AccScience Publishing / EER / Online First / DOI: 10.36922/eer.7975
REVIEW ARTICLE

Exploring Anabaena-Azolla symbiosis: Multifunctional roles in sustainable agriculture, livestock productivity, and bioenergy

Ponnusamy Ramesh1 Gangatharan Muralitharan1,2* Chelliah Koventhan3,4* An-Ya Lo3,4* Bhooma Venkatesan1
Show Less
1 Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
2 Fresh Water and Marine Units, National Repository for Microalgae and Cyanobacteria, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
3 Energy and Functional Materials Laboratory, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei, Taiwan
4 Department of Chemical and Materials Engineering, College of Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
Submitted: 18 December 2024 | Revised: 25 February 2025 | Accepted: 19 March 2025 | Published: 7 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cyanobacteria are prokaryotic group of ancient, morphologically varied organisms that utilize oxygen for photosynthesis, contributing significantly to global carbon and nitrogen fixation while improving crop quality. With the rising population and increasing demand for food, advancing agricultural productivity is essential. Therefore, ongoing research is crucial for boosting crop development and increasing food output. According to previous studies, cyanobacteria are among the best sources for crop development and enhancement. In addition, the Azolla-Anabaena are environmentally significant organisms, as they can be used in bioremediation, the reclamation of infertile land, mosquito control, and the sustainable intensification of animal husbandry by serving as high-quality fodder. Furthermore, they play a role in bioenergy development, emphasizing bio-oil and biodiesel production. The applications of these cyanobacterial systems extend far beyond traditional agriculture, presenting opportunities for innovation in the bioenergy sector. This review provides in-depth information on the critical role of cyanobacteria in ecological restoration and socioeconomic improvement, offering valuable insights for advancing sustainable agricultural practices and renewable energy solutions. In addition, the review highlights broader applications of the Anabaena-azollae symbiosis in nitrogen fixation, plant growth, and animal feed, underscoring their multifaceted nature and vast potential for practical use.

Keywords
Azolla
Cyanobacteria
Plant growth
Socioeconomy
Bioenergy
Funding
We thank RUSA 2.0 – Biological Sciences, funded by MHRD, Government of India for the fellowship support, and the National Science and Technology Council (NSTC 111-2221-E-003-035-MY3; NSTC 111-2811-E-167- 001-MY3), Taiwan.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Singh H, Khattar JS, Ahluwalia AS. Cyanobacteria and agricultural crops. Int J Plant Res. 2014;27(1):37. doi: 10.5958/j.2229-4473.27.1.008

 

  1. Rai AN, Singh AK, Syiem MB. Plant growth-promoting abilities in Cyanobacteria. In: Cyanobacteria. Netherlands: Elsevier; 2019. p. 459-476. doi: 10.1016/B978-0-12-814667-5.00023-4

 

  1. Vaishampayan A, Sinha RP, Hader DP, et al. Cyanobacterial biofertilizers in rice agriculture. Bot Rev. 2001;67(4):453-516. doi: 10.1007/BF02857893

 

  1. Singh A, Chandra Y, Azad S, Kumar M, Azad CS. Effect of Azolla on Crops and Weeds. Vigyan Varta. 2022;1:19-23.

 

  1. Raja W, Rathaur P, John SA, Ramteke PW. Azolla-Anabaena association and its significance in supportable agriculture. Azolla-Anabaena ilişkisi ve dayanikli tarimdaki önemi. Hacettepe J Biol Chem. 2012;40:1-6.

