir S. Electrochemical studies of 1,2,3-benzotriazole inhibitor for acrylic-based coating in different acidic media systems. J Polym Res. 2020;27:142. doi: 10.1007/s10965-020-02130-4
- Wu X, Wiame F, Maurice V, Marcus P. Adsorption and thermal stability of 2-mercaptobenzothiazole corrosion inhibitor on metallic and pre-oxidized Cu (111) model surfaces. Appl Surf Sci. 2020;508:145132. doi: 10.1016/j.apsusc.2019.145132
- Jafari H, Akbarzade K, Danaee I. Corrosion inhibition of carbon steel immersed in a 1M HCl solution using benzothiazole derivatives. Arab J Chem. 2013;12:1387-1394. doi: 10.1016/j.arabjc.2014.11.018
- Zarebidaki A, Mofidi SHH, Bahri FI. Effect of 2-mercaptobenzothiazole on the corrosion inhibition of Cu-10Ni alloy in 3 wt% NaCl solution. J Appl Electrochem. 2022;52:1773-1788. doi: 10.1007/s10800-022-01750-6
- l-Sayed AR, El-Hendawy MM, El-Mahdy MS, Hassan FSM, Mohamed AE. The inhibitive action of 2-mercaptobenzothiazole on the porosity of corrosion film formed on aluminum and aluminum-titanium alloys in hydrochloric acid solution. Sci Rep. 2023;13:4812. doi: 10.1038/s41598-023-31795-2
- Marinescu M. Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chem. 2019;13:136. doi: 10.1186/s13065-019-0655-y
- Zhou Y, Guo L, Zhang S. Corrosion control of mild steel in 0.1 M H2SO4 solution by benzimidazole and its derivatives: An experimental and theoretical study. RSC Adv. 2017;7:23961-23969. doi: 10.1039/c7ra02192e
- Obot IB, Gasem ZM, Umoren SA. Understanding the mechanism of 2-mercaptobenzimidazole adsorption on Fe (110), Cu (111) and Al (111) surfaces: DFT and molecular dynamics simulations approaches. Int J Electrochem Sci. 2014;9:2367-2378. doi: 10.1016/S1452-3981(23)07933-6
- Popova A, Sokolova E, Raicheva S, Christov M. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros Sci. 2003;45(1):33-58. doi: 10.1016/S0010-938X(02)00072-0
- Abdel-Karim AM, El-Shamy AM. A review on green corrosion inhibitors for protection of archaeological metal artifacts. J Bio Tribo Corros. 2022;8(2):35. doi: 10.1007/s40735-022-00636-6
- Abiola OK, Oforka NC, Ebenso EE, Nwinuka NM. Eco-friendly corrosion inhibitors: The inhibitive action of Delonix regia extract for the corrosion of aluminium in acidic media. Anti Corros Methods Mater. 2007;54:219-224. doi: 10.1108/00035590710762357
- Kliskic M, Radoservic J, Gudic S, Katalinic V. Aqueous extract of Rosmarinus officinalis L. as inhibitor of Al-Mg alloy corrosion in chloride solution. J Appl Electrochem. 2000;30(7):823-830. doi: 10.1023/A:1004041530105
- El-Etre AY. Natural honey as corrosion inhibitor for metals and alloys. I. Copper in neutral aqueous solution. Corros Sci. 1998;40(11):1845-1850. doi: 10.1016/S0010-938X(98)00082-1
- El-Etre AY. Inhibition of aluminium corrosion using Opuntia extract. Corros Sci. 2003;45(11):2485-2495. doi: 10.1016/S0010-938X(03)00066-0
- El-Etre AY. Khillah extract as inhibitor for acid corrosion of SX 316 steel. Appl Surf Sci. 2006;252(24):8521-8525. doi: 10.1016/j.apsusc.2005.11.066
- Ebenso EE, Ibok UJ, Ekpe UJ, et al. Corrosion inhibition studies of some plant extracts on aluminium in acidic medium. Trans SAEST. 2004;39(4):117-123. doi: 10.1016/S0254-0584(02)00446-7
- Ebenso EE, Ekpe UJ. Kinetic study of corrosion and corrosion inhibition of mild steel in H2SO4 using Parica papaya leaves extract. West Afr J Biol Appl Chem. 1996;41:21-27.