 

  1. Carballo-Sánchez MP, Alarcón A, Pérez-Moreno J, Ferrera- Cerrato R. Agricultural and forestry importance of microorganism-plant symbioses: A microbial source for biotechnological innovations. Rev Agric Sci. 2022;10(0):344-355. doi: 10.7831/ras.10.0_344

 

  1. Thapa P, Poudel K. Azolla: Potential biofertilizer for increasing rice productivity, and government policy for implementation. J Wastes Biomass Manag. 2021;3(2):62-68. doi: 10.26480/jwbm.02.2021.62.68

 

  1. Kodape A, Sharma S. Anabaena azollae culture water a source for bioremediation. Int J Res Biosci Agric Technol. 2021;1:54-59. doi: 10.29369/ijrbat.2021.01.1.0009

 

  1. Balo S, Mahata D. Azolla: A Promising Booster Towards Agricultural Productivity. Just Agriculture. 2022;3(3):1-8.

 

  1. Santhiya B, Jeeva S. Azolla as a source of biofertilizer for sustainable crop production-a review. J Xi’an Shiy Univer. 2022;18:598-605.

 

  1. Yadav RK, Abraham G, Singh YV, Singh PK. Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc Indian Natl Sci Acad. 2014;80(2):301. doi: 10.16943/ptinsa/2014/v80i2/55108

 

  1. Abd El-Aal AA. Anabaena-azollae, significance and agriculture application: A case study for symbiotic cyanobacterium. In: Microbial Syntrophy-Mediated Eco- Enterprising. Netherlands: Elsevier; 2022. p. 1-14. doi: 10.1016/B978-0-323-99900-7.00006-7

 

  1. Costa ML, Santos MCR, Carrapiço F, Pereira AL. Azolla- Anabaena’s behaviour in urban wastewater and artificial media-influence of combined nitrogen. Water Res. 2009;43(15):3743-3750. doi: 10.1016/j.watres.2009.05.038

 

  1. Whitton BA. Soils and rice-fields. In: The Ecology of Cyanobacteria. Amsterdam: Kluwer Academic Publishers; 2000. p. 233-255. doi:10.1007/0-306-46855-7-8

 

  1. Dommergues YRDHG. Microbiology of Tropical Soils and Plant Productivity. The Hague, Boston, London: Martinus Nijhoff/Dr. W. Junk Publisheres; 1982.

 

  1. Singh PK, Misra SP, Singh AL. Azolla biofertilization to increase rice production with emphasis on dual cropping. In: Practical Application of Azolla for Rice Production. Berlin: Springer Netherlands; 1984. p. 132-144. doi: 10.1007/978-94-009-6201-9_12

 

  1. Henson BJ, Hesselbrock SM, Watson LE, Barnum SR. Molecular phylogeny of the heterocystous Cyanobacteria (subsections IV and V) based on nifD. Int J Syst Evol Microbiol. 2004;54(2):493-497. doi: 10.1099/ijs.0.02821-0

 

  1. Sarma TA. Handbook of Cyanobacteria. United States: CRC Press; 2012. doi: 10.1201/b14316

 

  1. Fogg GE. Studies on nitrogen fixation by blue-green algae. J Exp Biol. 1942;19(1):78-87. doi: 10.1242/jeb.19.1.78

 

  1. Mevarech M, Rice D, Haselkorn R. Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci. 1980;77(11):6476-6480. doi: 10.1073/pnas.77.11.6476

 

  1. Mazur BJ, Chui CF. Sequence of the gene coding for the β-subunit of dinitrogenase from the blue-green alga Anabaena. Proc Natl Acad Sci. 1982;79(22):6782-6786. doi: 10.1073/pnas.79.22.6782

 

  1. Reich S, Boger P. Regulation of nitrogenase activity in Anabaena variabilis by modification of the Fe protein. FEMS Microbiol Lett. 1989;58(1):81-86. doi: 10.1111/j.1574-6968.1989.tb03022.x

 

  1. Fay P. Oxygen relations of nitrogen fixation in Cyanobacteria. Microbiol Rev. 1992;56(2):340-373. doi: 10.1128/mr.56.2.340-373.1992

 

  1. Böhme H, Haselkorn R. Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacterium Anabaena spp. strain PCC 7120. Mol Gen Genet. 1988;214(2):278-285. doi: 10.1007/BF00337722

 

  1. Wagner GM. Azolla: A review of its biology and utilization. Bot Rev. 1997;63(1):1-26. doi: 10.1007/BF02857915

 

  1. Kumar G, Chander H. Study on the Potential of Azolla pinnata as livestock Feed Supplement for climate Change adaptation and Mitigation. Asian J. Adv. Basic Sci. 2017;5(2):65-8.

 

  1. Katayama N, Yamashita M, Kishida Y, Liu CC, Watanabe I, Wada H. Azolla as a component of the space diet during habitation on Mars. Acta Astronaut. 2008;63(7-10):1093-1099. doi: 10.1016/j.actaastro.2008.01.023

 

  1. Thajuddin N, Subramanian G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci. 2005;89:47-57.

 

  1. Desikachary TV. Cyanophyta. New Delhi: Indian Council of Agriculture Research; 1959.

 

  1. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol. 2006;34(1):33-41. doi: 10.1016/j.apsoil.2005.12.002

 

  1. Dorich RA, Nelson DW, Sommers LE. Estimating algal available phosphorus in suspended sediments by chemical extraction. J Environ Qual. 1985;14(3):400-405. doi: 10.2134/jeq1985.00472425001400030018x

 

  1. Wang W, Liu Y, Li D, Hu C, Rao B. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem. 2009;41(5):926-929. doi: 10.1016/j.soilbio.2008.07.001

 

  1. Kumar U, Kaviraj M, Rout S, et al. Combined effects of elevated CO2 and nitrogen fertilizers on plant physiological variables in two contrasting Azolla spp. Sci Hortic. 2024;331:113152. doi: 10.1016/j.scienta.2024.113152

 

  1. Prasanna R, Sharma E, Sharma P, et al. Soil fertility and establishment potential of inoculated Cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environ. 2013;11(1-4):175-183. doi: 10.1007/s10333-011-0302-2

 

  1. Arora A, Saxena S, Sharma DK. Tolerance and phytoaccumulation of Chromium by three Azolla species. World J Microbiol Biotechnol. 2006;22(2):97-100. doi: 10.1007/s11274-005-9000-9

 

  1. Siva R, Sureshkumar R, Ashoka Reddy Y, Ravichandran S. Effect of weeds and their management in transplanted rice-a review. Int J Res Appl Nat Soc Sci. 2016;4:165-180.

 

  1. Adhikari K, Bhandari S, Acharya S. An overview of Azolla in rice production: A review. Rev Food Agric. 2020;2(1):4-8. doi: 10.26480/rfna.01.2021.04.08

 

  1. Pereira AL. The Unique Symbiotic System between a Fern and a Cyanobacterium, Azolla-Anabaena azollae: Their Potential as Biofertilizer, Feed, and Remediation. In: Symbiosis. London: InTechopen; 2018. doi: 10.5772/intechopen.70466

 

  1. Van HC, Lejeune A. The Azolla: Anabaena symbiosis. InBiology and Environment: Proceedings of the Royal Irish Academy. 2002;102(1):23-26. doi: 10.3318/BIOE.2002.102.1.23

 

  1. Pabby A, Prasanna R, Singh PK. Azolla-Anabaena Symbiosis-from Traditional Agriculture to Biotechnology. Vol. 2; 2003.

 

  1. Lechno-Yossef S, Nierzwicki-Bauer SA. Azolla-Anabaena Symbiosis. In: Cyanobacteria in Symbiosis. Kluwer Academic Publishers; 2002. p. 153-178. doi: 10.1007/0-306-48005-0_9

 

  1. Lumpkin TA, Plucknett DL. Azolla: Botany, physiology, and use as a green manure. Econo Bot. 1980;34:111-153.

 

  1. Rehman Raja W, John S, Ramteke PW. Azolla: An aquatic pteridophyte with great potential. Int J Res Biol Sci. 2012;2(2):68-72.