- Ekpe UJ, Ebenso EE, Ibok UJ. Inhibitory action of Azadirachta indica leaves extract on the corrosion of mild steel in H2SO4. J West Afr Sci Assoc. 1994;37:13-30. doi: 10.1016/S1452-3981(23)15337-5
- Zucchi F, Omar IH. Plant extracts as corrosion inhibitors of mild steel in HCl solutions. Surf Technol. 1985;24(4): 391-399. doi: 10.5897/ijps11.923
- Yee YJ. Green Inhibitors for Corrosion Control: A Study on the Inhibitive Effects of Extracts of Honey and Rosmarinus officinalis L. (Rosemary) [M.S. thesis], University of Manchester, Institute of Science and Technology; 2004.
- Umoren SA, Obot IB, Ebenso EE. Corrosion inhibition of aluminium using exudate gum from Pachylobus edulis in the presence of halide ions in HCl. Eur J Chem. 2008;5(2): 355-364. doi: 10.1155/2008/138407
- Abdallah M. Guar gum as corrosion inhibitor for carbon steel in sulphuric acid solutions. Port Electrochim Acta. 2004;22:161-175. doi: 10.4152/pea.200402161
- Okafor PC, Ekpe UJ, Ebenso EE, Umoren EM, Leizou KE. Inhibition of mild steel corrosion in acidic medium by Allium sativum extracts. Bull Electrochem. 2005;21(8): 347-352.
- Okafor PC, Ebenso EE. Inhibitive action of Carica papaya extracts on the corrosion of mild steel in acidic media and their adsorption characteristics. Pigment Resin Technol. 2007;36(3):134-140. doi: 10.1108/03699420710748992
- Okafor PC, Osabor VI, Ebenso EE. Eco-friendly corrosion inhibitors: Inhibitive action of ethanol extracts of Garcinia kola for the corrosion of mild steel in H2SO4 solutions. Pigment Resin Technol. 2007;36(5):299-305. doi: 10.1108/03699420710820414
- Okafor PC, Ikpi ME, Uwah IE, Ebenso EE. Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. Corros Sci. 2008;50(8):2310-2317. doi: 10.1016/j.corsci.2008.05.009
- El-Etre AY, Abdallah M. Natural honey as corrosion inhibitor for metals and alloys. II. C-steel in high saline water. Corros Sci. 2000;42(4):731-738. doi: 10.1016/S0010-938X(99)00106-7
- Chetouani A, Hammouti B, Benkaddour M. Corrosion inhibition of iron in hydrochloric acid solution by jojoba oil. Pigment Resin Technol. 2004;33(1):26-31. doi: 10.1108/03699420410512077
- Bouyanzer A, Hammouti B. A study of anti-corrosive effects of Artemisia oil on steel. Pigment Resin Technol. 2004;33(5):287-292. doi: 10.1108/03699420410560489
- Oguzie EE. Inhibition of acid corrosion of mild steel by Telfairia occidentalis extract. Pigment Resin Technol. 2005;34(6):321-326. doi: 10.1108/03699420510630336
- Oguzie EE. Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel. Mater Chem Phys. 2006;99:441-446. doi: 10.1016/j.matchemphys.2005.11.018
- Eddy NO, Odoemelam SA, Odiongenyi AO. Ethanol extract of Musa species peels as a green corrosion inhibitor for mild steel: Kinetics, adsorption and thermodynamic considerations. Electron J Environ Agric Food Chem. 2009;8(4):243-255. doi: 10.1016/0376-4583(85)90057-3
- Deepa Rani P, Selvaraj S. Inhibitive and adsorption properties of Punica granatum extract on brass in acid media. J Phytol. 2010;2(11):58-64.
- Chambers BD, Taylor SR, Kendig MW. Rapid discovery of corrosion inhibitors and synergistic combinations using high-throughput screening methods. Corrosion. 2005;61:480-489. doi: 10.5006/1.3280648
- Gece G. Drugs: A review of promising novel corrosion inhibitors. Corros Sci. 2011;53(12):3873-3898. doi: 10.1016/j.corsci.2011.08.006