 

  1. Guo K, Yang J, Yu N, Luo L, Wang E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Commun. 2023;4(2):100499. doi: 10.1016/j.xplc.2022.100499

 

  1. Bhusal D, Thakur DP. Curry leaf: A review. Rev Food Agric. 2021;2(1):36-38. doi: 10.26480/rfna.01.2021.36.38

 

  1. Bagali SS, Shrimant Shridhar B. Review: Nitrogen fixing microorganisms. Int J Microbiol Res. 2012;3(1):46-52. doi: 10.5829/idosi.ijmr.2012.3.1.61103

 

  1. Chandra Roy D. A review on biology, cultivation and utilization of Azolla. Adv Life Sci. 2016;5:11-15.

 

  1. Kollmen J, Strieth D. The beneficial effects of cyanobacterial co-culture on plant growth. Life. 2022;12(2):223. doi: 10.3390/life12020223

 

  1. Samal KC, Behera L, Sahoo JP. Azolla Biofertilizer–The Nature’s Miracle Gift for Sustainable Rice Production. Research Today. 2020;2(9):971-973.

 

  1. Rascio N, La Rocca N. Biological nitrogen fixation. In: Encyclopedia of Ecology. Netherlands: Elsevier; 2008. p. 412-419. doi: 10.1016/B978-008045405-4.00273-1

 

  1. Peters GA. Azolla-anabaena symbioses: Basic biology, use, and prospects for the future. In: Practical Application of Azolla for Rice Production. Berlin: Springer Netherlands; 1984. p. 1-14. doi: 10.1007/978-94-009-6201-9_1

 

  1. Giller KE. Nitrogen fixation in tropical cropping systems. Cabi; 2001. ISBN 0 85199-417-2.

 

  1. Reddy PM, James EK, Ladha JK. Nitrogen fixation in rice. In: Nitrogen Fixation at the Millennium. Netherlands: Elsevier; 2002. p. 421-445. doi: 10.1016/B978-044450965-9/50015-X

 

  1. Bhat TA, Ahmad D, Ganai M. Nitrogen fixing biofertilizers; mechanism and growth promotion: A review. J Pure Appl Microbiol. 2015;9:1675-1690.

 

  1. De Vries S, de Vries J. Azolla: A model system for symbiotic nitrogen fixation and evolutionary developmental biology. In: Current Advances in Fern Research. Berlin: Springer International Publishing; 2018. p. 21-46. doi: 10.1007/978-3-319-75103-0_2

 

  1. Srivastava R, Kanda T, Yadav S, Mishra R, Atri N. Cyanobacteria in Rhizosphere: Dynamics, Diversity, and Symbiosis. Berlin: Springer Singapore; 2021. p. 51-69. doi: 10.1007/978-981-16-3364-5_4

 

  1. Terry LM, Li C, Chew JJ, et al. Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon Resour Convers. 2021;4:239-250. doi: 10.1016/j.crcon.2021.10.002

 

  1. Drugkar K, Rathod W, Sharma T, et al. Advanced separation strategies for up-gradation of bio-oil into value-added chemicals: A comprehensive review. Sep Purif Technol. 2022;283:120149. doi: 10.1016/j.seppur.2021.120149

 

  1. Pirbazari SM, Norouzi O, Kohansal K, Tavasoli A. Experimental studies on high-quality bio-oil production via pyrolysis of Azolla by the use of a three metallic/modified pyrochar catalyst. Bioresour Technol. 2019;291:121802. doi: 10.1016/j.biortech.2019.121802

 

  1. Salehzadeh A, Naeemi A, Arasteh A. Biodiesel production from Azolla filiculoides (water fern). Trop J Pharm Res. 2014;13(6):957. doi: 10.4314/tjpr.v13i6.19

 

  1. Narayanasamy B, Jeyakumar N. Performance and emission analysis of methyl ester of Azolla algae with TiO2 Nano additive for diesel engine. Energy Sources Part A Recov Util Environ Effects. 2019;41(12):1434-1445. doi: 10.1080/15567036.2018.1548519

 

  1. Rehman A, Ma H, Ozturk I, Ulucak R. Sustainable development and pollution: The effects of CO2 emission on population growth, food production, economic development, and energy consumption in Pakistan. Environ Sci Pollut Res. 2022;29(12):17319-17330. doi: 10.1007/s11356-021-16998-2

 

  1. Katole SB, Lende SR, Patil SS. A Review on Potential Livestock Feed: Azolla. Livestock Research International. 2017;5(1):01-09.

 

  1. Kamaruddin NA, Yusuf NM, Ishak MF, Kamarudin MS. Study on chemical composition of Azolla filiculoides and Hydrilla verticillata. J Agrobiotechnol. 2019;10(1S):68-74.

 

  1. Kumar A, Babu S, Singh R, Gudade B. Implications and future prospects of Azolla as a low-cost organic input in agriculture. Agriculation. 2022;2:1-7.

 

  1. Kim J, Rees DC. Nitrogenase and biological nitrogen fixation. Biochemistry. 1994;33(2):389-397. doi: 10.1021/bi00168a001

 

  1. Burns RC, Hardy RWF. Nitrogen Fixation in Bacteria and Higher Plants. Vol. 21. Berlin, Heidelberg: Springer; 1975. doi: 10.1007/978-3-642-80926-2

 

  1. Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol. 2004;186(3):601-610. doi: 10.1128/JB.186.3.601-610.2004

 

  1. Magnuson A. Heterocyst thylakoid bioenergetics. Life. 2019;9(1):13. doi: 10.3390/life9010013

 

  1. Issa AA, Abd-Alla MH, Ohyama T. Nitrogen fixing cyanobacteria: future prospect. In Advances in biology and ecology of nitrogen fixation. Intech Open; 2014. p. 23-48. doi: 10.5772/56995

 

  1. Gallon JR. Reconciling the incompatible: N2 fixation and O2. New Phytol. 1992;122(4):571-609. doi: 10.1111/j.1469-8137.1992.tb00087.x

 

  1. Kumar K, Mella-Herrera RA, Golden JW. Cyanobacterial heterocysts. Cold Spring Harbor Perspect Biol. 2010;2(4):a000315. doi: 10.1101/cshperspect.a000315

 

  1. Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous Cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66(1):94-121. doi: 10.1128/MMBR.66.1.94-121.2002

 

  1. Seleiman MF, Elshayb OM, Nada AM, et al. Azolla compost as an approach for enhancing growth, productivity and nutrient uptake of Oryza sativa L. Agronomy. 2022;12(2):416. doi: 10.3390/agronomy12020416

 

  1. Simarmata T, Prayoga MK, Setiawati MR, Adinata K, Stöber S. Improving the climate resilience of rice farming in flood-prone areas through Azolla biofertilizer and saline-tolerant varieties. Sustainability. 2021;13(21):12308. doi: 10.3390/su132112308

 

  1. Carrapico F, Teixeira G. Azolla as a biofertiliser in Africa. A challenge for the future. Rev Ciên Agrárias. 2000;23(3-4):120-138.

 

  1. Grizeau D, Bui LA, Dupré C, Legrand J. Ammonium photo-production by heterocytous Cyanobacteria: Potentials and constraints. Crit Rev Biotechnol. 2016;36(4):607-618. doi: 10.3109/07388551.2014.1002380

 

  1. Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51(2):163-190. doi: 10.1007/s11099-013-0021-6

 

  1. Wijayanta AT, Aziz M. Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis. Energy. 2019;174:331-338. doi: 10.1016/j.energy.2019.02.190

 

  1. Whitton, B.A., Potts, M. (2000). Introduction to the Cyanobacteria. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. doi: 10.1007/0-306-46855-7_1

 

  1. Rashid H, Krehenbrink M, Akhtar MS. Nitrogen- Fixing Plant-Microbe Symbioses. Switzerland: Springer International Publishing; 2015. p. 193-234. doi: 10.1007/978-3-319-09132-7_4

 

  1. Bhujel A, Bhujel AK, Rizal GM. Exploring use of Azolla as the potential livestock feed resources-a review. Bhutan J Anim Sci. 2022;40-47.

 

  1. Pratt CF, Constantine K, Wood SV. A century of Azolla filiculoides biocontrol: The economic value of Stenopelmus rufinasus to Great Britain. CABI Agric Biosci. 2022;3(1):70. doi: 10.1186/s43170-022-00136-0

 

  1. Korsa G, Alemu D, Ayele A. Azolla plant production and their potential applications. Int J Agron. 2024;2024:1-12. doi: 10.1155/2024/1716440

 

  1. Kour M, Khan N, Singh R, Mahajan V, Amrutkar SA, Kumar D. Effect of Azolla (Azolla pinnata) supplementation on milk yield, composition and economics in crossbred HF cows. Int J Curr Microbiol Appl Sci. 2020;9(10):2661-2666. doi: 10.20546/ijcmas.2020.910.320

 

  1. Van Hove C. Azolla and its multiple uses with emphasis on Africa, Food and Agricultural Organization, Rome. 1989.

 

  1. Chandrababu KA, Parvathy U. Water fern-Azolla: A review. Agric Rev. 2022. doi: 10.18805/ag.R-2529

 

  1. Buckingham KW, Ela SW, Morris JG, Goldman CR. Nutritive value of the nitrogen-fixing aquatic fern Azolla filiculoides. J Agric Food Chem. 1978;26(5):1230-1234. doi: 10.1021/jf60219a051

 

  1. Sanginga N, van Hove C. Amino acid composition of azolla as affected by strains and population density. Plant Soil. 1989;117(2):263-267. doi: 10.1007/BF02220720

 

  1. Anjana D. Amino acid composition of leaf proteins extracted from some aquatic weeds. J Agric Food Chem. 1993;41(8):1232-1236. doi: 10.1021/jf00032a013

 

  1. Fasakin EA. Nutrient quality of leaf protein concentrates produced from water fern (Azolla africana Desv) and duckweed (Spirodela polyrrhiza L. Schleiden). Bioresour Technol. 1999;69(2):185-187. doi: 10.1016/S0960-8524(98)00123-0

 

  1. Shiomi N, Kitoh S. Culture of Azolla in a pond, nutrient composition, and use as fish feed. Soil Sci Plant Nutr. 2001;47(1):27-34. doi: 10.1080/00380768.2001.10408365

 

  1. Roy DC, Pakhira MC, Roy AM. Estimation of amino acids, minerals and other chemical compositions of Azolla. Adv Life Sci. 2015;5:2692-2696.

 

  1. Adams DG, Bergman B, Nierzwicki-Bauer SA, Duggan PS, Rai AN, Schüßler A. Cyanobacterial-plant symbioses. In: The Prokaryotes. Berlin, Heidelberg: Springer; 2013. p. 359- 400. doi: 10.1007/978-3-642-30194-0_17

 

  1. Miranda AF, Biswas B, Ramkumar N, et al. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels. 2016;9(1):221. doi: 10.1186/s13068-016-0628-5

 

  1. Brouwer P, van der Werf A, Schluepmann H, Reichart GJ, Nierop KGJ. Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. Bioenergy Res. 2016;9(1):369-377. doi: 10.1007/s12155-015-9665-3

 

  1. Golzary A, Hosseini A, Saber M. Azolla filiculoides as a feedstock for biofuel production: Cultivation condition optimization. Int J Energy Water Resour. 2021;5(1):85-94. doi: 10.1007/s42108-020-00092-3

 

  1. Arefin MA, Rashid F, Islam A. A review of biofuel production from floating aquatic plants: An emerging source of bio‐renewable energy. Biofuels Bioproducts Biorefining. 2021;15(2):574-591. doi: 10.1002/bbb.2180

 

  1. Arora A, Sood A, Singh PK. Hyperaccumulation of cadmium and nickel by Azolla species. Indian J. Plant Physiol. 2004;3:302-304.

 

  1. Mishra VK, Tripathi BD, Kim KH. Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater. 2009;172(2-3):749-754. doi: 10.1016/j.jhazmat.2009.07.059

 

  1. Rai PK. Microcosm investigation on phytoremediation of Cr using Azolla pinnata. Int J Phytoremed. 2009;12(1):96-104. doi: 10.1080/15226510902767155

 

  1. Stepniewska Z, Bennicelli RB, Balakhnina TB, Szajnocha K, Banach A, Wolihska A. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys. 2005;19:251-255.

 

  1. Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 2004;55(1):141-146. doi: 10.1016/j.chemosphere.2003.11.015

 

  1. Zhang X, Lin AJ, Zhao FJ, Xu GZ, Duan GL, Zhu YG. Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environ Pollut. 2008;156(3):1149-1155. doi: 10.1016/j.envpol.2008.04.002

 

  1. Dai LP, Xiong ZT, Huang Y, Li MJ. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ Toxicol. 2006;21(5):505-512. doi: 10.1002/tox.20212

 

  1. Singh RP. Organic fertilizers: Types, production and environmental impact. Nova Science Publishers; 2012. ISBN: 978-1-62081-422-2

 

  1. Backer R, Rokem JS, Ilangumaran G, et al. Plant growth-promoting Rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473. doi: 10.3389/fpls.2018.01473

 

  1. Ruan R, Zhang Y, Chen P, et al. Biofuels: Introduction. In: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels. Netherlands: Elsevier; 2019. p. 3-43. doi: 10.1016/B978-0-12-816856-1.00001-4

 

  1. Agarwal P, Soni R, Kaur P, et al. Cyanobacteria as a promising alternative for sustainable environment: Synthesis of biofuel and biodegradable plastics. Front Microbiol. 2022;13:939347. doi: 10.3389/fmicb.2022.939347

 

  1. Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol. 2021;19(11):701-715. doi: 10.1038/s41579-021-00577-w

 

  1. Lawan Muhammad U. Biofuels as the starring substitute to fossil fuels. Petrol Sci Eng. 2018;2(1):44. doi: 10.11648/j.pse.20180201.17

 

  1. Mubarak M, Shaija A, Suchithra TV. Optimization of lipid extraction from Salvinia molesta for biodiesel production using RSM and its FAME analysis. Environ Sci Pollut Res. 2016;23(14):14047-14055. doi: 10.1007/s11356-016-6343-8

 

  1. Pantawong R, Chuanchai A, Thipbunrat P, et al. Experimental investigation of biogas production from water lettuce, Pistia stratiotes L. Emer Life Sci Res. 2015;1(2):41-46.

 

  1. Wasagu RS, Lawal M, Shehu S, Alfa HH, Muhammad C. Nutritive values, mineral and antioxidant properties of Pistia stratiotes (Water lettuce). Niger J Basic Appl Sci. 2014;21(4):253. doi: 10.4314/njbas.v21i4.2

 

  1. Luo G, Shi W, Chen X, et al. Hydrothermal conversion of water lettuce biomass at 473 or 523 K. Biomass Bioenergy. 2011;35(12):4855-4861. doi: 10.1016/j.biombioe.2011.10.002

 

  1. Rusoff LL, Blakeney EW, Culley DD. Duckweeds (Lemnaceae family): A potential source of protein and amino acids. J Agric Food Chem. 1980;28(4):848-850. doi: 10.1021/jf60230a040

 

  1. Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen W, Nguyen THP. Sustainability of the four generations of biofuels-A review. Int J Energy Res. 2020;44(12):9266-9282. doi: 10.1002/er.5557

 

Share
Back to top
Explora: Environment and Resource, Electronic ISSN: 3060-9046 Published by AccScience Publishing